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Abstract. This review focuses on three topics relevant to naturally-occurring dynamos. The
first considers how a common belief, that states of equipartition of magnetic and kinetic energy
are preferred in nonrotating systems, is modified when Coriolis forces are influential, as in the
Earth’s core. The second reviews current difficulties faced by planetary and stellar dynamo
theories, particularly in representing the sub-grid scales. The third discusses recent attempts to
extract scaling laws from numerical integrations of the Boussinesq dynamo equations.
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1. Introduction
Stellar and planetary dynamo theory has exploded in the last 15 years, and the rate

of expansion of this universe seems to be accelerating! It is obviously impossible to do
more than touch on the two fields here, and my aim is modest: to draw attention to a
few issues that seem (to me) to have relevance to both fields.

2. Equipartition
In applying magnetohydrodynamics (MHD) to cosmic contexts, order of magnitude

arguments frequently appeal to equipartition: M = K, where M = B2/2μ and K =
ρV 2/2 are the magnetic and kinetic energy densities, B being magnetic field, V fluid
velocity, ρ mass density and μ magnetic permeability (here 4π × 10−7H m−1 ; SI units).
This equality seems to be based on the idea that two of the principal nonlinearities in
the equation of motion, the inertial force ρV·∇V and the Lorentz force J×B, should
approximately balance, where J, the electric current density, is given by Ampère’s law,
μJ = ∇×B. If one now writes |ρV·∇V| ≈ ρV 2/L and |J×B| ≈ JB with μJ ≈ B/L,
one at once finds that M ≈ K.

Little thought is needed to identify weaknesses in this argument. Near a stellar surface
where ρ is small, JB is a poor estimate of |J×B| because J and B tend to be parallel, so
that |J×B| � JB and K � M . Also, deep in most stars, M is much less than K mainly
because V ≈ Ω0×r where Ω0 is the star’s angular velocity and r is the radius vector from
its center of mass. Then the largest part of V·∇V is −∇ 1

2 |Ω0×r|2 , which combines with
the gradient of the gravitational potential Ψ in the approximate hydrostatic balance of the
star, leaving only smaller terms. The kinetic energy density relative to F is Kr = ρU 2/2,
where U = V − Ω0×r is the velocity in frame F . When |U| � |Ω0×r|, i.e., when the
Rossby number Ro = U/2Ω0rs is small where rs is the radius of the body, the inertial
force in F is the Coriolis force, 2ρΩ0×U, which we assume is O(2Ω0ρU). This balances
the Lorentz force of order JB = O(B2/μrs) when Kr/M = O(Ro) � 1.
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Irrespective of the size of Ro , the statement Kr = RoM can also be written as

E� ≈ Rm, where Rm =
Urs

η
, E� =

B2

2Ω0ημρ
(2.1a,b,c)

are the magnetic Reynolds number and Elsasser number, η = 1/μσ being magnetic
diffusivity and σ electrical conductivity. The condition for dynamo action is Rm � Rc

m

where Rc
m , the critical or marginal magnetic Reynolds number, is O(1). Here “O(1)” hides

the fact that numerically the model–dependent Rc
m is usually of order 100. Obviously

(2.1a) is inappropriate at and near the marginal state, since Rm = O(1) implies E� =
O(1). The statement E� = O(1) expresses a balance between the Coriolis force 2Ω0ρU
and the Lorentz force JB when Ohm’s law J = σ(E+U×B) is used to estimate J not as
B/μrs , but as σUB, where E is the electric field in F . Often E� is written as V 2

A /2Ω0η,
where VA = B/

√
(μρ) is the Alfvén velocity. In the geophysical literature E� is normally

denoted by Λ, but we have a different use for Λ below.
If η and ρ are known, an estimate for U also gives Ro , Rm and Kr , so that E� = O(Rm )

and/or Kr = O(RoM) provide an approximate B. Its reliability can, as for all order of
magnitude arguments, be questioned. The possibility that JB overestimates |J×B| has
already been mentioned, and UB ≈ |U×B| and 2Ω0U ≈ |2Ω0×U| are open to the
same criticism; similarly B/rs is likely to underestimate |∇×B|. But the main objection
(Christensen & Aubert 2006) is a physical one, that the magnitude of B is decided not by
a force balance but by power availability. Fig. 7 of Christensen & Aubert (2006) indicates
that E�/Rm is not constant but increases with Rm , roughly as R

1/2
m . See also §5 below.

