COEFFICIENT ESTIMATES OF SOME CLASSES OF ANALYTIC FUNCTIONS

BY
NICOLAS SAMARIS

Abstract

We are concerned with coefficient estimates, and other similar problems, of the typically real functions and of the functions with positive real part. Following the stream of ideas in [1], new results and generalizations of others given in [1], [2] and [3] are obtained.

1. Introduction. Let \mathscr{P} be the class of all analytic functions in the unit circle $D=\{z:|z|<1\}$ of the form:

$$
f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

with positive real part and let \mathscr{T} be the class of all typically real functions in D, that is all functions of the form:

$$
g(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

analytic in D and which are real for z real and for no other values of z.
In this paper we deal with coefficient-estimates and other similar problems concerning functions in the classes \mathscr{P} and \mathscr{T}, and in the spirit of [1], [2], [3]. In general results obtained for the class \mathscr{P} can be reformulated for the class \mathscr{T} in view of the well known fact, (see [3]), that a function g belongs to \mathscr{T} if the a_{n} are real and, $\left(g(z) \cdot\left(1-z^{2}\right)\right) / z$ belongs to \mathscr{P}.

More precisely, Theorem 1 of this paper serves as a basic tool for results which are obtained later. The use of the Lemma in the proof of Theorem 1 indicates once more what in [3] is suggested, that is the usefullness of the Harmonic Analysis methods in the study of problems concerning coefficient estimates and others of similar nature. Theorem 1 applied to the functions of the class \mathscr{P} gives new results which improve others well known (see Corollary 2, Theorem 4).

Also by reformulating Theorem 1 for functions in the class \mathscr{T} we improve and/or generalize previous results, (see [1], [2], [3]).

We first state a Lemma which is used in the proof of Theorem 1, and whose proof is omitted as obvious.

Lemma. Let $f \in L^{1}(\mathbb{R})$ and $\hat{f}(t)=\int_{-\infty}^{+\infty} f(x) e^{i x t} d x$ the Fourier transform of f. Then, if $\operatorname{Re} f \geq 0$, the inequality

$$
|\tilde{f}(t)+\hat{f}(t)| \leq 2 \operatorname{Re} \hat{f}(0)
$$

holds for all $t \in \mathbb{R}$.
Theorem. Let $f(z) \in \mathscr{P},\left(z=r e^{i t}\right)$.
For each $\rho, k \in N$ we have:

$$
\begin{aligned}
& \left|\sum_{m=-\rho}^{\rho}\left(a_{k-m}+\bar{a}_{m-k}\right) \exp [i(k-m) \tau](\rho+1-|m|)\right| \\
& \left.\leq 2 \operatorname{Re}\left[\sum_{m=0}^{\rho} a_{m} \exp (i m \tau) \cdot(\rho+1)-|m|\right)\right], \quad \text { for all } \tau \in \mathbb{R},
\end{aligned}
$$

where $a_{0}=1$ and $a_{\rho}=0$ for $\rho<0$.
Proof. Put $\rho+1=2 \delta$. For r fixed, set

$$
f_{\delta}(x)=\left[\sin ^{2}(\delta x) \cdot f(r \exp (-i x))\right] / x^{2}
$$

It is clear that the function f_{δ} satisfies the hypothesis of the Lemma above. Set

$$
q_{\delta}(t)=\left(\sin ^{2}(\delta x) / x^{2}\right)^{\wedge}=(\pi / 2) \sup (0,2 \delta-|t|) .
$$

