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Abstract. We exhibit a transitive sofic system for which the core matrix has negative
trace, and hence cannot share the nonzero spectrum of any subshift of finite type
cover. We also show that every transitive sofic system has an integral core matrix.

0. Introduction
A sofic system is a symbolic dynamical system 5 which is the image of some subshift
of finite type 1 under a continuous shift-commuting map; we call 2 a cover of 5.
Nasu [N] defined the core matrix (a square matrix with real entries, uniquely
determined up to similarity) of a transitive sofic system and showed that the block
of the Jordan form of the core matrix with non-zero eigenvalues is an invariant for
finite-to-one factor maps between transitive sofic systems. This in an extension of
a result of Kitchens [K], that the Jordan form away from zero of the adjacency
matrix of an irreducible subshift of finite type is an invariant for finite-to-one factor
maps. Much research has been done on the question of what matrices can occur as
Jordan forms of subshifts of finite type, and it is natural to ask the same question
for core matrices. In particular, are the two classes the same?

A transitive sofic system is spectrally of finite type if there is a sofic system S,
conjugate to S and a cover S, of S] such that the adjacency matrix of 2.t is a core
matrix of St. Then the core matrix of 5 and the adjacency matrix of 2, have the
same Jordan form away from zero. Nasu showed that the class of spectrally finite
type sofic systems properly contains the almost finite type systems (see § 2 for a
definition), and conjectured that every transitive sofic system is spectrally of finite
type.

We present a counterexample to this conjecture. In fact, the core matrix in our
example has negative trace, so its Jordan form away from zero cannot be that of
any non-negative integral matrix. On the other hand, we show that every transitive
sofic system has an integral core matrix.

In §§ 1 and 2 we give a synopsis of basic definitions and results concerning matrix
systems and the core. § 3 contains a construction of a rational core matrix system
for any given transitive sofic system; from this we deduce the existence of an integral
core matrix (Theorem 3.4). Under certain easily-checked conditions the construction
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yields a non-negative integral matrix (Remark 3.3). This observation was the motiva-
tion for our example of a transitive sofic system which is not spectrally of finite
type. The example is given in § 4, and can be read independently by anyone familiar
with Nasu's paper [N].
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1. Sofic systems, matrix systems and the core
Let A be a finite set (alphabet). We denote by A* the set of finite strings (words)
of elements of A, including the empty string A; a language is a subset of A*.

A subshift S of Az is a closed subset which is invariant under the left shift map
a; S is completely determined by its language, that is, the set of words appearing
in elements of 5. S is sofic if there is a finite semigroup G with absorbing element
O (that is, Og — gO = O for all geG) and a distinguished set of distinct generators
{g(a): aeA} such that the language of S is exactly the set of x = x, • • • xn e A* for
which g(*i) • • • g(xn) 5* O. We say S is transitive if for every x and y in the language
of S there is a word z with xzy in the language of S. (Some authors use a weaker
definition of transitive and refer to the above condition as 'transitive, periodic points
dense'.) A factor map between subshifts is a continuous, onto shift-commuting map.
Two subshifts are (topologically) conjugate if there is an invertible factor map
between them.

A matrix system of order m over A consists of a triple (A, M, 4>) where $ is a
homomorphism of the monoid A* into the multiplicative monoid of m x m real
matrices (which means *(A) = Im and 4>(x) = ^(x,) • • • <&(xn) for x = x, • • • xn e A*)
and M = Y4aeA®(a) is nondegenerate (that is, no row or column consists only of
zeros). We say (A, M, <&) is irreducible if M is irreducible, and integral [respectively,
non-negative] if each 3>(a) has integral [non-negative] entries. The language of a
non-negative matrix system (A, M, 4>), denoted L(A, M, <£), is the set of words
x e A* for which <5(x) ̂  0. Then L(A, M, <I>) is given by the semigroup G = <&(A*)
with generators <J>(a), and determines a sofic subshift.

