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Abstract

Modern day building design projects require multidisciplinary expertise from architects and
engineers across various phases of the design (conceptual, preliminary, and detailed) and con-
struction processes. The Architecture Engineering and Construction (AEC) community has
recently shifted gears toward leveraging design optimization techniques to make well-
informed decisions in the design of buildings. However, most of the building design optimi-
zation efforts are either multidisciplinary optimization confined to just a specific design phase
(conceptual/preliminary/detailed) or single disciplinary optimization (structural/thermal/day-
lighting/energy) spanning across multiple phases. Complexity in changing the optimization
setup as the design progresses through subsequent phases, interoperability issues between
modeling and physics-based analysis tools used at later stages, and the lack of an appropriate
level of design detail to get meaningful results from these sophisticated analysis tools are few
challenges that limit multi-phase multidisciplinary design optimization (MDO) in the AEC
field. This paper proposes a computational building design platform leveraging concurrent
engineering techniques such as interactive problem structuring, simulation-based optimiza-
tion using meta models for energy and daylighting (machine learning based) and tradespace
visualization. The proposed multi-phase concurrent MDO framework is demonstrated by
using it to design and optimize a sample office building for energy and daylighting objectives
across multiple phases. Furthermore, limitations of the proposed framework and future ave-
nues of research are listed.

Introduction

The building design process involves careful and skillful integration of the architectural, struc-
tural, and service systems guided by multidisciplinary expertise from architects, engineers, and
various other specialists (Bachman, 2004). It has been emphasized and demonstrated at large
the significance of leveraging advanced optimization techniques to handle such a complex
multidisciplinary design process (Ballard, 2008; Zimina et al., 2012). However, most of
these optimization frameworks in the Architecture Engineering and Construction (AEC)
field either support single-phase multidisciplinary optimization (MDO) or multi-phase single
disciplinary optimization (with most of these assuming a sequential design process).
Precedents from the engineering design fields suggest the use the concurrent engineering tech-
nologies in developing MDO frameworks that can span across multiple design phases. Based
on a comprehensive literature review of optimization frameworks in the AEC field, it has been
identified that despite the development of similar concurrent engineering technologies in the
field, most of them are fragmented (Yang et al., 2015; Haymaker et al., 2018; Muthumanickam
et al., 2022b). This has led to knowledge gaps in developing concurrent MDO frameworks
capable of spanning across multiple phases of the building design process.

To that end, this paper proposes a multi-phase MDO framework comprising four technol-
ogies, namely: (a) a generative algorithm for generating large sets of detailed design options
(Level of Detail – LOD 200 and above), with minimal input, (b) metamodels for energy anal-
ysis and a machine learning-based metamodel for daylighting analysis, (c) a cloud-based data
platform for information exchange between the modeling and analysis tools and the optimizer,
and (d) an interactive problem structuring and tradeoff visualization module. Furthermore, the
proposed MDO framework is demonstrated by using it to design a sample office building from
the conceptual to detailed design phases. This is followed by a discussion on the limitations of
the proposed framework in its current state of development, along with concluding remarks
about future avenues of research to enhance the framework.
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Technological inefficiencies impacting the development of
multi-phase concurrent MDO

To understand the challenges in developing a multi-phase MDO
framework for AEC design, it is essential to look at a broader clas-
sification of optimization types in the AEC field. Building design
optimization can be classified into single objective optimization
(SOO) and multi-objective optimization (MOO). Based on the
number of building subsystems that are optimized (architectural,
structural, etc.), MOO can be further divided into two categories
namely single disciplinary (SDO) and multidisciplinary (MDO)
multi-objective optimization (Fig. 1).