3. Some geomagnitudes
The sole aim of this Section is to consider §2 in relation to the Earth. Uninterested

readers are advised to skip to §4.
The observed B at the Earth’s surface is a potential field. Because the Earth’s mantle

is a poor electrical conductor, spherical harmonic components of B of harmonic number
� ∼< 13 can be extrapolated downwards to the core surface r = rs = 3.480×106m. Sources
of permanent magnetism in the Earth’s crust prevent extrapolation of harmonics with
� > 13. Extrapolation gives B(rs) ≈ 0.39 mT (Bloxham & Jackson 1992). As the power
spectrum at r = rs is nearly flat [P� ∝ exp(−0.1�), e.g., Roberts et al. 2003], the missing
harmonics � > 13 add significantly to the total rms B giving B(rs) ≈ 0.46 mT.

This is very likely to be an underestimate of B deep in the core, where B has a
toroidal part BT that does not contribute to the inferred B(rs), which is purely poloidal.
Fifteen years ago, it was widely believed that the axisymmetric toroidal flow UT would
dominate U and create from BP a much larger BT through the Ω−effect (usually called
“the ω−effect” in the geophysical literature). The very first fully three-dimensional MHD
dynamo simulations showed however that, while BT tends to be larger than BP , it is
comparable in strength. It tends to be larger partly because UT contains a geostrophic
flow, UG = UG (s, t)φ̂; here t is time and (s,φ,z) are cylindrical coordinates with Oz
parallel to Ω0 . This flow is unopposed by the Coriolis force because 2Ω0×UG = ∇ψ,
where ψ = −2Ω0

∫
UGds can be absorbed into the gravitational potential Ψ. Because it is

unopposed, it tends to be larger than the ageostrophic flow U−UG . In simulations that
have a conducting inner core, there is often a large zonal shear at the tangent cylinder
(the imaginary cylinder that touches the inner core on its equator). This shear also tends
to enhance the toroidal field by the Ω−effect. Some notion of the overall effect of these
processes can be gauged from the early simulation of Glatzmaier & Roberts (1996) for
which B(rs) is about 1

3 that of the Earth’s, but for which the maximum B in the core is
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approximately 20 mT. If we take B = 10 mT as the mean, this exceeds B(rs) by a factor
of over 60. If the same factor applies to the Earth. B = 30 mT would be a reasonable
guestimate.

Torsional oscillations provide an indirect way of finding the rms strength of Bs . It
may however underestimate B, because only BP and the nonaxisymmetric part of BT

contribute to Bs ; the zonal field BT , which plausibly exceeds both, does not. This may
be one reason why Zatman & Bloxham (1997) obtained their rather small mean value for
Bs , approximately 0.4 mT. Another may be connected with the argument of Braginsky
(1975) that the lines of force of BP in the core should tend to be parallel to the polar
axis. The Alfvén velocity V As for Bs = 0.4 mT is 3.6 mm s−1 , so that torsional waves
cross the core in a time 2rs/V As of about 60 years. There is evidence for a 60 year period
in the geomagnetic secular variation and in the length of day, e.g., Roberts et al. (2007).

Traditionally, U is estimated from the speed of the westward drift of B(rs). This is
irregular and dependent on latitude, but has typically been taken as 0.2◦yr−1so that
Uφ(rs) ≈ 0.4 mm s−1 at the core equator. More detailed analysis, described in detail
by Holme (2007), gives a maximum U(rs), of order 1.2 mm s−1 . Of course, this tells
nothing about U deeper in the core. It is also unclear how well Alfvén’s frozen flux
theorem applies and how closely the inferred motion of B betrays the magnitude of U;
conceivably it might be partly a wave motion (Braginsky 1964a; Hide 1966), as was seen
clearly in the simulation of Glatzmaier & Roberts (1996). We take U = 0.4 mm s−1 .
This gives Ro = Kr/M = 7.9 × 10−7 , Kr= 0.8 mJ m−3 (taking ρ = 104 kg m−3),
M = Kr/Ro = 1 kJ m−3 , Rm = E� = 700 (taking η = 2 m2s−1). Therefore VA=0.45 m
s−1 and B = 50 mT, which is about 50 times greater than the estimate of Christensen &
Aubert (2006). Can this discrepancy be reduced? The following arguments help a little.

