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Generalized Torsion Elements and
Bi-orderability of 3-manifold Groups

Kimihiko Motegi andMasakazu Teragaito

Abstract. It is known that a bi-orderable group has no generalized torsion element, but the converse
does not hold in general. We conjecture that the converse holds for the fundamental groups of
3-manifolds and verify the conjecture for non-hyperbolic, geometric 3-manifolds. We also conûrm
the conjecture for some inûnite families of closed hyperbolic 3-manifolds. In the course of the proof,
we prove that each standard generator of the Fibonacci group F(2,m) (m > 2) is a generalized
torsion element.

1 Introduction

A group G is said to be bi-orderable if G admits a strict total ordering < that is
invariant under multiplication from the le� and right. _at is, if g < h, then agb <

ahb for any g , h, a, b ∈ G. In this paper, the trivial group {1} is considered to be
bi-orderable.

Let g ∈ G be a non-trivial element. If some non-empty ûnite product of conju-
gates of g is equal to the identity, then g is called a generalized torsion element. In
particular, any non-trivial torsion element is a generalized torsion element. If a group
G is bi-orderable, then G has no generalized torsion element (see Lemma 2.3). In
other words, the existence of generalized torsion element is an obstruction for bi-
orderability. In the literature [3, 19, 21, 22], a group without generalized torsion ele-
ment is called an R∗-group or a Γ-torsion-free group. _us, bi-orderable groups are
R∗-groups. However, the converse does not hold in general [22, Chapter 4].

Ifwe restrict ourselves to a speciûc class of groups, say, knot groups ormore gener-
ally, 3-manifold groups, then we can expect that the converse statement would hold.

Conjecture 1.1 Let G be the fundamental group of a 3-manifold. _en G is bi-
orderable if and only if G has no generalized torsion element.

_ere are several works on the bi-orderability and generalized torsion elements of
knot groups. _e knot group of any torus knot is not bi-orderable, because it contains
generalized torsion elements [23]. _us, Conjecture 1.1 holds for torus knot groups.
We remark that the knot exterior of a torus knot is a Seifert ûberedmanifold. Other
examples are twist knots, which have Conway’s notation [2, 2n]. _e knot group of a
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twist knot is bi-orderable if n > 0, not bi-orderable if n < 0 by [7]. _e second author
showed that if n < 0, then the knot group contains a generalized torsion element [30].
_is means that Conjecture 1.1 holds for twist knot groups as well. Torus knot groups
and twist knot groups are one-relator groups, and [6, Question 3] asks whether the
conjecture holds for one-relator knot groups,more generally, one-relator groups.

We ûrst observe the following, which enables us to restrict our attention to funda-
mental groups of prime 3-manifolds for Conjecture 1.1.

Proposition 1.2 Let M be the connected sumof two 3-manifolds M1 andM2. Suppose
that G i = π1(M i) satisûes Conjecture 1.1 for i = 1, 2. _en G = π1(M) also satisûes
Conjecture 1.1.

_e main purpose of this paper is to conûrm Conjecture 1.1 for the fundamental
groups of Seifert ûberedmanifolds, Sol manifolds,which are possibly non-orientable.

_eorem 1.3 Let M be a compact connected 3-manifold, and letG be its fundamental
group. IfM is either Seifert ûbered or Sol, then G satisûes Conjecture 1.1.

Any closed geometric 3-manifold that possesses a geometric structure other than
a hyperbolic structure is Seifert ûbered or admits a Sol structure [28, _eorem 5.1].
_us,_eorem 1.3 has the following corollary.

Corollary 1.4 _e fundamental group of any closed, geometric 3-manifold that is
non-hyperbolic satisûes Conjecture 1.1.

_e n-fold cyclic branched cover Σn of the 3-sphere branched over the ûgure-eight
knot is known to be an L-space and have non-le�-orderable fundamental group [9,
26,29]. In particular, Σn is hyperbolic if n ≥ 4.

_eorem 1.5 Let Σn be the n-fold cyclic branched cover of S3 over the ûgure-eight
knot. _en π1(Σn) satisûes Conjecture 1.1.

Section 3 treats the case where M is a Seifert ûbered manifold, and Section 4 ex-
amines the case where M is a Sol-manifold. _eorem 1.3 follows from _eorems 3.1
and 4.1. In Section 5 we prove that each generator in the standard cyclic presenta-
tion of the Fibonacci group F(2,m) (m > 2) is a generalized torsion element (_eo-
rem 5.2). Since π1(Σn) is isomorphic to F(2, 2n) [11, 13], this result immediately im-
plies _eorem 1.5. We also verify the conjecture for another inûnite family of closed
hyperbolic 3-manifolds,which are the ûrst ones thatdonot containReebless foliations
given by [27].