We have

$$
\hat{f}_{\delta}(t)=\sum_{n=0}^{\infty} a_{n} r^{n} q_{\delta}(t-n)
$$

If we apply the above Lemma for $t=k$ we get:

$$
\left|\sum_{m=-\rho}^{\rho}\left(a_{k-m} r^{k-m}+\bar{a}_{m-k} \cdot r^{m-k}\right)(\rho+1-|m|)\right| \leq 2 \operatorname{Re} \sum_{m=0}^{\rho} a_{m} r^{m}(\rho+1-|m|)
$$

since for $|t| \geq \rho+1$ we have $q_{\delta}(t)=0$. We now observe that for each real number the function

$$
f_{\tau}(z)=f(z \cdot \exp (i \tau))
$$

belongs to \mathscr{P}, and has coefficients

$$
a_{n} \exp (i n \tau), \quad n=0,1,2 \cdots
$$

By applying the last inequality to f_{τ} and letting $r \rightarrow 1$ we get the desired result.
2. Corollary. Let

$$
f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

be a function of the class \mathscr{P}. Set $\theta_{q}=-\operatorname{Arg} a_{q}+\pi(q=1,2, \ldots)$. Then

$$
\left|a_{q}\right| \leq 2-(1 / 2) \sup _{k \in N}\left|\sum_{m=-1}^{1}\left(a_{(m-k) q}+\bar{a}_{(m-k) q}\right) \cdot \exp \left[i(k-m) \theta_{q}\right] \cdot(2-|m|)\right|
$$

Proof. It is known [4, p. 2] that for $B_{n}=a_{q \cdot n}$, where q is fixed, the function

$$
g(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}
$$

is a member of \mathscr{P}.
If we apply Theorem 1 to g for $\rho=1$ and $t=\theta_{q}$ we get the desired result.
3. Corollary. Let $f \in \mathscr{T}$. Set $S_{n}=1+a_{2}+\cdots+a_{n}$ for $n \geq 1$ and $S_{n}=0$ for $n<1$, and

$$
A_{\rho}^{k}=S_{k+\rho+1}-2 S_{k}-2 S_{k-1}+S_{k-\rho-1}+S_{-k+\rho+2}+S_{-k+\rho+1}+S_{-k+\rho}
$$

Then for each $\rho, k \in N$ we have

$$
\left|A_{\rho}^{k}\right| \leq 2 S_{\rho}+2 S_{\rho+1}
$$

Proof. The function

$$
g(z)=f(z) \cdot\left(1-z^{2}\right) / z=\sum_{n=0}^{\infty}\left(a_{n+1}-a_{n-1}\right) z^{n}
$$

belongs to \mathscr{P}. Hence for $t=0$ and $a_{n}=S_{n}-S_{n-1}$ Theorem 1 gives the desired result.

Remarks. (a) Corollary 2 improves.the well known inequality $\left|a_{q}\right| \leq 2$ which holds for functions in \mathscr{P}. Also if $a_{1}=2 \eta$, where $\eta=\exp \left(i \theta_{0}\right)$, then from Corollary 2 we get by induction $a_{n}=2 \eta^{n}$, so that

$$
f(z)=1+\sum_{n=1}^{\infty} 2 \eta^{n} z^{n}=(1+\eta z) /(1-\eta z)
$$

(see [3]).
(b) Corollary 3 improves the inequality $S_{\rho}+S_{\rho+1} \geq 0$, which holds for all functions in \mathscr{T} [3].

We have noticed in Remark (b) above, that equation $a_{1}=2 \eta$ determines uniquely the extreme function $(1+\eta z) /(1-\eta z)$. Theorem 4 below provides another extreme case.
4. Theorem. Let $f \in \mathscr{P}$, and suppose there is a number $\eta=\exp \left(i \theta_{0}\right)$ such that

$$
\operatorname{Re}\left(3+2 \bar{a}_{1} \eta+\alpha_{2} \eta^{2}\right)=0
$$

then

$$
f(z)=\left(1-z^{2} \eta^{-2}+i c z \eta^{-1}\right) /\left(1+z^{2} \eta^{-2}+z \eta^{-1}\right)
$$

where

$$
c=-i \cdot\left(a_{1} \eta+1\right)=i \cdot\left(a_{2} \eta^{2}+1\right)=\text { real, } \quad\left(|c| \leq 3^{1 / 2}\right)
$$

Conversely if f has the above form with $|c| \leq 3^{1 / 2}$ and $|\eta|=1$ then

$$
f \in \mathcal{T} \quad \text { and } \operatorname{Re}\left(3+2 a_{1} \eta+a_{2} \eta^{2}\right)=0
$$