The Earth is cooling, currently radiating about 42TW into space. The fluid outer core
(FOC) is known to be in a nearly isentropic state, implying that it is homogenized by
convection that contributes Qc to the outward heat flow Q(rs) at the core surface. The
remainder is the adiabatic heat flow of the isentropic state. The adiabatic temperature
gradient gα̃T/Cp is about 0.5 K km−1 at the core surface (from g = 10.68 m s−2 as gravi-
tational acceleration, α̃ = 10−5 K−1 as thermal expansivity, T = 4000 K as temperature,
and Cp = 830J kg−1K−1 as specific heat, all at r = rs). Taking the thermal conductivity
as 40W m−1K−1 , the adiabatic heat flow at the core surface is 2.8TW. Estimates of
Q(rs) range from 5TW to 15TW, so that 2TW ∼< Qc ∼< 12TW.

The source of Qc is partly thermal and partly gravitational. Radioactivity (40K) has
been estimated as providing at most 1TW. As the core cools, it becomes increasingly cen-
trally condensed. Lighter constituents of the FOC, particularly oxygen, are preferentially
rejected as the fluid freezes to form the solid inner core (SIC), These light constituents
are buoyant, rising and mixing with the overlying fluid. This gravitational source of en-
ergy is much larger than the gravitational energy released in a mere contraction of the
core, which is less than 1TW. Moreover it is a buoyancy source that feeds energy into
the convective motions. The latent heat released in the freezing is a further (thermal)
buoyancy source. Both these sources are proportional to the rate of advance, dri/dt, of
the inner core boundary. Currently ri = 1.2215×106m and estimates of dri/dt are about
10−11m s−1 , making the age of the SIC less than 1

3 of the age of the Earth. Before the
birth of the SIC, only primordial heat and radioactive sources (stronger then!) would
provide buoyancy and one would expect the dynamo would produce a weaker field (or
no field at all!). Except during brief polarity reversals, the geodipole moment has had
however the same strength, within a factor of 2–3, for more than 3.4Gyr (Kono & Tanaka
1995, Fig. 6). This paradox is not faced by Christensen & Aubert (2006), since the power
requirement when B = 1TW is so small that dri/dt is less than 10−12m s−1 and the
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SIC is as old as the Earth. Presumably the FOC would be maintained on its adiabat
by compositionally-driven convection, and heat would be pumped downward from the
mantle (Loper 1978). This scenario might meet some geophysical opposition!

Since the Earth’s core is a ferrous alloy, its magnetic Prandtl number

Pm = ν/η (3.1)

is very small, perhaps about 10−6 , where ν is the kinematic viscosity. Because Pm � 1,
the total Joule loss,

Qη = μ

∫
core

ηJ2dv , (3.2)

is by far the larger part of the total dissipation Q = Qη +Qν . Values of order 10−3 may
be typical for Pm in a stellar plasma so that it is again plausible that Q ≈ Qη .

If we estimate the average value of J by equating Qη and Qc we obtain 0.06A m−2

∼< J ∼< 0.16A m−2 . An estimate of the mean strength B of the magnetic field B follows
from B = μJL, again obtained from μJ = ∇×B. To use this, an estimate of L is required,
but what should this be? Under plausible conditions, the scales mainly responsible for
generating B are of order R

−1/2
m rs =

√
(ηrs/U), according to Christensen & Tilgner

(2004) and Tobias & Cattaneo (2008). This gives 11 mT ∼< B ∼< 28 mT.

4. Turbulent dynamos
Modeling planets and stars means coming to terms with turbulence. In the classic

picture of turbulence, energy is injected on the largest scales and cascades to small scales
through the inertial range, to be extracted as heat on the dissipation scale. Turbulence
in the situations considered here is markedly different: energy is acquired at all scales
through buoyancy. (For simplicity we consider only thermal buoyancy here.) There may
be a significant sub-range of scales in which the energy cascade does not dominate, the
dissipative losses being replenished directly by the buoyancy forces:

ρgα̃vθ ∼ μηj2 . (4.1)

Here v is the fluctuating part of V, i.e., we are writing V = V + v, where V is the
ensemble or statistical mean; similarly J = J + j and T = T + θ. Relation (4.1) also
emphasizes another point: in MHD, the Lorentz force may be more important in the
dynamical balance than the inertial force, especially when the Alfvén number, V/VA , is
small; also, ohmic dissipation may be much more significant than viscous dissipation,
when Pm � 1 (see §3). This takes one even further away from the classic turbulence
picture. In what follows. we shall no longer reserve U for velocity relative to F , it being
clear from the context whether V refers to the inertial or rotating frame.