2 Preliminaries

In a group, we use the notation ga = a−1ga for a conjugate and [a, b] = aba−1b−1 for
a commutator.

We recall some results that will be useful in the proof of_eorem 1.3.
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Lemma 2.1 Let K be the Klein bottle. _en π1(K) contains a generalized torsion
element.

Proof It is well known that π1(K) has a presentation

π1(K) = ⟨x , y ∣ y−1xy = x−1
⟩.

Since xx y = 1 from the relation and x /= 1, x is a generalized torsion element.

Lemma 5.1 in [12] shows the following lemma.

Lemma 2.2 If a 3-manifold M contains a projective plane, then π1(M) admits a
torsion element, hence a generalized torsion element.

Lemma 2.3 If G is bi-orderable, then G has no generalized torsion element.

Proof Let < be a bi-ordering of G. Suppose that G contains a generalized torsion
element g. _erefore, there exist a1 , . . . , an ∈ G such that

ga1 ga2 ⋅ ⋅ ⋅ gan = 1.

Since g /= 1, we have g > 1 or g < 1. If g > 1, then ga i > 1 for any i by bi-orderability.
So, the product of these conjugates is still bigger than 1, a contradiction. _e case g < 1
is similar.

We recall the following result due to Vinogradov [32].

Lemma 2.4 A free product G = G1 ∗ G2 ∗ ⋅ ⋅ ⋅ ∗ Gn of groups is bi-orderable if and
only if each G i is bi-orderable.

Proof of Proposition 1.2 If G is bi-orderable, then G has no generalized torsion el-
ement (Lemma 2.3). Conversely, assume that G is not bi-orderable. _en it follows
from Lemma 2.4 that G1 or G2 is not bi-orderable. Without loss of generality, we
can assume that G1 is not bi-orderable. By assumption G1 has a generalized torsion
element, which is also a generalized torsion element of G.

3 Seifert Fibered Manifolds

_e goal in this section is to establish Conjecture 1.1 for Seifert ûbered manifolds,
which may be non-orientable. Since any bi-orderable group has no generalized tor-
sion element (Lemma 2.3), it is suõcient to show the following theorem.

_eorem 3.1 Let M be a Seifert ûbered manifold that is possibly non-orientable. If
G = π1(M) is not bi-orderable, then G has a generalized torsion element.

Before proving the theorem, we recall the characterization of Seifert ûberedmani-
foldswhose fundamental groups are bi-orderable due toBoyer,Rolfsen, andWiest [5].
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_eorem 3.2 ([5]) Let M be a compact connected Seifert ûbered manifold, and let
G be its fundamental group. _en G is bi-orderable if and only if one of the following
holds:
(i) G is the trivial group andM = S3.
(ii) G is inûnite cyclic andM is either S1 × S2, S1×̃S2, or a solid Klein bottle.
(iii) M is the total space of a locally trivial, orientable circle bundle over a surface other

than S2, P2, or the Klein bottle.

We should remark that in _eorem 3.2(iii), M is not necessarily orientable. A cir-
cle bundle over a surface is said to be orientable if for any loop on the base surface, its
preimage under the natural projection is a torus. So, the total space of an orientable
circle bundlemay be non-orientable. In case (iii), M is a non-orientable 3-manifold,
whenever the base surface is non-orientable. For example, the trivial circle bundle
over theMöbius band is a non-orientable Seifert ûberedmanifold, and its fundamen-
tal group is Z2, which is bi-orderable.
Based on the characterization in_eorem 3.2,wewill show that if the fundamental

group of a Seifert ûberedmanifold M is not bi-orderable, then it contains a general-
ized torsion element. _e proof of_eorem 3.1 is divided into two cases according to
whether or not M is orientable. _e two cases are discussed in Subsections 3.1 and
3.2, respectively.

Let M be a compact connected Seifert ûbered manifold, and let G be the funda-
mental group of M. Suppose that G is not bi-orderable herea�er.

3.1 Proof of Theorem 3.1 for Orientable Seifert Fibered Manifolds

In this section,we assume that M is an orientable Seifert ûberedmanifoldwhose fun-
damental group G is not bi-orderable. We will look for a generalized torsion element
in G.
First,wemake a reduction. Since the trivial group is bi-orderable, G is non-trivial.

If M is reducible, then M is either S1 × S2 or P3#P3. For the ûrst case, G is inûnite
cyclic, so bi-orderable. In the second case G = Z2 ∗ Z2 has a torsion element. _us,
in the sequel we assume that M is irreducible.
Fix a Seifert ûbration F of M, and let B be a base surface obtained by identifying

each ûber to a point. _en we have a natural projection p ∶ M → B. _e Seifert
ûbration F gives B an orbifold structure, and we denote the base orbifold byB.

_e case where B is non-orientable is easy to settle.