Proof. Let $f \in \mathscr{P}$ and suppose for the moment that $\theta_{0}=0$ so that

$$
\operatorname{Re}\left(3+2 a_{1}+a_{2}\right)=0
$$

Then, for $t=0$ and $\rho=2$, we get from Theorem 1 for $k=1, k=2$ and $k \geq 3$ respectively

$$
\begin{gather*}
a_{3}+2 a_{2}+3 a_{1}+2 a_{0}+2 \bar{a}_{0}+\bar{a}_{1}=0 \tag{1}\\
a_{4}+2 a_{3}+3 a_{2}+2 a_{1}+a_{0}+\bar{a}_{0}=0 \tag{2}\\
\vdots \tag{k}\\
a_{k+1}+2 a_{k+1}+3 a_{k}+2 a_{k-1}+a_{k-2}=0
\end{gather*}
$$

For $k \geq 3$ subtracting relation (k) from ($k+1$) we have

$$
a_{k+3}+a_{k+2}+a_{k+1}=a_{k}+a_{k-1}+a_{k-2}
$$

The last equality is equivalent to the following

$$
\begin{gathered}
a_{3 n+3}+a_{3 n+2}+a_{3 n+1}=a_{3}+a_{2}+a_{1} \\
a_{3 n+4}+a_{3 n+3}+a_{3 n+2}=a_{4}+a_{3}+a_{2} \\
a_{3 n+5}+a_{3 n+4}+a_{3 n+3}=a_{5}+a_{4}+a_{3} \\
n=0,1,3, \ldots
\end{gathered}
$$

Subtracting the first of these equalities from the second and the second from the third we get

$$
\begin{aligned}
& a_{3 n+4}-a_{3 n+1}=a_{4}-a_{1} \\
& a_{3 n+5}-a_{3 n+2}=a_{5}-a_{2}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& a_{3 n+1}=a_{4}+(n-1) \cdot\left(a_{4}-a_{1}\right) \\
& a_{3 n+2}=a_{5}+(n-1) \cdot\left(a_{5}-a_{2}\right)
\end{aligned}
$$

Also due to the inequality $\left|a_{n}\right| \leq 2$ we must have $a_{4}-a_{1}=a_{5}-a_{2}=0$. Hence

$$
\begin{aligned}
& a_{3 n+1}=a_{4}=a_{1} \\
& a_{3 n+2}=a_{5}=a_{2} \\
& a_{3 n+3}=a_{3}
\end{aligned}
$$

Also, from (2) and (3), we get, since $a_{0}=1$,

$$
a_{5}+a_{4}+a_{3}=a_{2}+a_{1}+2
$$

so that

$$
a_{3 n}=a_{3}=2
$$

From (1) and (2) we get

$$
\begin{array}{r}
6+2 a_{2}+3 a_{1}+\bar{a}_{1}=0 \\
3 a_{2}+6+3 a_{1}=0
\end{array}
$$

so that

$$
a_{2}=\bar{a}_{1}, \quad \operatorname{Re} a_{1}=\operatorname{Re} a_{2}=-1
$$

Hence

$$
a_{1}=-1+i c, \quad a_{2}=-1-i c
$$

with $|c| \leq 3^{1 / 2}$, since $\left|a_{1}\right|=\left|a_{2}\right| \leq 2$.
The function f can now be written as follows:

$$
\begin{aligned}
f(z) & =1+2 \cdot \sum_{n=1}^{\infty} z^{3 n}+(-1+i c) \cdot \sum_{n=0}^{\infty} z^{3 n+1}+(-1-i c) \cdot \sum_{n=0}^{\infty} z^{3 n+2} \\
& =\left(1-z^{2}+i c z\right) /\left(1+z^{2}+z\right)
\end{aligned}
$$

This form of f corresponds to the case $\theta_{0} \neq 0$. If $\theta_{0} \neq 0$ the theorem follows if we apply the last formula to the function $f(\eta z)$.

