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C O E F F I C I E N T E S T I M A T E S O F S O M E C L A S S E S 
O F A N A L Y T I C F U N C T I O N S 

BY 

N I C O L A S S A M A R I S 

ABSTRACT. We are concerned with coefficient estimates, and 
other similar problems, of the typically real functions and of the 
functions with positive real part. Following the stream of ideas in 
[1], new results and generalizations of others given in [1], [2] and [3] 
are obtained. 

1. Introduction. Let 9 be the class of all analytic functions in the unit circle 
D = {z : \z\ < 1} of the form: 

oo 

/ ( z ) = l + I anz
n 

n = l 

with positive real part and let 9" be the class of all typically real functions in D, 
that is all functions of the form: 

oo 

g(z) = Z+ X On?" 
n=2 

analytic in D and which are real for z real and for no other values of z. 
In this paper we deal with coefficient-estimates and other similar problems 

concerning functions in the classes 9 and 9", and in the spirit of [1], [2], [3]. In 
general results obtained for the class 9 can be reformulated for the class 9" in 
view of the well known fact, (see [3]), that a function g belongs to 9" if the an 

are real and, (g(z) • ( l - z 2 ) ) / z belongs to 9. 
More precisely, Theorem 1 of this paper serves as a basic tool for results 

which are obtained later. The use of the Lemma in the proof of Theorem 1 
indicates once more what in [3] is suggested, that is the usefullness of the 
Harmonic Analysis methods in the study of problems concerning coefficient 
estimates and others of similar nature. Theorem 1 applied to the functions of 
the class 9 gives new results which improve others well known (see Corollary 
2, Theorem 4). 

Also by reformulating Theorem 1 for functions in the class 9" we improve 
and/or generalize previous results, (see [1], [2], [3]). 
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We first state a Lemma which is used in the proof of Theorem 1, and whose 
proof is omitted as obvious. 

LEMMA. Let feL\R) and /(f) = $lZf(x)eixtdx the Fourier transform of f. 
Then, if R e / > 0 , the inequality 

|/(f) 4-/(01 < 2 Re /(0) 

holds for all teR. 

THEOREM. Let f(z) e 9, (z = re11). 
For each p, keN we have: 

Z (ak-m + âm_k)exp[i(fc - m)r](p + 1 - |m | ) 
m=—p I 

< 2 R e £ amexp(/mT)-(p + l ) - | m | ) L forallrelR, 
L m = 0 -I 

where a0=l and ap = 0 for p < 0. 

Proof. Put p + 1 = 20. For r fixed, set 

/Ô(JC) = [sin2(ôx) • f(r exp(-ix))]/x2. 

It is clear that the function / s satisfies the hypothesis of the Lemma above. Set 

qs(t) = (sm2(8x)/x2y = (TT/2)SUP(0, 28-\t\). 

We have 
oo 

A(0= I o„rnq8(f-n) 
rt=0 

If we apply the above Lemma for t = k we get: 

I £ (ak_mrk-m + ôm_fc-rm-fc)(p + l - | m | ) U 2 R e I ^ " ( p + l - lm l ) 

since for | r |>p + l we have qô(0 = 0. We now observe that for each real 
number the function 

fT(z) = f(z -exp(iT)) 

belongs to 9, and has coefficients 

an exp(mr), n = 0 , 1 , 2 • • • 

By applying the last inequality to fr and letting r - > l w e get the desired result. 

2. COROLLARY. Let 

/(z) = l+£ V 
n = l 
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be a function of the class &. Set 6q = -Arg aq + ir (q = 1, 2 , . . . ). Then 

| a q | < 2 - ( l / 2 ) s u p £ (a ( m _ k ) q +â ( m _ k ) q ) -exp[ ï ( fe-m)e q ] - (2- |m| ) . 
keN l m = - l ' 

Proof. It is known [4, p. 2] that for Bn = aq.n, where q is fixed, the function 
oo 

g(z) = l+ I B„z" 
n = l 

is a member of 9. 
If we apply Theorem 1 to g for p = 1 and t = 6q we get the desired result. 

3. COROLLARY. Let /e2T. Set Sn = l + a2 + * •• + an /or n > l and Sn = 0 for 

n<l, and 

^ P ~ ^k+p+i~~ 2Sk — 2Sk_1 + Sfc-p-! + S_k + p + 2 + «S-k-t-p+i + S-k+p 

Then for each p,keN we have 

|Ap
k |<2Sp + 2Sp + 1 

Proof. The function 

g(z) = / (z ) - ( l -z 2 ) /z = £ ( a ^ - a , , . ^ " 
n = 0 

belongs to 0>. Hence for f = 0 and an = Sn — Sn_x Theorem 1 gives the desired 
result. 

REMARKS, (a) Corollary 2 improves.the well known inequality | a q | < 2 which 
holds for functions in &. Also if a1 = 2r), where rj = exp(j0o), then from 
Corollary 2 we get by induction an=2ir]n, so that 

/(z) = l + I 2 r , n z n - ( l 4 -nz ) / ( l -T ]z ) 
n = l 

(see [3]). 
(b) Corollary 3 improves the inequality Sp + S p + 1 >0, which holds for all 

functions in 2T [3]. 

We have noticed in Remark (b) above, that equation a1 = 2r) determines 
uniquely the extreme function ( H - T | Z ) / ( 1 —TJZ). Theorem 4 below provides 
another extreme case. 