Lemma 3.3 IfM is orientable and B is non-orientable, then G contains a generalized
torsion element.

Proof Let ℓ be an orientation-reversing loop on B. _en the inverse image p−1(ℓ)
gives the Klein bottle K in M. Let T be the torus boundary of the regular neighbor-
hood N(K) of K, which is the twisted I-bundle over the Klein bottle. By Lemma 2.1,
π1(N(K)) (= π1(K)) contains a generalized torsion element.

If the torus T is incompressible in M, then π1(N(K)) is a subgroup of G. Hence,
the above generalized torsion element remains in G.
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If T is compressible, then T bounds a solid torus by the irreducibility ofM. Hence,
M is the union of the twisted I-bundle over theKlein bottle and a solid torus. _en M
is either S1 × S2, P3#P3, a lens space, or a prism manifold. _e ûrst case is eliminated
by our assumption that G is not bi-orderable. When the second case happens, P3#P3

is reducible, contradicting the assumption. For the remaining cases, G is ûnite, so it
contains a torsion element.

By Lemma 3.3, we can now assume that B is orientable. Let n be the number of
exceptional ûbers in F.

Lemma 3.4 If n = 0, then G contains a generalized torsion element.

Proof SinceM is a circle bundle over B, B is S2 by_eorem 3.2. _enM is S3, S1×S2,
or a lens space. Since G is not bi-orderable, M is a lens space. Hence, G contains a
torsion element.

Lemma 3.5 IfG is inûnite and non-abelian, and n > 0, then G contains a generalized
torsion element.

Proof _e canonical subgroup in the sense of [16] coincides with G. Let e be the
element represented by an exceptional ûber of index α (≥ 2). By [16, II.4.7] (which
needs the assumption that G is inûnite), the centralizer of e is abelian, because e does
not lie in the subgroup generated by a regular ûber h, which is inûnite cyclic and
normal.

_us, the centralizer of e is strictly smaller than G. Hence, there exists an element
f ∈ G that does not commute with e. However, eα = h, the element represented by a
regular ûber, so eα is central in G. _us, the commutator [e , f ] /= 1, but [eα , f ] = 1.
We remark that [eα , f ] is a product of conjugates of [e , f ], which follows inductively
from the equation

[eα , f ] = [eα−1 , f ]e
−1
[e , f ].

_is implies that the commutator [e , f ] is a generalized torsion element.

It follows from Lemma 3.4 that we can assume n > 0. We now separate into two
cases depending upon whether or not ∂B = ∅.

Case 1. ∂B = ∅: Let g be the genus of the closed orientable surface B. If g = 0 and
n ≤ 2, then M is S3, S1 × S2, or a lens space. Since G is not bi-orderable, M is a lens
space. _en G contains a torsion element.

Suppose g = 0 and n ≥ 3, or g ≥ 1.
We claim that G is non-abelian. If G is abelian, then M is either S1 × S2, T3, or a

lens space; see [1, p. 25]. In the ûrst two cases, G is bi-orderable. Hence, M is a lens
space, but this is impossible by the assumption g = 0 and n ≥ 3, or g ≥ 1.

IfG is ûnite, then G contains a torsion element. Otherwise, the conclusion follows
from Lemma 3.5.

Case 2. ∂B /= ∅: (i) If B is the disk with n = 1, then M is a solid torus. _en G
is inûnite cyclic, which is bi-orderable. (ii) If B is either the disk with n = 2 or an
annulus with n = 1, then Lemma 3.5 gives the conclusion.
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In any other case, we can choose a loop ℓ on B such that either
(a) ℓ bounds a disk with two cone points (ofB) or
(b) ℓ and one boundary component of B cobounds an annulus with one cone point

(ofB),
and so that the inverse image p−1(ℓ) under the natural projection p∶M → B gives a
separating incompressible torus T in M.

_en the fundamental group of one side of T in M contains a generalized torsion
element as above, which remains in G. _is completes the proof of _eorem 3.1 for
orientable Seifert ûberedmanifolds.

3.2 Proof of Theorem 3.1 for Non-orientable Seifert Fibered Manifolds

In this section, we examine a non-orientable Seifert ûberedmanifold M with funda-
mental group G. Let n denote the number of (isolated) exceptional ûbers, which are
orientation-preserving in M. Exceptional ûbers that are orientation-reversing, if they
exist, form one-sided annuli, tori, or Klein bottles in M [28, p.431]. A�er [25], we call
such exceptional ûbers special exceptional ûbers.

Recall that we assume that G is not bi-orderable. Our goal is to ûnd a generalized
torsion element in G.

Lemma 3.6 If n > 0, then M contains a generalized torsion element.

Proof Assume that n > 0. Take an orientation cover M̃ ofM. It is the unique double
cover of M, which corresponds to the kernel of the surjection from G to Z2, sending
the element of G to 0 or 1 according to whether the loop is orientation-preserving or
not. Also, the Seifert ûbration of M naturally li�s to one of M̃.

