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Infrared remote sensing provides essential knowledge about the current state of solid planetary surfaces. 

This allows addressing fundamental questions in comparative planetology. A large part of our 

knowledge about surface composition and structure of solid planetary surfaces is based on infrared 

remote sensing techniques. These techniques allow performing mineralogical composition analyses, 

measurement of surface temperature, thermal inertia, and photometric observation of surface regolith 

texture. The combination of geological mapping based on (visible light) imaging with infrared spectral 

data forms the basis for comparative studies in planetology. This paper will provide an overview of what 

we have learned about the surfaces of planetary bodies using infrared techniques from orbit and provide 

an outlook on future plans. Typically examples of the main types of instruments are described, and the 

interplay of disciplines like planetology, IR measuring techniques, and space flight engineering is 

demonstrated. 

 

The nature of planetary surfaces provides key information about the geologic, physical, and chemical 

structure as well as the evolution of a planetary body. Key goals of comparative planetology are to 

unveil common origin processes and divergent evolutionary paths. For most bodies in the solar systems 

the remote-sensing view onto the surface is still the main if not the only available data source for 

comparative planetology analyses. Spacecraft studies have made it possible to make meaningful 

observations of a large number of different planetary objects including small bodies like asteroids and 

comets, the terrestrial and outer planets and their moons. Over the last decades, these spacecraft studies 

have strongly changed our view on the origin, the current similarities, differences, and the evolutionary 

paths of the single bodies. Missions have succeeded in recording different evolutionary stages of our 

solar system studying the whole spectrum of planetary objects. These objects ranging from poorly 

differentiated bodies like asteroid 2867 Šteins [1] (ESA Rosetta mission) over protoplanet type bodies 

like asteroid (4) Vesta [2] (NASA DAWN mission) to differentiated objects like planets. This enables 

reconstructing the planetary system’s formation starting from early processes up to the current stage of 

the highly differentiated objects. Apart from this time line, new geoscientific results like the geologic 

activity of the icy outer moons driven by tidal forces [3] have led to a fundamental review of habitability 

in our solar system. 

 

Among various remote sensing methods, the IR spectroscopy is a key technology to study planetary 

atmospheres and surfaces. Such analyses enable information about their composition, texture, structure 

and dynamics. During the last twenty years, high-resolution (spatial) multispectral imaging systems for 

photogeological surface mapping and multi/hyperspectral sensors for thematic mapping have been 

developed to operate together for planetological applications on deep space missions. Planetary 

spectrometers, which were successfully developed, applied, and operated on different planetary projects 

can be loosely divided into three groups: imaging spectrometers for the 0.25 to 5 μιη range, imaging 

spectrometers in the 7-14 μm region, and interferometers from 1.25 up to 45 μm. The instrument designs 

are driven by the specific conditions of the target bodies. Surface science requires high spatial, high 

radiometric, and moderate spectral resolution. If the signal is influenced by planetary atmospheres 

additional observations are required at high spectral resolution. Hyperspectral technologies for planetary 

1666
doi:10.1017/S143192761401006X

Microsc. Microanal. 20 (Suppl 3), 2014
© Microscopy Society of America 2014

https://doi.org/10.1017/S143192761401006X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761401006X


application require an interdisciplinary approach combining scientific and observing strategies, 

advanced engineering concepts, as well as extensive laboratory work. 

 

The techniques for interpretation of infrared remote sensing data have been continuously improved over 

the last decades. The computing resources available today allows to apply more sophisticated methods 

as for example neural network approaches to disentangle the various factors that contribute to the 

infrared signal recorded from orbit. The advances in the development of data analysis approaches have 

influenced the design of new generations of infrared instruments as can be seen for example in the 

design of the GRISM instrument on the NASA Mars Reconnaissance Orbiter (MRO) [4] or the 

MERTIS instrument on the ESA/JAXA BepiColombo mission [5]. 

 

All interpretation of remote sensing data relies on a solid groundwork of laboratory analog studies 

ideally performed under realistic surface conditions. The latter becomes increasingly important when 

studying planetary surface with extreme conditions, as for example Mercury, Venus or the Pluto. The 

extreme conditions encountered on the surfaces of theses bodies can alter spectral signatures 

significantly and might lead to misinterpretation if compared to measurements obtained under standard 

conditions (e.g. [6]). 

 

Unfortunately so far we only have a very limited set of bodies from which samples have been returned 

to Earth [e.g 7,8]. In the absence of samples we can study in details in laboratories on Earth, in-situ 

studies on lander elements can provide us with ground truth for orbital observations. Both, sample return 

and in-situ exploration, can only provide us information about a very small area on a planetary surface. 

The synergy of in-situ analysis with remote sensing studies can greatly enhance the science return as 

shown currently by the NASA Curiosity rover working closely together with MRO [9], as well as by the 

ESA Rosetta orbiter and the Philae lander element [10]. In the foreseeable this synergies between in-situ 

exploration, sample return and global mapping using remote sensing techniques will allow to extend our 

understanding of the solar system. 
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