GROUPS FORMED BY REDEFINING MULTIPLICATION

BY
K. A. CHANDLER

Abstract

Let G be a group with elements $1, \ldots, n$ such that the group operation agrees with ordinary multiplication whenever the ordinary product of two elements lies in G. We show that if n is odd, then G is abelian.

1. Introduction. In the American Mathematical Monthly [1], Rodney Forcade, Jack Lamoreaux, and Andrew Pollington conjecture that it is possible to form a multiplicative group on the set $\{1,2, \ldots, n\}$ so that for any two integers whose product under ordinary multiplication is $k \leqq n$, their product in the group is k. Further, they believe, but have not proved, that such a group (which we shall refer to as an FLP group) must be abelian.

In this paper we prove the following:
Theorem. Every FLP group of odd order is abelian.
2. For sufficiently large groups, the theorem holds. Define $H(n, y)$ to be the set of positive integers less than or equal to n all of whose prime factors are less than or equal to y. Let $\Psi(n, y)$ be the number of elements of $H(n, y)$.

Lemma 1. Let n be odd. If there is a number r such that $\Psi(n, r)>n / 3$ and $\Psi(n, n / r)>n / 9$, then any FLP group G of order n is abelian.

Proof. Let q be a prime $\leqq n / r$. Then for any prime $p \leqq r, q p \leqq q r \leqq n$, hence $q \cdot p=p \cdot q$ where \cdot denotes the group product. Thus q commutes with every prime in $H(n, r)$, and therefore with every element of $H(n, r)$. If $Z(q)$ is the set of elements which commute with $q,|Z(q)|>n / 3$. Since $Z(q)$ is a subgroup of G, and G has no subgroups of index $2, Z(q)=G$. That is, q is in the centre, $Z(G)$, of G. Hence, $H(n, r)$ is contained in $Z(G)$.

Now, $[G: Z(G)]<9$ and is odd, hence $G / Z(G)$ is cyclic, and so G is abelian.

Direct computation of Ψ shows that all FLP groups of odd order $\leqq 23000$ are abelian.

Received by the editors November 4, 1986, and, in revised form, July 3, 1987.
AMS Subject Classification (1980): 20F05, 10H15.
(c) Canadian Mathematical Society 1987.

More general results on the function $\Psi(n, y)$ can be obtained by introducing a function $\rho(u)$ (the Dickman function), which is the continuous solution of the differential difference equation:

$$
\begin{gathered}
\rho(u)=1, \quad \text { for } 0 \leqq u \leqq 1 \\
u \rho^{\prime}(u)=-\rho(u-1), \text { for } u>1 .
\end{gathered}
$$

It is known that ρ is strictly decreasing for $u \geqq 1$, and that $0 \leqq \rho(u) \leqq 1$. In [2] Ramaswami proves that, given $c>0$ there is a constant $K>0$ such that for all $u \leqq c$ and all $n \geqq 1$,

$$
\Psi\left(n, n^{1 / u}\right)=n(\rho(u) \pm K / \log n)
$$

Notice that for $1 \leqq u \leqq 2, \rho(u)=1-\log u$, and thus $\rho\left(e^{2 / 3}\right)=$ $1-\log \left(e^{2 / 3}\right)=1 / 3$. Since ρ is strictly decreasing for $u \geqq 1$, for any $1 \leqq u<e^{2 / 3}$, and for n sufficiently large, we have $\Psi\left(n, n^{1 / u}\right)>n / 3$. Using the trapezoidal rule to estimate the required integral, we have shown that $\rho\left(e^{2 / 3} /\left(e^{2 / 3}-1\right)\right)>.28038>1 / 9$, and so we can use Lemma 1 with $r=n^{1 / u}$, where $u=e^{2 / 3}-\epsilon$, for $\epsilon>0$ and sufficiently small, together with Ramaswami's formula, to obtain the next lemma.

Lemma 2. For odd n sufficiently large, any FLP group of order n is abelian.
3. Finding the bound. To determine how large is "sufficiently large" in Lemma 2, we must examine the proof of Ramaswami's theorem using approximations for some number-theoretic quantities. In all that follows, p denotes a prime, and $c=a \pm b$ means that $a-b \leqq c \leqq a+b$.

Lemma 3.
(a) If $x>1, \pi(x)<1.2555(x / \log x)$, where $\pi(x)$ is the number of primes $\leqq x$.
(b) There is a constant buch that

$$
\log \log x+b<\sum_{p \leqq x} \frac{1}{p}<\log \log x+b+\frac{1}{(\log x)^{2}}, \text { for } 1<x \leqq 10^{8}
$$

and

$$
\sum_{p \leqq x} \frac{1}{p}=\log \log x+b \pm \frac{1}{2(\log x)^{2}}, \text { for } x \geqq 286
$$

For proofs of these, see [3]. Note that, in particular, if $x>1$ and $1 \leqq u_{1} \leqq$ $u \leqq u_{1}+1$, then

$$
\log \frac{u}{u_{1}}-\frac{u^{2}}{(\log x)^{2}} \leqq \sum_{x^{1 / u}<p \leqq x^{1 / u_{1}}} \frac{1}{p} \leqq \log \frac{u}{u_{1}}+\frac{u_{1}^{2}+u^{2}}{2(\log x)^{2}}
$$

Lemma 4.