The lack of an MHD turbulence theory is a void that cannot be filled by the computer,
either now or in the foreseeable future. Advances in computer technology continually
push back the GS/SGS frontier between the large grid scales (GS) of main interest and
the small, numerically-unresolvable sub-grid scales (SGS), but the effect of the latter on
the former cannot be ignored and must be represented in a physically plausible way. The
first recourse is the classic Boussinesq–Reynolds ansatz (BRA) that draws an analogy
between randomly moving molecules, carrying momentum and energy, and randomly
moving SGS eddies or “blobs” of fluid that perform the same function for the GS, and
much more effectively in strong turbulence. In this classic picture of turbulence in an
incompressible fluid, the averages of the governing equations,

∂tV + V·∇V = −∇Π + ν∇2V , ∇·V = 0 , (4.2a,b)
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are
∂tV + V·∇V = −∇Π + ν∇2V + M

v
, ∇·V = 0 , (4.2c,d)

where ∂t = ∂/∂t, Π = P/ρ and P is pressure; M
v

= −∇·Q and Q = vv is the Reynolds
stress tensor. The BRA represents M

v
, as in molecular dynamics, by

M
v

= ∇·(νT ∇V) , i.e., M
v

i = ∇j (νT ∇j V i) , (4.2e,f)

where the turbulent viscosity νT ∼ 1
3 uλ, in analogy with molecular dynamics; here u =√

v2 and λ is the correlation length. The relation (4.2e) is a godsend! The unmanageable
(4.2a) is instantly converted (for constant νT ) into the much more amenable

∂tV + V·∇V = −∇Π + ν∇2V , (4.2g)

where the total viscosity ν = νT + ν is dominated by νT . A cynic might also say that
uncertainties in u and λ and therefore in ν afford an irresistable opportunity of choosing
the ν that makes the simulated system mimic reality best!

The BRA is clearly convenient but there are now alternative ways of incorporating the
effect of the SGS on the GS. These methods are not described here but are discussed in
reviews such as Meneveau & Katz (2000) and Geurts et al. (2008).

More relevant than (4.2) for the geodynamo are the Boussinesq equations with Cori-
olis, Lorentz and buoyancy forces included. To determine these, the induction and heat
equations governing B and T must be added. Their averages determine the mean fields,
B and T , which contain sources M

b
= ∇×E and Mθ = −∇·I where E = v×b is the

turbulent electromotive force and I = θv is proportional to the turbulent heat flux. The
ideas behind BRA apply equally well to these and, as in (4.2e),

M
b

= −∇×(ηT ∇×B) , Mθ = ∇·(κT ∇T ) , (4.2h,i)

where ηT and κT , the turbulent magnetic and thermal diffusivities, are also of order
1
3 uλ ∼ νT . In stellar applications ηT and κT dominate η = ηT + η and κ = κT + κ.
For the Earth, there is no observational evidence that η differs substantially from η.
This is not surprising if (see above) Rm is only about 7Rc

m . Because Pm � 1, the
corresponding dimensionless numbers quantifying ν and κ, the kinetic Reynolds number,
Re ≈ V rs/ν ≈ 2 × 108 and the Peclet number, Pe = V rs/κ ≈ 2 × 107, are gigantic and
the SGS are important in transporting GS momentum and heat.

In stellar applications where ρ varies over many scale heights, the compressibity of
the plasma must be allowed for but, if V is small compared with both g/2Ω0 and the
velocity of sound c, the anelastic equations can be used and are as easy to apply as the
Boussinesq equations; see Braginsky & Roberts (1995, 2007). They are now in general use
in stellar dynamo simulations; e.g., Browning (2008); Browning et al. (2004, 2006); Brun
et al. (2005). At the recent dynamo workshop at the Kavli Institute in Santa Barbara, an
anelastic benchmark was set up so that simulators will have a ready test of their codes
available. The anelastic approximation was first employed in geodynamo simulations by
Glatzmaier & Roberts (1996), but the Boussinesq equations are still more commonly
used.