Let e be an isolated exceptional ûber in M. Since e is orientation-preserving, it li�s
to an isolated exceptional ûber of M̃ with the same index.

If π1(M̃) is not bi-orderable, then it contains a generalized torsion element by the
orientable case of _eorem 3.1, which is established in Section 3.1. Since π1(M̃) is a
subgroup of G, the generalized torsion element remains in G. _erefore, we now as-
sume that π1(M̃) is bi-orderable, though π1(M) isnot bi-orderable. _en by_eorem
3.2, there are three possibilities for which M̃ is orientable.

Case 1. M̃ is S3. In this case,M is the quotient of S3 under Z2-action. _en M would
be orientable (indeed, a lens space), a contradiction; see [28, p. 456].

Case 2. M̃ is S1×S2. SinceM is the quotient of S1×S2 underZ2-action,M is either S1×

S2, S1×̃S2, P3#P3, or S1×P2 [28, p. 457]. SinceM is non-orientable,M is either S1×̃S2

or S1 × P2. In the former, π1(M) = Z is bi-orderable, contradicting the assumption.
In the latter, by Lemma 2.2, π1(M) contains a torsion element, hence a generalized
torsion element.

Case 3. M̃ is the total space of a locally trivial, orientable circle bundle over a surface
B̃ other than S2, P2, or the Klein bottle. Since M̃ is orientable, B̃ is also orientable.
Recall that M̃ has an exceptional ûber in the Seifert ûbration coming from M. Hence,
if the ûbration of M̃ is unique, then this is a contradiction. From the classiûcation
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of Seifert ûberedmanifolds with non-unique ûbrations [15], the only possibility of M̃
is S1 × D2. _en M is a ûbered solid Klein bottle [28, p. 443], which contradicts the
assumption that G is not bi-orderable.

Lemma 3.7 IfM contains no exceptional ûbers, thenG contains a generalized torsion
element.

Proof Since there is no exceptional ûber, M is a circle bundle over a surface B.
If B is orientable, then there exists a loop ℓ in B over which ûbers cannot be co-

herently oriented, becauseM is non-orientable. _en the inverse image p−1(ℓ) under
the natural projection p∶M → B gives theKlein bottle in M. If γ ∈ G is represented by
ℓ, then h−1 = γ−1hγ, so hhγ = 1, where h is represented by a regular ûber. We remark
that h /= 1 [5, Proposition 4.1]. Hence, h is a generalized torsion element.
Assume now that B is non-orientable. If there exists a loop in B over which ûbers

cannot be coherently oriented, then the above argument works again. Hence, M is
an orientable circle bundle over B. By _eorem 3.2, B must be either P2 or the Klein
bottle.

When B = P2, there are only two orientable circle bundles over B, S1 × P2, and
S1×̃S2 [5, p. 279]. If M = S1 × P2, then G has a torsion element, hence a generalized
torsion element (Lemma 2.2). IfM = S1×̃S2, thenG is bi-orderable, contradicting our
initial assumption.

When B is the Klein bottle K, there are also two possibilities for M: S1 × K and
the non-trivial circle bundle over K. For the former, π1(K) is a subgroup of G. Since
π1(K) contains a generalized torsion element by Lemma 2.1, so does G. For the latter,
G has a presentation

G = ⟨x , y, h ∣ [h, x] = [h, y] = 1, x2 y2
= h⟩ = ⟨x , y ∣ x2 y2 is central⟩ ,

as described in [5, p. 279]. _en

[x2 , y] = x2 yx−2 y−1
= (x2 y2

)y−1x−2 y−1
= y−1x−2

(x2 y2
)y−1

= 1.

Note that [x2 , y] = [x , y]x
−1
[x , y]. Since there is a surjection from G onto the non-

abelian group ⟨x , y ∣ x2 = y2 = 1⟩ = Z2 ∗ Z2, G is not abelian. Hence, [x , y] /= 1 in G.
_us, [x , y] is a generalized torsion element.

It follows from Lemmas 3.6 and 3.7 that we can assume that M contains a special
exceptional ûber e. _en e2 = h, which is a regular ûber.