(a) For $u \leqq 1, \Psi\left(x, x^{1 / u}\right)=[x]$.
(b) For $1 \leqq u \leqq 2$,

$$
\Psi\left(x, x^{1 / u}\right)=[x]-\sum_{x^{1 / u}<p \leqq x}[x / p] .
$$

(c) Let $u_{1} \geqq 2$. Suppose there exist positive constants X and K_{0} such that for all $v \leqq u_{1}$,

$$
\Psi\left(x, x^{1 / v}\right)=x\left(\rho(v) \pm \frac{K_{0}}{\log x}\right)
$$

for all $x \geqq X^{1 / u_{1}}$. Then for any u such that $u_{1} \leqq u \leqq u_{1}+1$, and for all $x \geqq X$,

$$
\begin{aligned}
\Psi\left(x, x^{1 / u}\right) & =x \rho(u)+\Psi\left(x, x^{1 / u_{1}}\right)-x \rho\left(u_{1}\right) \\
& \pm x\left\{u_{1} \frac{K_{0}}{\log x}\left(\log \left(\frac{u}{u_{1}}\right)+\frac{u^{2}}{(\log x)^{2}}\right)+\frac{3 u^{2}+u^{3}-u_{1}^{3}}{3(\log x)^{2}}\right\} .
\end{aligned}
$$

Proof. (a) and (b) are immediate. From [2], we get that for $u \geqq 2$

$$
\begin{aligned}
& \Psi\left(x, x^{1 / u}\right)=x \rho(u)+\Psi\left(x, x^{1 / u_{1}}\right)-x \rho\left(u_{1}\right) \\
& \pm\left\{K_{0} \sum_{x^{1 / u} \leqq p \leqq x^{1 / u_{u}}} \frac{x / p}{\log (x / p)}+\right. \left\lvert\, x \int_{x^{1 / u}}^{x^{1 / u_{1}}} \frac{k(t)}{(\log t)^{2}} d \rho\left(\frac{\log (x / t)}{\log t}\right)\right. \\
&\left.\left.-x\left[\frac{k(t)}{(\log t)^{2}} \rho\left(\frac{\log (x / t)}{\log t}\right)\right]_{x^{1 / u}}^{x^{1 / u_{1}}} \right\rvert\,\right\},
\end{aligned}
$$

where $k(t)$ is defined by $k(t) /(\log t)^{2}=\sum_{p \leqq t} 1 / p-\log \log t-b$.
We have

$$
\begin{aligned}
K_{0} \sum_{x^{1 / u} \leqq p \leqq x^{1 / u_{1}}} \frac{x / p}{\log (x / p)} & \leqq u_{1} K_{0} \frac{x}{\log x} \sum_{x^{1 / u} \leqq p \leqq x^{1 / u_{l}}} \frac{1}{p} \\
& =u_{1} K_{0} \frac{x}{\log x}\left(\log \frac{u}{u_{1}} \pm \frac{u^{2}}{(\log x)^{2}}\right),
\end{aligned}
$$

by Lemma 3(b), while

$$
\begin{aligned}
& \left|\int_{x^{1 / u}}^{x^{1 / u_{1}}} \frac{k(t)}{(\log t)^{2}} d \rho\left(\frac{\log (x / t)}{\log t}\right)\right| \\
& \leqq\left|\int_{x^{1 / u}}^{x^{1 / u_{1}}} \frac{1}{(\log t)^{2}} \rho^{\prime}\left(\frac{\log (x / t)}{\log t}\right) \frac{d}{d t}\left(\frac{\log (x / t)}{\log t}\right) d t\right| \\
& \leqq \log x\left|\int_{x^{1 / u}}^{x^{1 / u_{1}}} \frac{d t}{t(\log t)^{4}}\right| \text {, since }\left|\rho^{\prime}\left(\frac{\log (x / t)}{\log t}\right)\right| \leqq 1 \text { for }
\end{aligned}
$$

$$
\begin{aligned}
t<x^{1 / u_{1}} & =\left[\frac{\log x}{3(\log t)^{3}} \int_{x^{1 / u_{1}}}^{x^{1 / u}}\right. \\
& =\frac{u^{3}-u_{1}^{3}}{3(\log x)^{2}} .
\end{aligned}
$$

Finally, by Lemma 3(b),

$$
\left|\left|\frac{k(t)}{(\log t)^{2}} \rho\left(\frac{\log (x / t)}{\log t}\right)\right|_{x^{1 / u}}^{x^{1 / u_{1}}}\right| \leqq \frac{u^{2}}{(\log x)^{2}},
$$

since if $x^{1 / u_{1}} \leqq 10^{8}$ then $0<k\left(x^{1 / u}\right)<1$ and $0<k\left(x^{1 / u_{1}}\right)<1$, while if $x^{1 / u_{1}}>$ 10^{8} then $x^{1 / u}>10^{4}>286$, so that $\left|k\left(x^{1 / u}\right)\right|<1 / 2$ and $\left|k\left(x^{1 / u_{1}}\right)\right|<1 / 2$.