Conversely let

$$
f(z)=\left(1-z^{2} \eta^{-2}+i c z\right) /\left(1+z^{2} \eta^{-2}+z \eta^{-1}\right)
$$

then

$$
f(\eta z)=\left(1-z^{2}+i c z\right) /\left(1+z^{2}+z\right)
$$

We have

$$
a_{1}=(-1+i c) / \eta, \quad a_{2}=(-1-i c) / \eta^{2}
$$

We prove that

$$
\operatorname{Re} f(\eta z)>0
$$

Set

$$
z=r(\cos \theta+i \sin \theta)
$$

Then the inequality to prove is equivalent to

$$
\cos \theta-c \sin \theta>-\left(1+r^{2}\right) / r
$$

Put $c=\tan \xi$. Since $|c| \leq 3^{1 / 2}$, we have

$$
-\pi / 3 \leq \xi \leq \pi / 3
$$

and

$$
\cos (\theta+\xi)>-\cos (\xi) \cdot\left(1+r^{2}\right) / r
$$

since

$$
\cos \xi \geqslant 1 / 2 \quad \text { and } \quad\left(1+r^{2}\right) / r>2
$$

The theorem is proved.
5. Corollary. If $f \in \mathscr{T}$ and there is a number $\eta=\exp \left(i \theta_{0}\right),\left(\theta_{0} \in \mathbb{R}\right)$ such that

$$
\operatorname{Re}\left[3+2 a_{2} \eta+\left(a_{3}-1\right) \eta^{2}\right]=0
$$

Then f is one of the following functions:
$\left(1+z-z^{2}\right) /\left[\left(1-z^{3}\right) \cdot\left(1-z^{2}\right)\right], \quad z\left(1-z-z^{2}\right) /\left[\left(1-z^{3}\right)\left(1-z^{2}\right)\right]$, $z /(1-z)^{2}, z /(1+z)^{2}$

Proof. Clearly, since $f \in \mathscr{F}$, the a_{n} are real and the function

$$
P(z)=f(z) \cdot\left(1-z^{2}\right) / z=\sum_{n=0}^{\infty}\left(a_{n+1}-a_{n-1}\right) z^{n}
$$

belongs to \mathscr{P}. From Theorem 4 we have

$$
a_{2}=(-1+i c) / \eta, \quad a_{3}-1=(-1-i c) / \eta^{2}
$$

It follows that

$$
\eta^{3}=\left[\left(1+c^{2}\right) / a_{2} \cdot\left(a_{3}-1\right)\right]=\text { real number }
$$

Hence $\eta^{3}=1$ or $\eta^{3}=-1$, so that the possible values of η are the cubic roots of 1 and of -1 . It is easily seen that the values

$$
-1,1,\left(-1-i 3^{1 / 2}\right) / 2,\left(1+i 3^{1 / 2}\right) / 2
$$

correspond to the values of

$$
c=0,0,-3^{1 / 2}, 3^{1 / 2}
$$

which provide the four functions of the statement and in the order they are written.

To the values

$$
\eta=\left(-1+i 3^{1 / 2}\right) / 2, \quad \eta=\left(1-i 3^{1 / 2}\right) / 2
$$

correspond the functions

$$
z /(1-z)^{2}, z /(1+z)^{2}
$$

respectively.

References

1. N. Artémiadis, Sur les transformées de Fourier et leurs applications aux séries, Ann. Ecole Normale Supérieure (3) LXXTV-Fasc. 4, 1957.
2. S. Mandelbrojt, Quelques remarques sur les fonctions Univalentes, Bull. Sci. Math. 58 (1934), 185-200.
3. W. W. Rogosinski, Über positive harmonische Entwicklungen und typisch reele Potenzreihen, Math. Z. 35 (1932), 93-121.
4. G. Schober, Univalent Functions, Selected Topics, Lecutre Notes in Math. 478, SpringerVerlag New York 1975.

Department of Mathematics
A Chair of Mathematics
University of Patras
Patras-Greece