A non-negative integral matrix system (A, M, 4>) corresponds in a natural way to
a labelled directed graph. We let G(M) be the graph with vertices (states) 1, . . . , m,
where m is the order of (A, M, 4>), and My edges from state i to state j , (<J>(a))j, of
which are labelled with the symbol a. Let E be the edge set of G(M); we say an
edge ffollows the edge e if the initial state of/ is the terminal state of e. The subshift
of finite type (SFT) 1M is the subshift

{(et) e Ez: c,+1 follows e, for all i}.

The sofic system S with language L{A, M, <&) is simply the image of 2 M under the
map T T : £ Z - » A Z which sends each coordinate edge to its label. It is well known
(cf. [CP]) that every sofic system is the image of some subshift of finite type under
such a '1-block' map. We will refer to (2M, IT) - or sometimes just 2 M - as the
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(SFT) cover of 5 corresponding to the non-negative integral matrix system (A, M, <I>).
A sofic system is transitive if and only if it has a cover 1M with M irreducible [F, CP].

A non-negative matrix system (A, M, 4>) is said to be normal if there are constants
0 < c < d such that

c<!(*(*)),;,•<<* fora l lxeL(A, M,4>).
'j

In the integral case (<t>(x))0 is the number of paths in G{M) beginning at state i
and ending at j which are labeled by the word x; thus an irreducible matrix system
is normal if and only if the cover map v is finite-to-one.

We sometimes consider (A, M, <l>) with specified initial and final vectors (u, v),
where u and v are m-dimensional row, respectively column vectors. ((A, M, <J>) with
(u, v) is also called a linear space automaton [MIF, IFM]). We say (A, M, <&) with
(u, v) is equivalent to (A, N, ^P) with (u', v') if

u<P(x)v = u'V(x)v', allxeA*.

If (A, M, <£) is non-negative and irreducible then M has a positive maximal eigen-
value AM and corresponding positive left, respectively right eigenvectors uM, vM

with || MM || = 1, uMvM = 1. Then $>(x) = 0 if and only if uM 4>(x)yM = 0. In particular,
if (A, N, ^ ) is also non-negative and irreducible and (A, M, <J>) with (MM, VM) is
equivalent to (A, N, ^ ) with (uN, vN) then L(A, M, <J>) = L(A, N, V). Conversely,

THEOREM A [N]. If (A, M, <&) and (A, N, ^ ) are normal irreducible non-negative
matrix systems with the same language then AM = AN and (A, M, 3>) with (uM, vM)
is equivalent to (A, N, W) with (uN, vN).

The matrix system (A, M, <1>) with (M, V) is said to be row reduced if {««J>(x): x € A*}
generates the row vector space Rm, column reduced if {<b(x)v: x e A*} generates the
column space Rm, and reduced if both these conditions hold. By a reduced form of
(A, M, <I>) with (u,v) we mean an equivalent system which is reduced. Reduced
forms always exist; constructions appear in [IFM, N]. In § 2 we give a variant of
the latter.

We say two matrix systems (A, M, 4>) and (A, N, ^ ) are similar if they are of the
same order and there is a non-singular matrix T with <I>(a) T = TV(a) for all aeA.
In this case we see that (A,M,<£>) with («, v) is equivalent to (A, N,^) with
(MT, T"1!)). For reduced forms we have the converse:

THEOREM B [N]. / / (A, M, <&) with (u, v) and (A, N, ^ ) with («', u') are reduced
and equivalent then (A, M, <&) ana* (A, AT, ^ ) are similar.

COROLLARY. If (A, M, 4>) wif/i (M, i;) is a reduced form of (A, M, <&) wft/i (u, t;) then
the Jordan form of M is a principal submatrix of the Jordan form of M. If u,v are
eigenvectors for an eigenvalue A ofM then A is also an eigenvalue ofM with eigenvectors
u,v.