Now, the base surface B has non-empty boundary that contains re�ector lines. We
follow the approach of [5, Proof of Lemma 8.1 (Case 2)]. Let N be a regular neighbor-
hood of the set of re�ector lines in B, and let N0 be a component of N . Decompose
B into N0 and B0 = cl(B − N0). _en N0 ∩ B0 is either an arc or a circle. If we put
P0 = p−1(N0) and M0 = p−1(B0), then M is decomposed into P0 and M0 along a
vertical annulus or torus, according to whether N0 ∩ B0 is either an arc or a circle. (A
vertical Klein bottle doesnot appear, because of the argument in the second paragraph
of the proof of Lemma 3.7.) In the former case, P0 is a ûbered solid Klein bottle, and
in the latter case, P0 is the twisted I-bundle over a torus [28, pp. 433–434]. In either
case, P0 ∩M0 is incompressible in P0.
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If P0∩M0 is compressible in M0, then P0 is the twisted I-bundle over the torus and
M0 is a solid torus [5, p. 280]. _is implies that M is obtained byDehn ûlling on P0, so
its fundamental groupG is a quotient ofZ⊕Z. _us, G is abelian. If it is torsion-free,
then it is bi-orderable, a contradiction. Hence, G has a (non-trivial) torsion element,
which is a generalized torsion element.
Finally, we assume that P0 ∩ M0 is incompressible in M0. _en G is the amal-

gamated free product of π1(P0) and π1(M0) over π1(P0 ∩ M0). It is well known
that any element in π1(P0) − π1(P0 ∩ M0) does not commute with any element in
π1(M0) − π1(P0 ∩M0) [20].

If the inclusion π1(P0 ∩ M0) → π1(M0) is an isomorphism, then M0 would be
the trivial I-bundle over an annulus or a torus [12, _eorems 5.2 and 10.6]. _en M
is homeomorphic to P0, so G is bi-orderable, a contradiction. Hence, the inclusion
π1(P0 ∩M0)→ π1(M0) is not an isomorphism.

We remark that the special exceptional ûber e lies in π1(P0)−π1(P0∩M0). Suppose
that there exists an element f ∈ π1(M0) − π1(P0 ∩M0) that commutes with h. _en
we have [e , f ] /= 1, but [e2 , f ] = [h, f ] = 1. Since [e , f ]e

−1
[e , f ] = [e2 , f ] = 1, [e , f ]

is a generalized torsion element in G. So in the sequel we look for such an element
f ∈ π1(M0) − π1(P0 ∩M0).

IfM0 contains a special exceptional ûber, then it gives the desired element f . Oth-
erwise, B0 does not contain re�ector curves. If B0 is a disk, then M0 is a solid torus
and P0 ∩ M0 is an annulus. Since the inclusion π1(P0 ∩ M0) → π1(M0) is injective,
but not surjective, the core of the vertical annulus P0 ∩ M0 (a regular ûber) inter-
sects a meridian disk of M0 more than once. _is means that the core of M0 is an
exceptional ûber. _en we have a generalized torsion element by Lemma 3.6. Hence,
B0 is not a disk, and we take a homotopically nontrivial loop f on B0. As before, if
the regular ûbers over f cannot be oriented coherently, then there is the Klein bottle
whose fundamental group contains a generalized torsion element. Otherwise, f gives
the desired element commuting with h. We have thus established _eorem 3.1 for
non-orientable Seifert ûberedmanifolds.

4 Sol Manifolds

In this section we will prove the following theorem.

_eorem 4.1 Let M be a Sol manifold. If G = π1(M) is not bi-orderable, then G has
a generalized torsion element.

It was shown in [18, 21, 22] that if a solvable group with ûnite rank (i.e., there is a
universal bound for the rank of ûnitely generated subgroups) has no generalized tor-
sion element, then it is bi-orderable. Since a Sol manifold has a solvable fundamental
group with ûnite rank [1, 4], the contrapositive of _eorem 4.1, hence _eorem 4.1,
holds. However, we give an alternative proof by explicitly identifying a generalized
torsion element in G.

_e characterization of Solmanifoldswith bi-orderable fundamental groups is also
known by [5].
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_eorem 4.2 ([5]) Let M be a compact connected Sol 3-manifold with fundamental
group G. _en G is bi-orderable if and only if one of the following holds:
(i) ∂M /= ∅ andM is not the twisted I-bundle over the Klein bottle.
(ii) M is a torus bundle over the circle whosemonodromy in GL2(Z) has at least one

positive eigenvalue.

Note that there are two twisted I-bundles over the Klein bottle; one is orientable
and the other is non-orientable [10].

Proof of_eorem 4.1 Recall that M is a Sol manifold whose fundamental group G
is not bi-orderable. In the following we look for a generalized torsion element in G.

Lemma 4.3 If ∂M /= ∅, then G contains a generalized torsion element.

Proof Since G is assumed to be not bi-orderable and ∂M /= ∅, by _eorem 4.2, M
is the twisted I-bundle over the Klein bottle. _en Lemma 2.1 shows that G contains
a generalized torsion element.