When the Coriolis force, and of course the pressure gradient, dominate the remaining
forces, the flow V becomes two-dimensional with respect to the direction Oz of Ω0 ,
as demanded by the Proudman-Taylor theorem. [Not ‘the Taylor-Proudman theorem’
please! Proudman (1916) has 7 years priority over Taylor (1923)!] The early simulation
of Glatzmaier (1985) used anelastic theory and in 1989 was still the most sophisticated
model of solar MHD. He found that, because of the dominance of Coriolis forces, the mean
angular velocity Ω(s, z) = V (s, z)/s of the flow about Oz tended to be almost independent
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of z, i.e., Ω = Ω(s), the Proudman–Taylor result. In 1989 the helioseismology bombshell
burst (Libbrecht 1989): Ω = Ω(ϑ), where ϑ is colatitude, represents reality much better
than Ω = Ω(s). So where had the theory gone wrong?

It is now widely accepted that the BRA is too simplistic because the GS/SGS boundary
is, for unavoidable numerical reasons, set at far too small a length scale. The SGS are
significantly affected particularly by density stratification and rotation, so destroying
the isotropy assumed by BRA. Lack of isotropy means that (4.2e,h,i) would better be
replaced by

M
v

i = ∇j

(
νT

ijkl∇lV k

)
, M

b

i = −εijk∇j

(
ηT

klm∇m Bl

)
, M

θ
= ∇j

(
κT

jk∇kT
)
, (4.3a,b,c)

in which tensor diffusivities appear. Unfortunately even this is not enough. Mean field
electrodynamics (MFE) identifies an additional term in E involving the undifferentiated
components of B, This “alpha effect” requires a supplementary αB to be included in E
for pseudo-isotropic turbulence or, in the more general non-isotropic case, Ei = αijBj −
ηT

ijk∇kBj . Nearly 70 years ago, before the discovery of the α−effect [for the history, see
Rüdiger (1989)], a process analogous to the α−effect had been proposed for momentum
transport. This Λ−effect includes in the Reynolds stress tensor, Q, a term proportional
to the components of the undifferentiated V. Since Qij = Qj i , an isotropic Λ−effect does
not exist. As V is usually dominated by the zonal shear, Ω = Ω(s, z)φ̂, the Λ−effect is
usually represented by QΛ

ij = ΛijkΩk , where Λijk = Λj ik . The inclusion of the Λ− and
α−effects, changes (4.3a,b) to

M
v

i = ∇j

(
Λik lΩl − νT

ijkl∇lV k

)
, M

b

i = εijk∇j

(
αklBl − ηT

klm∇m Bl

)
. (4.3d,e)

Details of this mean field theory, together with possible forms for Λijk and νT
ijkl , may

be found in Rüdiger (1989); Rüdiger & Hollerbach (2004). The Λ−effect can have a
significant impact on Ω. Combined with the influence of meridional circulation, VP , the
observed departure of Ω from the Proudman-Taylor Ω(s) can be successfully modeled.
See for example Rüdiger & Hollerbach (2004) and Rempel (2005, 2006).

Applications of the mean field MHD apparatus just described almost invariably assume
that the statistical averages V, B and T are axisymmetric; three dimensional applications
are rare. The tensor diffusivities (4.3c,d,e) contain so many “free” parameters that a cynic
might again wonder whether, by their judicious choice, any desired V, B and T follow.

This brief review of dynamo theory, as applied to stars such as the Sun in particular,
but more generally to any star with a convection zone, has omitted reference to the solar
tachocline and to the stellar tachoclines expected at any radiative-convective interface.
These zones add another layer of complexity to an already daunting theory; see, for
example, Hughes et al. (2007). Also omitted was a discussion of small-scale dynamos for
which B ≡ 0 and MFE is inapplicable. These may be relevant to the solar convection
zone and to some geodynamo models.

Do some of the lessons learned from the Sun apply to dynamos in the Earth and plan-
ets? As mentioned earlier, it seems unnecessary, from the modest value of Rm in the
Earth’s core, to introduce into geodynamo simulations either an α−effect or a turbulent
magnetic diffusivity, of either scalar or tensor type. Because Re and Pe are so enormous
however, it is plausible that the turbulent transport of momentum and heat (and compo-
sition) are very significant. This is sometimes used to turn the computational necessity
of assuming O(1) values for the Prandtl numbers, Pr (= ν/κ) and Pm , into a virtue, by
defining them with turbulent diffusivities. Even though a significant Λ−effect appears to
be unlikely because Ro = V φ/Ω0rs � 1, it seems probable from the following discussion
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Figure 1. View from the z−axis of the breakup of an initially spherical blob of buoyant fluid. Left:
at time t =1.25, plate-like structures begin to form; Right: at time t = 1.75, the blob has nearly
disintegrated into individual plates. The increasing elongation of the blob in the z−direction is
not apparent in this projection. The z−axis is parallel to Ω0 and the y−axis is parallel to B. The
dimensionless unit of time is a/v, where a = initial radius of blob, v = gθ0/2Ω0 , θ0 being the
temperature excess of the blob. The Ekman number is 6.87×10−6 (St Pierre 1996). Reproduced
with the permission of Taylor and Francis, publishers of Geophysical and Astrophysical Fluid
Dynamics; http://www.informaworld.com