MDO can be further classified as sequential (Objective i >
Objective j >… > Objective n) or concurrent (Objective i ||
Objective j ||… || Objective n) based on the order of optimization
of disciplinary objectives. With the need for buildings that are effi-
cient on multiple fronts such as structural stability, energy effi-
ciency, and improved indoor environmental quality, where
striving to meet one design objective is detrimental to another,
it is essential to understand the tradeoffs between multiple objec-
tives. Sequential MDO fails to capture such tradeoffs since the
building design is optimized for each objective sequentially,
whereas concurrent MDO enables optimizing the building design
simultaneously for multiple objectives (Martins and Lambe,
2013).Concurrent MDO can be further classified into uncoupled
and coupled optimization. To understand the difference between
uncoupled and coupled concurrent MDO, it is essential to take a
look at the three fundamental components of any computational
design optimization framework (Balling and Sobieszczanski-
Sobieski 1996) Yang et al., 2015) namely:

1. the mathematical model of the design problem, which contains
the objectives, design variables, and constraints;

2. the optimizer, whose task, in an abstract sense, is to determine
the design parameters value to ensure that the constraints are
met (then we have a permissible design), and the design objec-
tives are optimally met (then we have an optimal design); and

3. the analysis tool, which consists of the empirical equations,
analytical codes, and software that estimate the outputs (fi),
given a vector of input variables (xi).

Typically, each discipline handles a domain model; in the case
of building design, these are 3D models, such as architectural,
structural, mechanical, electrical, and plumbing (MEP), which
includes design variables, such as overall building dimensions;
room layout and dimensions; wall thickness; floor slab, beam,
and column dimensions; wall-to-window ratio; and MEP compo-
nent details (lighting schedule, heating, ventilating, and air-
condition or HVAC schedule). These individual domain models
are then connected to specific analysis tools such as structural,
thermal, daylighting, and energy analysis tools, to calculate the
various objective functions such as structural performance, day-
lighting factor, and energy performance (say fi,…, fn). Design
variables can be of two types, namely, independent variables,
which are discipline-specific, and shared variables, which are
shared between multiple disciplines. Concurrent uncoupled
MDO frameworks do not support exchange of shared variables
between multiple analysis tools, whereas concurrent coupled
MDO frameworks facilitate exchange of such shared variables
(Sen and Yang, 2012). For example, the thickness of a wall (t)
is a variable that is used in both energy calculations and in
mass estimation in structural calculations (shared variables
xsh and ysh, in Fig. 2). In uncoupled optimization, where the anal-
ysis tools are not connected, the energy analysis tool might iden-
tify a design option with thicker wall sections to be efficient due to
their insulation properties, whereas the structural analysis tool
might identify a structurally lighter option with thinner wall sec-
tions, thereby ending in conflict. Hence, there is a need for plat-
forms that enable multidisciplinary analysis tools to share design
information to avoid such conflicts (Fig. 2).

Concurrent coupled MDO can be further classified into single
or multi-phase optimization, depending on its capability to be
implemented in one or multiple phases of the building design
process, respectively. The development of multi-phase concurrent
coupled MDO frameworks for the AEC field is still in its infancy.
A summary of the above classifications of AEC optimization
efforts is shown in Figure 3.

To understand the challenges behind developing a concurrent
coupled MDO that can span across multiple phases of building
design, it is necessary to look at the multiple steps of optimization

Fig. 1. Types of optimizations based on the number of disciplines and objectives.

Fig. 2. Concurrent coupled MDO framework.
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starting from its mathematical formulation to the software imple-
mentation executing the mathematical formulation. Key to any
optimization problem is translating the design brief into mathe-
matically represented variables, objectives, and constraints (Pena
and Parshall, 2012). For example, let us assume that a team of
designers want to design a building that has minimum annual
energy consumption ( f1) and build cost ( f2), and maximum day-
lighting penetration ( f3). It can be mathematically represented as
follows:

Subsequently, the overall process behind executing such an
optimization problem is to generate (model) large sets of design
options with different combinations of variables, evaluate them
for the said objectives and constraints using appropriate analysis
tools, and utilize search algorithms to find the optimal design
option (the combination of design variables that results in a build-
ing that satisfies the given objectives in an optimal way) (Fig. 4).