_us,we assume that M is closed. Following [5, p. 282], there are three possibilities
for M:
(a) a torus or Klein bottle bundle over the circle;
(b) non-orientable and the union of two twisted I-bundles over the Klein bottle that

are glued along their Klein bottle boundaries;
(c) orientable and the union of two twisted I-bundles over the Klein bottle that are

glued along their torus boundaries.
Except the case where M is a torus bundle over the circle, there is a π1-injective

Klein bottle in M. By Lemma 2.1, G contains a generalized torsion element. _us,
we can assume that M is a torus bundle over the circle with Anosov monodromy
A ∈ GL2(Z). By_eorem4.2 and our assumption thatG is not bi-orderable, Ahas no
positive eigenvalue. (We remark that A has distinct two real eigenvalues [28, p. 470].)
Hence, the two eigenvalues of A are negative real numbers, so detA = 1 and tr(A) <
−2. _eorem 4.1 now follows from _eorem 4.4.

For a torus bundle over the circle, we can ûnd a generalized torsion element ex-
plicitly in its fundamental group under a weaker condition.

_eorem 4.4 Let M be a torus bundle over the circle with monodromy A ∈ SL2(Z).
If tr(A) < 0, then π1(M) contains a generalized torsion element.

Proof Let A = ( a c
b d ) , with ad − bc = 1 and a + d < 0. _en we can assume that

either a, d ≤ 0, or a > 0 and d < 0.
Now, π1(M) has a presentation

(4.1) π1(M) = ⟨ l ,m, t ∣ [l ,m] = 1, t−1 l t = l amb , t−1mt = l cmd⟩ .

We will show that the element l is a generalized torsion element.
Since any torus ûber is π1-injective, l /= 1. From the relations, we have

(4.2) (l t)−d = l−adm−bd , (mt
)
b
= l bcmbd .
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From the ûrst of these, l(l t)−d = l 1−adm−bd . Multiplying thiswith the second relation
of (4.2) and using ad − bc = 1,

(4.3) l(l t)−d(mt
)
b
= 1.

Case 1. a, d ≤ 0
_e second relation of (4.1) gives mb = l−a l t . From this and (4.3), we have

l(l t)−d(l−a l t)t
= 1.

Since the le�-hand side is a product of the conjugates of l , this shows that l is a gen-
eralized torsion element.

Case 2. a > 0 and d < 0.
Equation (4.3) is changed to l(l−dmb)t = 1. But

l(l−dmb
)
t
= l(l−a−d l amb

)
t
= l(l−a−d)t

(l amb
)
t .

From (4.1), l t = l amb . Hence, l(l−a−d)t l t
2
= 1. Since a + d < 0, the le�-hand side is a

product of conjugates of l .
_us, we have shown that l is a generalized torsion element.

5 Hyperbolic Manifolds

Corollary 1.4 says that Conjecture 1.1 holds for any closed 3-manifold that possesses
a geometric structure other than non-hyperbolic structure. In this section, we ûrst
prove _eorem 1.5, and then we verify the conjecture for some closed hyperbolic
3-manifolds introduced by Roberts, Shareshian, and Stein [27].

5.1 Cyclic Branched Covers of the Figure-eight Knot

Let K be the ûgure-eight knot and let Σn = Σn(K) be the n-fold cyclic branched
cover of the 3-sphere S3 branched over K. It is known that Σ2 is a lens space, Σ3 is
Seifert ûbered, and Σn is hyperbolic if n > 3; see [11, 13]. Furthermore, any Σn is an
L-space [26,29], and has non-le�-orderable fundamental group [9]. (A le�-ordering
in a group G is a strict total ordering that is invariant under le�-multiplication.) In
particular, π1(Σn) is not bi-orderable. We prove that the fundamental group of Σn
contains a generalized torsion element when n > 1, from which _eorem 1.5 immedi-
ately follows.

_eorem 5.1 _e fundamental group G = π1(Σn) contains a generalized torsion
element whenever n > 1.

Proof _e Fibonacci group F(2,m), introduced by Conway [8], has presentation

F(2,m) = ⟨ a1 , a2 , . . . , am ∣ a ia i+1 = a i+2 (indices modulo m)⟩ .

By [11,13], G is isomorphic to the Fibonacci group F(2, 2n). _eorem 5.1 now follows
from _eorem 5.2, in which we prove a stronger statement for all Fibonacci groups.
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Recall that F(2,m) is a trivial group if and only if m = 1, 2 [17]. When m > 2, we
establish the following theorem.

_eorem 5.2 In the Fibonacci group F(2,m) (m > 2), each generator a i is a gener-
alized torsion element.

Proof It is suõcient to show that a1 is a generalized torsion element. From the pre-
sentation, it is easy to see that F(2,m) is generated by a1 and a2, and that there ex-
ists an automorphism, induced by a cyclic permutation on a1 , . . . am , of F(2,m) that
sends a1 to any other a i . Since F(2,m) is non-trivial, we have a1 /= 1.
For simplicity, let a = a1 and b = a2. From the relations, a3 = a1a2 = ab, a4 =

a2a3 = bab. _us, we have the expressions recursively

a3 = ab, a4 = bab, a5 = ab2ab, a6 = babab2ab, . . . .