that isotropic diffusivities νT and κT cannot adequately describe turbulent transport of
GS momentum and heat.

The nature of turbulent convection in the Earth’s core has been considered in more
detail by Braginsky & Roberts (1995, 2003) and Loper (2007). To explore the SGS and
their anisotropies for Pm � 1, Braginsky & Meytlis (1990) devised a simple model in
which B is in the y−direction, with Ω0 , g and ∇T in the z−direction, and β ≡ ∂zT >
0. For large E� , the instabilities of this state are highly anisotropic, being platelike,
the thickness of the plates being smaller in the x− or Ω0×B−direction than in the
perpendicular directions by O(E−1

� ). By an argument too lengthy to give here, Braginsky
and Meytlis concluded that

κxx ∼ η

(
gα̃β

4Ω2
0

)
E2

� , κyy ∼ κzz ∼ η

(
gα̃β

4Ω2
0

)
E4

� . (4.4a,b)

These results depend strongly on B. Even though κxx is much less than κyy and κzz ,
it generally greatly exceeds the molecular κ. The argument leading to (4.4) also gives
equipartition on the smallest SGS. Matsushima et al. (1999) and Matsushima (2001,
2004, 2005) investigated these questions by computer models. Shimizu, reported by Loper
(2007), has sugested a potentially useful scaling. That the system is highly dispersive is
apparent in the simulation of St Pierre (1996) of the rise and disintegration of a buoyant
blob of fluid (see Figure). Whether similar ideas have a broader, astrophysical relevance
remains to be seen.

5. Asymptopia
Asymptotic methods were applied early in the history of dynamo theory at a time when

powerful electronic computers were nonexistent and when, partly because of Cowling’s
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theorem, the very existence of homogeneous fluid dynamos was in doubt. One of the first
proofs that homogeneous fluid dynamos exist relied on asymptotic methods, and the first
kinematic spherical geodynamo models were based on them (Braginsky 1964b).

Asymptotic (or singular perturbation) methods apply in the limiting case when one
or more parameters tend to zero (or their reciprocals tend to zero), and when setting
them zero would lower the differential order of the governing equations. For example,
when ν → 0, viscous boundary layers are present. whose thicknesses tend to zero with
ν. There are no boundary layers when ν = 0, but the differential order of the governing
ideal equations is less, so that boundary conditions must be dropped, but which? This is
sometimes easily decided, but not always. The resolution of such matters has provided a
happy hunting ground for a generation of applied mathematicians, a kind of utopia that
led me to coin the word heading this Section. Asymptopia delivers ideal equations and
boundary conditions, independent of the diffusivities or dependent only on their ratios.
For example, for the kinematic Braginsky (1964b) model, it posed equations independent
of the parameter (R−1/2

m ) whose smallness was used to derive them. These could then be
solved by the primitive computers available at that time.

The smallness of E for naturally-occurring MHD dynamos immediately suggests asymp-
topia, but there are severe obstacles. Small ν means turbulence and the problems of the
SGS described in §4, problems exacerbated by small κ and (except for the geodynamo)
small η. Although analytic progress is impossible, one may, as an article of faith, believe
that, when ν, κ and η are small, the concepts of asymptopia are valid, and that the
behavior of the large GS can be characterized by parameters independent of the diffu-
sivities (or dependent only on their ratios), even though all diffusivities are essential for
the SGS and boundary layers. Such characterizations constitute scaling theory.

Consider, as an example of scaling theory (Jones 2007), non-rotating, non-magnetic
convection in a plane layer of depth D. In the limit of infinite Rayleigh number, Ra =
gα̃D3ΔT/νκ, the boundary layers on the walls are infinitely thin, and elsewhere the
typical convective velocity V and departure in the temperature from T are

V ∼ (gD)1/3
(

α̃Fc

ρCp

)1/3

, θ ∼ 1
α̃(gD)1/3

(
α̃Fc

ρCp

)1/3

, (5.1)

where Fc is the convective heat flux and Cp is specific heat. These results are independent
of ν, κ and ν/κ = Pr .