Proof. This is easily checked for the reduced form given by the construction.
Since these properties are preserved under similarity, they hold for any reduced
form. •
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Definition [N]. For a transitive sofic system S, let (A, M, $) be a normal irreducible
non-negative matrix system with language equal to the language of 5, and let
(A, M, $) with (u, v) be a reduced form of (A, M, 4>) with (uM, vM). Then we call
(A, M, $) a core matrix system for S, and M a core matrix of S.

By Theorems A and B, any two core matrix systems for 5 are similar. By the
corollary, AM is an eigenvalue of M - in fact, its maximal eigenvalue - and u and
v are corresponding eigenvectors. Hence when we speak of a core matrix system
(A, M, <I>) there is no need to specify initial and final vectors: we can retrieve the
language of 5 as

Since the core matrix system involves the alphabet A of S it is by no means
invariant under topological conjugacy. The core matrix, however, provides an
invariant:

THEOREM C [N]. If the transitive sofic system S is a factor of the transitive sofic system
T then the Jordan form away from zero of the core matrix S is a principal submatrix
of the Jordan form of the core matrix of T. Thus the Jordan form away from zero of
the core matrix is an invariant of topological conjugacy.

2. Nasu's conjecture
The SFT cover of a sofic system corresponding to a non-negative integral matrix
system (A, M, <J>) is said to be right [left] resolving if each 4>(a) is a 0-1 matrix
with at most one 1 in each row [column]. For a given transitive sofic 5, a well-known
construction [F] yields a minimal right resolving cover R and a minimal left resolving
cover L.

THEOREM D [N]. If the integral non-negative matrix system (A, M, 4>) corresponds
to the minimal right [left] resolving cover of a transitive sofic system S then (A, M, 4>)
with (uM, vM) is row [column] reduced.

A sofic system S is said to be of almost finite type (AFT) if it has an irreducible
SFT cover (2, IT) such that IT is one-to-one on a non-trivial open set [M]. Equivalently
(see [N, BKM]), 5 is topologically conjugate to a transitive sofic system Sj for which
the minimal right resolving and minimal left resolving covers are the same. Then
the corresponding matrix system (A, N, ^ ) is row and column reduced; that is, it
is a core matrix system for 5j. In particular, N and the core matrix of S have the
same Jordan form away from zero.

If 5 is not of almost finite type it can happen that the core matrix system is
smaller than the matrix systems corresponding to R and L, not only in order, but
in the spectral sense that the matrices of R and L have non-zero eigenvalues which
are not eigenvalues of the core matrix. Nasu's paper contains such a 'small core'
example. In Nasu's example, however, the similarity class of the core matrix contains
a non-negative integral matrix system, which therefore corresponds to an SFT cover
of S.
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Definition [N]. A transitive sofic system 5 is spectrally of finite type if there exist a
sofic system 5, topologically conjugate to S and a 1-block SFT cover 5^ of 5! such
that the matrix system corresponding to the cover is a core matrix system for St.

Thus all AFT sofic systems as well as Nasu's non-AFT 'small core' example are
spectrally of finite type. Nasu conjectured that every sofic system is spectrally of
finite type. It is this conjecture which we disprove in § 4.

This negative result leaves open the common factors problem: do two sofic systems
S, T of equal entropy necessarily have a common equal-entropy sofic factor? If
'sofic' is replaced by 'SFT' the answer is no [K]; one way to produce a counterexample
is to construct 5 and T so that the only common principal submatrix of their rational
canonical forms away from zero has negative trace (cf. [L]). If Nasu's conjecture
were true we could conclude as well that S and T have no common equal-entropy
sofic factor.

3. A construction of the core
We give a practical method of constructing the core matrix system for a transitive
sofic system S. Our construction is a special case of Nasu's general method of
obtaining a reduced form; by making more explicit choices at several places in the
construction we ensure that the core matrix system we obtain has only rational
entries. From this we show that there is an integral core matrix.

Construction 3.1. Let (A, M, 4>) be the matrix system corresponding to the minimal
right resolving cover of 5. By Theorem D, (A, M, $) with (uM, vM) is row reduced.
To column reduce it (if it is not already reduced) we must first choose a basis for
the column vector space

V = {Q>(x)vM:xeA*}.