We call these the canonical expressions of a i ’s (3 ≤ i ≤ m). In the canonical expression
of a i , neither a−1 nor b−1 appears. Let e i denote the total exponent sum of b in the
canonical expression of a i . For example, e3 = 1, e4 = 2. From the relation a ia i+1 =

a i+2, it is obvious that e i = Fi−1, which is the (i − 1)-th Fibonacci number with F1 =

F2 = 1.
Hence, if we rewrite the right-hand side of the equation a1 = am−1am into the

canonical expression, then the total exponent sum of b in the expression is

em−1 + em = Fm−2 + Fm−1 = Fm .

We express this equation as a = u(a, b), where the word u(a, b) contains only a and
b, and the total exponent sum of b in u(a, b) is Fm . Furthermore, take the inverse of
both sides. _en we have the equation a−1 = u(a−1 , b−1), where the word u(a−1 , b−1)

contains only a−1 and b−1, and the total exponent sum of b in u(a−1 , b−1) is −Fm .
On the other hand, the relation ama1 = a2 enables us to express am = a2a−1

1 = ba−1.
Similarly, we have am−1 = a1a−1

m = a2b−1 from the relations. _us, each a i has yet
another expression:

am = ba−1 , am−1 = a2b−1 , am−2 = ba−1ba−2 , am−3 = a2b−1a2b−1ab−1 , . . . .

_ese are called the non-canonical expressions of a i ’s (3 ≤ i ≤ m).
Denote by e i the total exponent sum of b in the non-canonical expression of a i .

For example, em = 1, em−1 = −1. _en it is easy to see that e i = (−1)m+iFm+1−i .
Moreover, in the non-canonical expression of a i , neither a nor b−1 appears when
i = m,m − 2, . . . , and neither a−1 nor b appears when i = m − 1,m − 3, . . . . Also, if
i = m − 1,m − 3, . . . , the ûrst letter of the non-canonical expression of a i is a, and the
total exponent sum of a is at least two.
As mentioned above, each a i (3 ≤ i ≤ m) has the non-canonical expression. Using

the relations a2 = a4a−1
3 and a1 = a3a−1

2 , we naturally extend non-canonical expres-
sions to a1 and a2 so that e2 = (−1)m+2Fm−1 and e1 = (−1)m+1Fm . _en rewrite the
right-hand side of a = a1 into the non-canonical expression to obtain a = we(a, b−1)

if m is even, a = wo(a−1 , b) if m is odd, where we(a, b−1) or wo(a−1 , b) is the non-
canonical expression of a1, respectively. Note also that we(a, b−1) contains neither
a−1 nor b, and wo(a−1 , b) contains neither a nor b−1.

Now we are ready to identify a generalized torsion element in F(2,m).
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Assume ûrst that m is even. _en the ûrst letter of the word we(a, b−1) is a. By
canceling the ûrst letter a from both sides of the equation a = we(a, b−1), we ob-
tain a new equation 1 = w′

e(a, b
−1), where w′

e(a, b
−1) still contains neither a−1 nor

b. Moreover, w′
e(a, b

−1) contains at least one occurrence of a. Since e1 = −Fm , the
total exponent sum of b in w′

e(a, b
−1) is −Fm . If we replace any single occurrence of

a in w′
e(a, b

−1) with a = u(a, b), coming from canonical expressions, then we have
an equation 1 = w(a, b, b−1), where w(a, b, b−1) contains no a−1. Since the total ex-
ponent sum of b in u(a, b) is Fm as mentioned before, the total exponent sum of b in
w(a, b, b−1) is −Fm + Fm = 0.

Let us assume that m is odd. _e equation a = wo(a−1 , b) gives 1 = a−1 ⋅wo(a−1 , b).
_en replace the ûrst a−1 on the right-hand side with the word u(a−1 , b−1) coming
from the canonical expressions. _is gives 1 = u(a−1 , b−1) ⋅ wo(a−1 , b). _e total
exponent sum of b in u(a−1 , b−1) is −Fm , and that in wo(a−1 , b) is Fm . If we express
the right-hand side as w(a−1 , b, b−1), which contains no a, then the total exponent
sum of b in w(a−1 , b, b−1) is −Fm + Fm = 0.

Claim 5.3 _ewordw(a, b, b−1) (resp. w(a−1 , b, b−1)) can be expressed as the prod-
uct of conjugates of a (resp. a−1).