Scaling theory has achieved prominence recently through the influential papers of
Christensen & Aubert (2006) and Christensen et al., (2009). For the thermally–driven
dynamo, five of their dimensionless parameters are a Rossby number Ro and

Ra∗
Q =

rs

ri
.

gα̃Fc

ρCpΩ3
0D

2 , Lo =
VA

Ω0D
, (5.2a,b)

Nu∗ =
rs

ri
.

Fc

ρCp(ΔT )Ω0D
, fohm =

Qη

Qη + Qν
, (5.2c,d)

where D = rs − ri . One of these depends on Pm but the rest are independent of the
diffusivities and their ratios. In (5.2c,b), the modified Rayleigh number Ra∗

Q quantifies
buoyancy, the Nusselt number Nu∗ heat flux, and the Lorentz number Lo field strength.

Christensen & Aubert (2006) derive their scaling laws by analyzing 66 dynamo inte-
grations, all in geo-geometry ri/rs = 0.35, the SIC being electrically insulating in all but
5 cases. Convection was driven between fixed, noslip boundaries by an assigned temper-
ature difference ΔT between them, and with 5 < Ra/Rc

a < 50. In all except one case
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(E ≡ ν/Ω0D
2 = 10−6), the Ekman number E was between 3 × 10−6 and 3 × 10−4 . The

range 0.06 � Pm � 10 was investigated.
The Christensen-Aubert study has suggested several interesting power law dependen-

cies that pose theoretical challenges, e.g., that the dynamo fails if Pm < 450E3/4 . Un-
less the optimal exponents are modified, there is less hope of deducing others of their
empirical laws, e.g., Ro ∝ Ra∗ 0.43

Q P−0.13
m and Nu∗ = 0.076Ra∗ 0.53

Q . The latter sug-
gests that the exponent should be 1

2 , leading to the perhaps surprising conclusion that
the convective heat flux is independent of κ. Their best fit for the field strength was
Lo = 0.76Ra∗ 0.32

Q P 0.11
m f

1/2
ohm ; their next best was Lo = 0.92Ra∗ 0.34

Q f
1/2
ohm . Changing 0.34

to 1
3 in the latter, and setting fohm = 1 for the Earth (see §3), leads to their proposed

alternative to (2.1a):

VA = 0.9(gD)1/3(α̃Fc/ρCp)1/3 , or VA = 0.9(gDFb/ρ)1/3 , (5.3)

where Fb = α̃Fc/Cp is the buoyancy flux, which from their Nu∗ is 6−8×10−9kg m−2s−1 .
This makes B only about 1 mT and independent of both Ω0 and η. It is determined mainly
by the heat flux Fc (or the buoyancy flux Fb when both sources of buoyancy operate);
(5.3) may be thought of as a power balance rather than a force balance such as (2.1a).

Sixty six dynamo models is a lot! And they appear to cover adequately the range
of parameters that is computationally accessible. They do not, and cannot, cover the
enormous parameter range over which naturally-occurring dynamos roam. Of course,
the derivation of scaling laws is partly motivated by a wish to apply them outside the
computationally accessible domain, so the question is one of degree: how far outside that
domain can they be trusted? The Earth’s Pm of 10−6 lies far beneath the 0.06 � Pm � 10
range of the models, and 10−6 � E � 3 × 10−4 does not include the E ∼ 10−15 of the
Earth (or 10−9 if νT defines E instead of ν). There is some danger that other similarity
laws may apply beyond the computationally accessible domain. An example where this
may be happening is given below. Extrapolation to stars and other cosmic contexts is
even more extreme and therefore even more problematic (quite apart from the unexplored
effects of compressibility on the scaling laws).