For the above optimization framework to be multidisciplinary,
the building modeling tool needs to support batch generation of
large sets of integrated building models, each option containing
architectural, structural, and MEP components to a level of detail
(LOD) appropriate to each design phase. Furthermore, to enable
batch analysis of the generated options for a specific objective
using a particular analysis tool, automated exchange of design
variables between the modeling and analysis tool is required.
Even more, for this optimization framework to be concurrent
MDO, an automated exchange of design variables is needed
between the modeling tool and the multidisciplinary analysis
tool(s) (along with the optimizer) (model < > analysis 1, 2, 3 <
> optimizer). And finally for this optimization framework to be
concurrent coupled MDO to ensure multidisciplinary optima,
there is also a need for information exchange between multiple
analysis tool(s) (analysis 1 < > analysis 2 < >…).

Moreover, as the building design progresses through multiple
phases, multidisciplinary stakeholders enter and exit, thereby
leading to updates to the design brief, which in turn leads to
changes in optimization formulation (objectives, constraints,
and modeling) and in the analysis tools used per the level of detail
of that particular phase, how they are connected, and the
sequence of processes. In such scenarios, for a concurrent MDO
framework to span across multiple phases, it requires technologi-
cal affordances that allow interactive problem structuring and
batch modeling and analysis of large sets of building designs to
the level of detail appropriate to each phase, and still ensure
that the globally optimal options are not discarded with insuffi-
cient information. It has been identified that concurrent engineer-
ing technologies, such as interactive problem structuring
environments (to reflect changes to the design brief and optimi-
zation formulation), metamodels of varying fidelities (used across
progressive design phases), and model and simulation-based
computational infrastructure (loosely similar to Building
Information Modeling tools for exchanging information between
modeling and analysis tools) (Shea et al., 2005), are used in the
engineering design fields to address similar concerns (Fig. 5).

Despite advancements in the modeling, analysis, and
optimization-related software in the AEC field that allow batch
modeling and batch analysis of large sets of designs, the technol-
ogy readiness level to implement concurrent coupled MDO still

Fig. 3. Summary of the classification of AEC optimization.

Min f1(xi , . . . , xn)

Min f2(yi , . . . , yn)

Max f3(zi , . . . , zn)

Objectives

s.t. (subject to or such that)

a1 ≤ xi ≤ a2
b1 ≤ yi ≤ b2
x1 + xsh ≤ c1
x1, ysh ≥ 0

Constraints

where,

f1, f2, f3 are the objective functions (energy consumption, build cost,

and daylighting, respectively)

xi , . . . , xn, yi , . . . , yn are the independent design variables

xsh, ysh are shared design variables

a1, a2, b1, b2, c1 are the constraints

(upper and lower limits) on the design variables
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has several major caveats (Yang et al., 2015; Haymaker et al., 2018;
Muthumanickam et al., 2022b). To enable collaborative and
informed decision making at all stages of the building design pro-
cess (Fig. 6), an optimization framework with improvements in
problem structuring, interoperability between tools, and trade-
space visualization, is proposed in this paper (Fig. 10).

Proposed multi-phase concurrent MDO framework

The proposed framework includes technology development on
multiple fronts, including: (a) parametric modeling capabilities
that enable generation of a sizeable catalog of fairly detailed build-
ing models with minimal modeling effort in the early stages; (b)
an easy-to-use problem structuring interface where multiple
stakeholders (architects, structural engineers, and so on) can
interactively modify the design objectives and constraints; (c) sim-
ple metamodels for energy and daylighting (uses machine learn-
ing) that provide reasonably accurate estimates with minimally

detailed models and at lower computational expense; and (d) a
cloud-based database for centralized data exchange (a single
source of data) between all the domain models, analysis tools,
optimization algorithms, and trade-space visualizer. Each of
these developments are explained in detail in the coming
subsections.