Proof We can write

w(a, b, b−1
) = am1bn1am2bn2 ⋅ ⋅ ⋅ amkbnk ,

wherem1 ≥ 0,m i > 0 (2 ≤ i ≤ k), n i /= 0 (i /= k) and n1 + ⋅ ⋅ ⋅ + nk = 0. _en we rewrite

w(a, b, b−1
) = am1bn1am2bn2 ⋅ ⋅ ⋅ amkbnk

= am1(bn1am2b−n1)bn1bn2 ⋅ ⋅ ⋅ amkbnk

= am1(am2)
b−n1 bn1+n2am3bn3 ⋅ ⋅ ⋅ amkbnk

= am1(am2)
b−n1 bn1+n2am3b−n1−n2bn1+n2+n3 ⋅ ⋅ ⋅ amkbnk

= am1(am2)
b−n1

(am3)
b−n1−n2 bn1+n2+n3 ⋅ ⋅ ⋅ amkbnk

⋮

= am1(am2)
b−n1

(am3)
b−n1−n2

⋅ ⋅ ⋅ (bn1+⋅⋅⋅+nk−1amkbnk)

= am1(am2)
b−n1

(am3)
b−n1−n2

⋅ ⋅ ⋅ (b−nk amkbnk)

= am1(am2)
b−n1

(am3)
b−n1−n2

⋅ ⋅ ⋅ (amk)
bnk

= am1(ab
−n1

)
m2(ab

−n1−n2
)
m3 ⋅ ⋅ ⋅ (ab

nk
)
mk .

_e proof for the word w(a−1 , b, b−1) is similar.

If a ûnite product of conjugates of a−1 becomes the identity, then, taking its inverse,
we have a ûnite product of conjugates of a that is the identity. _us, in either case in
Claim 5.3, some product of conjugates of a yields the identity. Since a /= 1 in F(2,m),
a is a generalized torsion element. _is completes the proof of_eorem 5.2.

Remark 5.4 (i) It is known that F(2,m) is a non-trivial ûnite group if m =

3, 4, 5, 7 [17, 24]. For these cases, any non-trivial element is a torsion element, so a
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generalized torsion element. Furthermore, F(2, 2n + 1) has a non-trivial torsion ele-
ment [2, Proposition 3.1], but F(2, 2n) is torsion-free if n > 2.

(ii) F(2, 2n) is the fundamental group of Σn . On the contrary, recentlyHowie and
Williams [14,_eorem 2.4] proved that F(2, 2n + 1) can be the fundamental group of
a 3-manifold if and only if n = 1, 2, or 3.

5.2 Other Hyperbolic Manifolds

For integers p, q,m with gcd(p, q) = 1, deûne

(5.1) G(p, q,m) = ⟨ a, b, t ∣ t−1at = abam−1 , t−1bt = a−1 , tp[a, b]q = 1⟩ .

In [27, Proposition 3.1], it is shown that if m < 0, p > q ≥ 1, gcd(p, q) = 1, then the
image of any homomorphism from G(p, q,m) to Homeo+(R) is trivial. _is implies
that G(p, q,m) is not le�-orderable; see [5, Section 5]. Hence, G(p, q,m) is not bi-
orderable.
As shown in [27], G(p, q,m) is the fundamental group of a closed 3-manifold

M(p, q,m), which is obtained from a once-puncture torus bundle by Dehn ûlling.
_ey show that ifm < −2 and p are odd, gcd(p, q) = 1, and p ≥ q ≥ 1, then M(p, q,m)

is hyperbolic for all except ûnitely many pairs (p, q) [27,_eorem A].
Under a certain condition, we can show that G(p, q,m) contains a generalized

torsion element.

_eorem 5.5 If p ≥ 2q > 1, then G(p, q,m) contains a generalized torsion element.

Proof We will prove that the element t is a generalized torsion element.
First, t /= 1, because it goes to a non-trivial element under the abelianization (we

need p > 1 here).
_e second relation a−1 = t−1bt of (5.1) gives

[a, b] = aba−1b−1
= t−1b−1 tbt−1btb−1 .

It is straightforward to verify that

[a, b]q = (t−1b−1 tbt ⋅ t−2btb−1 t2)(t−3b−1 tbt3 ⋅ t−4btb−1 t4) ⋅ ⋅ ⋅

(t−(2q−1)b−1 tbt2q−1
⋅ t−2qbtb−1 t2q)t−2q

= (tbt ⋅ tb
−1 t2

)(tbt
3
⋅ tb

−1 t4
) ⋅ ⋅ ⋅ (tbt

2q−1
⋅ tb

−1 t2q
)t−2q .

Hence, the third relation of (5.1) gives

tp−2q
(tbt ⋅ tb

−1 t2
)(tbt

3
⋅ tb

−1 t4
) ⋅ ⋅ ⋅ (tbt

2q−1
⋅ tb

−1 t2q
) = 1.

If p ≥ 2q, then the le�-hand side is a product of conjugates of t. _us, we have shown
that the element t is a generalized torsion element.
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