Now, for $1 \leqq u \leqq 2$,

$$
\begin{aligned}
\Psi\left(x, x^{1 / u}\right) & =[x]-\sum_{x^{1 / u}<p \leqq x}[x / p] \\
& =[x]-x \sum_{x^{1 / u}<p \leqq x} \frac{1}{p}+\sum_{x^{1 / u}<p \leqq x}\left(\frac{x}{p}-[x / p]\right)
\end{aligned}
$$

So, by Lemma 3 (b), for $1 \leqq u \leqq 2$,

$$
\begin{aligned}
\Psi\left(x, x^{1 / u}\right) & >x\left(\rho(u)-\frac{u^{2}+1}{2(\log x)^{2}}-\frac{1}{x}\right) \\
& \geqq x\left(\rho(u)-\frac{2.5}{(\log x)^{2}}-\frac{1}{x}\right),
\end{aligned}
$$

while

$$
\Psi\left(x, x^{1 / u}\right)<x\left(\rho(u)+\frac{4}{(\log x)^{2}}\right)+\pi(x) .
$$

Thus,

$$
\begin{equation*}
\Psi\left(x, x^{1 / u}\right)=x\left(\rho(u) \pm \frac{2.0555}{\log x}\right) \text {, for } x \geqq e^{5}, 1 \leqq u \leqq 2 \tag{1}
\end{equation*}
$$

by Lemma 3(a) and

$$
\begin{equation*}
\Psi\left(x, x^{1 / u}\right)>x(\rho(u)-.02505), \text { for } x \geqq e^{10}, 1 \leqq u \leqq 2 \tag{2}
\end{equation*}
$$

Then in Lemma 4(c), if we take $X=e^{10}, K_{0}=2.0555$, and $u_{1}=2$ we have for $2 \leqq u \leqq 3$ and $x \geqq e^{10}$,

$$
\begin{aligned}
\Psi\left(x, x^{1 / u}\right) & =\dot{x} \rho(u)+\Psi(x, \sqrt{x})-x \rho(2) \\
& \pm x\left\{\frac{4.111}{\log x}\left(\log \left(\frac{u}{u_{1}}\right)+\frac{u^{2}}{(\log x)^{2}}\right)+\frac{3 u^{2}+u^{3}-u_{1}^{3}}{3(\log x)^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
>x\left\{\rho(u)-.02505-\frac{4.111}{\log x}(\right. & \left.\log \left(\frac{u}{2}\right)+\frac{u^{2}}{(\log x)^{2}}\right) \\
& \left.-\frac{3 u^{2}+u^{3}-8}{3(\log x)^{2}}\right\}, \text { by (1). }
\end{aligned}
$$

Therefore, if $2 \leqq u \leqq 2.12$

$$
\begin{equation*}
\Psi\left(x, x^{1 / u}\right) \geqq x(\rho(u)-.1176) \text {, for } x \geqq e^{10} \tag{3}
\end{equation*}
$$

Thus, for $n \geqq e^{10}$, in order to get $\Psi\left(n, n^{1 / u}\right)>n / 3$, it suffices that $\rho(u) \geqq$ $1 / 3+.02505$, by (2). Since $\rho(u)=1-\log u$ for $1 \leqq u \leqq 2$, we get $\rho(u) \geqq$ $1 / 3+.02505$ for $1 \leqq u \leqq \exp (1-1 / 3-.02505)$, in particular for $u=1.897$. Now we will use (3) to show that for $n \geqq e^{10}, \Psi\left(n, n^{(1.897-1) / 1.897}\right)>n / 9$ by showing that $\rho(1.897 / .897)-.1176>1 / 9$. Here, $2<1.897 / .897<2.115$, so $\rho(1.897 / .897)>\rho(2.115)$, and by approximating the integral we get that $\rho(2.115)-.1176>.2540-.1176=.1364>1 / 9$. Hence, for $n>e^{10}$, we get that for $u_{0}=1.897, \Psi\left(n, n^{1 / u_{0}}\right)>n / 3$, while $\Psi\left(n, n^{\left(u_{0}-1\right) / u_{0}}\right)>n / 9$. We have verified the theorem directly for $n \leqq 23,000$ using Lemma 1 , so the proof of the theorem is now complete.

Acknowledgements. This research was supported by a Natural Sciences and Engineering Research Council of Canada University Undergraduate Summer Research Award at Dalhousie University, Halifax, N.S.

References

1. Richard Guy, ed., A group of two problems in groups, Amer. Math. Monthly 92 (1986), pp. 119-121.
2. V. Ramaswami, On the number of positive integers less than x and free of prime divisors greater than x^{c}, Bull. Amer. Math. Soc. 55 (1949), pp. 1122-1127.
3. J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), pp. 64-92.