Generative algorithm for design catalog generation

Batch generation of large set of building design models with inte-
grated systems (architectural + structural +MEP) is a computa-
tionally intensive process that involves tedious modeling efforts
(Clevenger and Haymaker, 2009). For this reason, most of the
optimization efforts in the AEC field either utilize simplified mas-
sing models (LOD 100) for multidisciplinary optimization during
the early stages or detailed models (LOD 200 and above) of spe-
cific systems (structural, envelope, and so on) for single discipli-
nary optimization during the later design stages. Either way,

Fig. 4. Conceptual optimization framework.

Fig. 5. Domino effect of changes in multi-phase design processes (left) and concurrent engineering technologies leveraged in engineering design fields to tackle
these (right).
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this is one of the major limiting factors in achieving concurrent
MDO across multiple design phases. To overcome this, a genera-
tive algorithm which can generate a sizeable catalog of building
models with detailed architectural (LOD 350), structural (LOD
200), and MEP (LOD 200) systems is developed. The generative
algorithm was developed in a node-based modeling environment
in both Grasshopper for Rhino™ and in Dynamo for Revit™ to
maximize the interoperability between both tools. Though
designers and engineers in the construction sector utilize a
range of computer-aided drafting (CAD) and 3D modeling
tools like AutoCAD™, ArchiCAD™, Sketchup™, Rhino™,
Revit™, Microstation™, CATIA™, and so on, Rhino and Revit
were chosen for several reasons. One of the most important rea-
sons was the Industry Foundation Class (IFC) – a platform neu-
tral schema underlying Revit, that supports import/export of IFC
files based on buildingSMARTs IFC2 × 3 and IFC2 × 2 data
exchange standard (buildingSMART, 2018; Autodesk, 2021a;
Gerbino et al., 2021) between multidisciplinary models with even
programmatic interventions to modify the IFC data (Autodesk,
2021b) (covered in Section “Interactive module for problem for-
mulation, process integration and tradespace visualization”).
Additionally, recent beta versions of Rhino.Inside.Revit™ was
leveraged to enable seamless interoperability between Revit IFC
and Rhino environment and vice versa.

The algorithm consists of four types of nodes, namely: (a)
input nodes which take in user inputs that define the dimensions
and shapes of the building geometry and the component geome-
tries (architectural, structural, and MEP systems); (b) geometrical
manipulation nodes (developed as custom nodes using C#) which

are responsible for solving shape intersections between these sys-
tems (e.g., wall-wall intersections, wall-envelope intersections,
duct-ceiling plenum interfaces, wall-window interface, etc.); (c)
property definition nodes which attach properties to the geome-
trical elements (e.g., wall type, number of layers in wall, insulation
type, windowpanes, duct type, floor type, etc.); and (d) data trans-
lation nodes which convert the generated geometries and asso-
ciated properties into an Industry Foundation Class (IFC)
format (a data model used to parse and store 3D representations
of architectural, structural, and MEP components in BIM tools
like Revit™).

The input nodes are of three types, namely layout input nodes,
numerical slider type nodes, and drop-down list nodes. Once the
designer feeds in a generic massing shape (say, a cube, pentagon,
hexagon, or any rigid geometry), the layout input nodes allow the
user to select between a standard square grid or upload a custom
grid for columns, rooms, and artificial lighting layouts. The
numerical slider type nodes allow the user to control the overall
dimensions of the perimeter of the massing, number of floors,
floor slab thickness, floor-ceiling height, wall thickness, column
spacing, column shape and size, beam depth, ceiling plenum
height, suspended ceiling height, service duct shape and size, wall-
window ratio, building orientation, number of windowpanes, and
so on. The drop-down list nodes allow the selection of external/
internal wall types (masonry wall, cavity wall, etc.), window
types (glazing type, windowpanes, etc.), and heating and cooling
systems (DX Coil, boilers, radiant cooling, etc.). These three types
of nodes collectively populate the massing with LOD 350 architec-
tural components (floor slabs, exterior walls, windows), LOD 200