4. THEOREM. Let feSP, and suppose there is a number TJ =exp(i0o) such that 

Re(3 + 2â1T) + a2T)2) = 0 

then 

/(z) = ( l - z 2 T , - 2 + iczT]-1)/(l + z2Tj-2 + zr,-1) 
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where 

c = -i • (a1r] + l) = i • (a2Tj2+l) = real, (|c|<31/2) 

Conversely iff has the above form with | c |<3 1 / 2 and \r}\ = 1 then 

/GET and Re(34-2a1r) + a2r ï
2) = 0 

Proof. Let fe&> and suppose for the moment that 60 = 0 so that 

Re(3 + 2a1 + a2) = 0 

Then, for t = 0 and p = 2, we get from Theorem 1 for fc = 1, fc = 2 and fc > 3 
respectively 

(1) a3 + 2a2 + 3a1 + 2ao + 2âo + â1 = 0 

(2) a4 4- 2a3 + 3a2 + 2ax + a0 + â0 = 0 

+ 2ak + 1 + 3ak + 2ak_! + ak_2 = 0 

For fc>3 subtracting relation (fc) from (fc + 1) we have 

ak+3 + ak+2+ ak + l = ak + a k - l + a k - 2 

The last equality is equivalent to the following 

a3n+3 + a3n+2 + a3n+1 = a3 + a2 + a1 

a3n+4 + a3n+3 + #3n+2 = a4 + a3 + #2 

a3n+5 + a3n+4 + ̂ 3n+3 = a5 + a4 + a3 

rc = 0 , 1 , 3 , . . . . 

Subtracting the first of these equalities from the second and the second from 
the third we get 

a3n+4 ~~ a3n + l ~ ^ 4 ~ a l 

a 3 n + 5 ~ &3n+2 = # 5 "~ a2 

It follows that 

a3n+1 = a4 + (n - 1 ) • (a4 - a^ 

^3n+2 = a5 + (n - 1 ) • (a5 - a2) 

Also due to the inequality | a n | ^ 2 we must have a4 — ai~ a5 — a2 = 0. Hence 

a3n + l ~ a4 = al 

a3n+2 ~ aS~ a2 

a 3 n + 3 ~ a3 

Also, from (2) and (3), we get, since a0= 1, 

a5 + a4 + a3 = a2 + ax + 2 
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so that 

From (1) and (2) we get 

6 + 2a2 + 3a1 + â1 = 0 

3a2 + 6 + 3a1 = 0 

so that 

a2 = àu Re ax = Re a2 = -1 

Hence 

di = — 1 + ic, a2 = —1 —ic 

with | c |<3 1 / 2 , since |a1| = | a 2 | <2 . 
The function / can now be written as follows: 

oo oo oo 

/(z) = l + 2 - I z3n + ( - l + ic)- X z3 n + 1 + ( - l - t c ) - Z z3re+2 

n = l n = 0 n = 0 

= ( l - Z 2 + i c z ) / ( l + 22 + z) 

This form of / corresponds to the case 60 j= 0. If 0o ^ 0 the theorem follows if 
we apply the last formula to the function /(TJZ). 

Conversely let 

/(z) = ( l - z 2 T | - 2 + icz)/(l + z2r J-
2 + ZT|-1) 

then 

f(i\z) = (1 - z2 + icz)/(l + z2 + z) 

We have 

a1 = (-l + ic)/ir], a2 = (—1 — ic)/r)2 

We prove that 

Re / ( r ] z )>0 

Set 

z = r(cos 6 + i sin 6) 

Then the inequality to prove is equivalent to 

cos 0 - c sin 0 > - ( 1 + r2)/r 

Put c = t a n £ Since | c |<3 1 / 2 , we have 

- 7 r / 3 < | < 7 r / 3 
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and 

cos(0 + £) > -cos(f) • (1 + r2)/r 

since 

cos f 2*1/2 and (l + r 2 ) / r>2. 

The theorem is proved. 

5. COROLLARY. IffeZF and there is a number TJ =exp(i0o)> (0o e ^) such that 

Re[3 + 2a2T] + (a3 - l)r]2] = 0 

Then / is one o/ the following functions: 

(1 + z - z2)/[(l - z 3 ) . (1 - z2)], z ( l - z - z2)/[(l - z3)(l - z2)], 
z / ( l - z ) 2 , z / ( l + z)2 

Proof. Clearly, since /G2T, the an are real and the function 

oo 

P(z) = / ( z ) - ( l - z 2 ) / z = £ ( ^ i - f l , , - ^ " 

belongs to 0>. From Theorem 4 we have 

a2 = (—1 + ÏC)/Î), a3 — 1 = ( -1 - JC)/TJ2 

It follows that 

7)3 = [(1 +c2)/a2 • ( a 3 - l ) ] = real number 

Hence r)3 = I or r)3 = —1, so that the possible values of t) are the cubic roots of 
1 and of - 1 . It is easily seen that the values 

- 1 , 1 , ( - 1 - I 3 1 / 2 ) / 2 , ( 1 + / 3 1 / 2 ) / 2 

correspond to the values of 

c = 0 ,0 , -3 1 / 2 , 3 1 / 2 

which provide the four functions of the statement and in the order they are 
written. 

To the values 

TJ = ( - 1 + I 3 1 / 2 ) / 2 , 71 = (l-i31/2)/2 

correspond the functions 

z / ( l - z ) 2 , z / ( l + z)2 

respectively. 
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