The 66 models assign the core surface temperature T (rs) but, because of the role of
the mantle in transmitting heat, it is more realistic to specify the heat flux q(rs) on
the core boundary [e.g., Braginsky & Roberts (2007)]. When E � 1, this may make a
significant difference. In an effort to move towards geophysically more realistic parameter
values, Kageyama et al. (2008) used the Earth Simulator to integrate a model for E =
2.3× 10−7 , but they assigned a uniform T (rs). Disappointingly, the resulting field had a
small scale, i.e., was less Earthlike than previous models, even though their E was more
Earthlike. Sakuraba and Roberts (to appear) present results from a small E simulation
(E = 5× 10−7 , Pm = 0.2) but in which q(rs) is assumed uniform rather than T (rs). The
resulting field is dipole dominated and is generally more Earthlike. We speculate that,
although the characters of the constant−q(rs) and constant−T (rs) models are similar
for the values of E common in today’s simulations, they will increasingly differ as E is
reduced further, and possibly their scaling laws will differ too? Exciting times lie ahead!
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linear Dynamos The Fluid Mechanics of Astrophysics and Geophysics (Taylor & Francis),
vol. 9, p. 60

Braginsky, S. I. & Roberts, P. H. 2007, in: D. Gubbins & E. Herreo-Brevera (eds.), Encyclopedia
of Geomagnetism and Paleomagnetism Springer, p. 11

Browning, M. K. 2008, ApJ 676, 1262
Browning, M. K., Brun, A. S., & Toomre, J. 2004, ApJ 601, 512
Browning, M. K., Miesch, M. S., & Brun, A. S. 2006, ApJ 648, 157
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ 629, 461
Christensen, U. R. & Aubert, J. 2006, Geophys. J. International 166, 97
Christensen, U. R., Schmitt. D., & Rempel. R. 2009, Space Sci. Rev., in press
Christensen, U. R. & Tilgner, A. 2004, Nature 429, 169
Geurts, B. J., Kuczaj, A. K., & Titi, E. S. 2008, J. Phys. A: Math. Theor. 41, 344008
Glatzmaier, G. A. 1985, ApJ 291, 300
Glatzmaier, G. A. & Roberts, P. H. 1996, Physica D 97, 81
Hide, R. 1966, Phil. Trans. R. Soc. Lond. A 259, 615
Holme, R. 2007, in: P. Olson (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 107
Hughes, D. W., Rosner, R., & Weiss, N. O. 2007, The Solar Tachocline (Cambridge UK, Uni-

versity Press.)
Jones, C. A. 2007, in: P. Olson (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 131
Kageyama, A., Miyagoshi, T., & Sato, T. 2008 Nature 454, 1106
Kono, M. & Tanaka, H. 1995, in: T. Yukutake (ed.), The Earth’s central Part; its Structure and

Dynamics, (Terrapub.), p. 75
Libbrecht, K. G. 1989, ApJ 336, 1092
Loper, D. E. 1978, J. Geophys. Res. 83, 5961
Loper, D. E. 2007, in: P. Olson (ed.), Treatise on Geophysics (Elsevier), vol. 8, p. 187
Matsushima, M. 2001, Phys. Earth planet. Interiors 128, 137
Matsushima, M. 2004, Earth Planets Space 56, 599
Matsushima, M. 2005, Phys. Earth planet. Interiors 159, 74
Matsushima, M. Nakajima, T., & Roberts, P. H 1999, Earth Planets Space 51, 277
Meneveau, C. & Katz, J. 2000, Ann. Rev. Fluid Mech. 32, 1
Proudman, J. 1916, Proc. R. Soc. Lond. A 92, 408
Rempel, M. 2005, ApJ 622, 1320
Rempel, M. 2006, ApJ 647, 662
Roberts, P. H., Jones, C. A., & Calderwood, A. R. 2003, in: C. A. Jones, A. M. Soward & K.

Zhang (eds.), Earth’s Core and Lower Mantle, The Fluid Mechanics of Astrophysics and
Geophysics (Taylor & Francis), vol. 11, p. 100

Roberts, P. H. & Kono, M. 2007, Earth Planets Space 59, 661
Roberts, P. H., Yu, Z. J., & Russell, C. T. 2007, Geophys. astrophys. Fluid Dynam. 101, 11
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Discussion
Koutchmy: Planet Mars is rotating as fast as the Earth. Why is its magnetic field much
weaker?

Roberts: The magnetic field of Mars arises from remnant magnetization of minerals in
its crust. This magnetization was probably acquired earlier in the planet’s history when
it operated a dynamo in its electrically conducting core. That core may have solidified;
or conceivably the mantle of Mars did not allow enough heat to emerge from the core to
set up sufficiently vigorous convection to permit a Martian dynamo to operate.

Paul Roberts
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Anders Johansen

Yi-Jiun Su’s problems are much smaller
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