We say a word x e A* is resolving for the minimal right resolving cover if all
paths labelled with x in the graph G(M) of the cover end at the same state. Resolving
words exist [F], and every extension of a resolving word is resolving. If x is resolving,
we denote by lx the column vector in Rm with a 1 in the ith coordinate if some
appearance of x in G(M) begins at state i, and 0 otherwise.

LEMMA 3.2. Let P = {lx: x a resolving word}. Then P spans V.

Proof. For any word x of 5, the ij coordinate of <J>(x) is simply the number of paths
in G(M) from state i to state j which are labelled with the word x; this number
will be 0 or 1 since a right resolving cover is finite-to-one. If x is resolving, with all
appearances ending at state j , then 4>(x)uM = (vM)j \x.

If x is not resolving, fix a resolving word z and let W be the set of words w such
that xw is a word of S, w ends in z and z appears nowhere else in w. For every
word se S, the measure of maximal entropy on S (see [P]) assigns to the cylinder
set determined by 5 the mass

m(s) = AM"N«M*(*)fM,

where |s| is the length of s. Then m(sx) = pq = pr, where

weW
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Since (A, M, <£) is row reduced, the vectors p generate Rm as s ranges through the
words of S. Thus q and r are identical as linear functionals on R, so q = r. But we
have seen that each ®(xw)vM is in the span of P, and so r is as well since
finite-dimensional vector spaces are closed. •

From P we choose a basis for V, and form a 0-1 matrix K which has these basis
elements as columns. Then for each aeA there is a unique mxm matrix <l>(a),
where m is the dimension of V, satisfying

<t>(a)K = K$(a), (*)

and the sum M of these matrices satisfies MK = KM. Let v be the m- dimensional
column vector with vM = Kv, and u = uMK. Then (A, M, $) with (u, v) is reduced
and equivalent to (A, M, <&) with (uM, vM) (see [N, p. 95] for details), so it is a core
matrix system for S. Since 3>(a) and X are integral matrices, it follows from (*)
that 4>(a) is a rational matrix for every a, and M is rational as well.

Remark 3.3. If in the above construction it is possible to choose the basis of V from
P so that every element of P is a sum of basis elements, then the resulting core
matrix system will be integral and non-negative, and so S is spectrally of finite type.
In Nasu's small core example,

P = {(1000)', (0101)', (0011)', (1101)', (1011)'}

and so the first three elements form a basis of the desired type. The motivation of
our example in § 4 was to produce a sofic system for which no such basis exists.
This by itself does not guarantee that the system is not spectrally of finite type, but
it provides a good starting point for further experimentation.

THEOREM 3.4. Every transitive sofic system has an integral core matrix.

Proof. By Construction 3.1 we can find a rational core matrix M. The Jordan form
away from zero of M is a principal submatrix of the Jordan form of the matrix M
of an equal-entropy SFT cover. Hence the characteristic polynomial p(t) of M
divides a power of f times the characteristic polynomial p(t) of M. Since p(t) has
rational coefficients, p(t) integral coefficients, and both are monic, it follows from
the Gauss Lemma that p(t) has integral coefficients. Then the companion matrix
of p{t) is an integral matrix similar to M, so it is an integral core matrix for the
given sofic system. •
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4. The example
Let S be the sofic system given by the graph in figure 1. The cover shown corresponds
to the matrix system

*(a) =
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0

0
0
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0 0
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0 0/
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Carrying out Construction 3.1 we find

P = {(1100)', (0110)', (0011)', (1001)'},

so that no choice of basis meets the condition of Remark 3.3. Taking
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we find the core matrix system

Note that the core matrix M has negative trace. Any matrix having the same Jordan
form away from zero as M will also have negative trace, so it must have negative
entries. Since the Jordan form away from zero of the core matrix is a conjugacy
invariant, no sofic system topologically conjugate to 5 has a core matrix system
corresponding to a an SFT cover. Hence S is not spectrally of finite type.
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