Fig. 6. Conceptual representation of concurrent MDO using multi-fidelity models (MFMs) for trade-off visualization between multiple objectives in each design
phase.
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structural components (columns and beams), and LOD 200 MEP
components (ceiling plenum, suspended ceiling, ducts, and light-
ing trays) per the designer’s inputs. The algorithm is currently
limited to rigid geometrical shapes and does not support organic
or highly customized geometries. This is a known limitation of
this framework and is listed as a future area of research to enable
the generative algorithm to support organic geometries and cus-
tomized floor plans within them (Fig. 7).

The generative algorithm allows the user to set ranges (lower
and upper limits) (e.g., 10–100 m) and interval steps (e.g., in
steps of 10 = 20, 30, 40… ) for the numerical slider type nodes.
The algorithm further automates batch modeling of a catalog of
building design options with varying combinations of the slider
values within these ranges and intervals (Fig. 8).

Each of these design options (integrated building model) gen-
erated by the algorithm consists of components such as walls,
floors, and slabs, as geometric 3D representations without any
attribute information by default. Custom data translation nodes
(part of the generative algorithm) were developed for embedding
attributes (or properties) in the 3D building components such as
walls, floor slabs, windows, ducts, and doors, and subsequently
converting these geometric building components into an IFC
schema (Fig. 9). For example, in the case of a simple wall gener-
ated in Rhino™ using the data translation nodes, attributes such
as the floor in which the wall is, dimensions of the wall, wall type
(material, insulation properties, etc.), finishing type, etc., can be
embedded and stored along with the wall in an IFC format
(Fig. 9).

Subsequently, each of these models (say model 1, model 2… .,
model n) along with the detailed components are converted into a
native IFC format, i.e., geometry + attributes/properties. Furthermore,
the IFC dataset of all the generated models is stored in a relational
database (SQL) for enhancing interoperability with other analysis
tools to be used in the optimization framework (Fig. 10). For ease
of understanding, consider the IFC format to have more intero-
perability than the 3D modeling format, and the SQL database

to have even more interoperability than the IFC format. This
helps in storing all the building-related data in a single data for-
mat, which is beneficial for other tools to access design informa-
tion from a single source of data – the central database (which is
covered in the section “Centralized relational database for intero-
perability between tools”).

The generative algorithm was developed in both Grasshopper
for Rhino™ and Dynamo for Revit™. With the recent Rhino
within Revit interface packaged within the Rhino 7 WIP (beta ver-
sion), it is possible to run the Grasshopper version of the genera-
tive algorithm within a native Revit™ environment as well.
Currently, the generative algorithm works for rigid geometrical
massing, with ongoing work to improve its capability to support
organic shapes (akin to realistic building design massing).

Multi-fidelity metamodels for multidisciplinary analysis

Batch analysis of large sets of building design alternatives for
multidisciplinary performance, such as energy and daylighting,
is usually computationally intensive and tedious in terms of set-
ting up the analysis. Moreover, building designers tend to use
both simple and complex analysis tools to evaluate the design
alternatives based on the level of detail of the model. This usually
creates two situations, namely: (a) usage of simple analysis tools to
perform energy, daylighting, and similar analysis using building
models with low LOD during early stages; and (b) waiting out
on performing compute intensive energy and daylighting analysis
using tools like EnergyPlus™ and Radiance™, respectively, until
the design is significantly detailed. Both these situations lead to
counterproductive results, namely: (a) building design alternatives
(with low LOD) identified as optimal using a simpler analysis tool
becoming non-optimal when more details are added to the design
and evaluated using a sophisticated tool at later stages; and (b)
missing out on proactively analyzing building design alternatives
concurrently for multiple objectives during early stages, which
might lead to substantial revisions later.

Fig. 7. High-level overview of the generative algorithm logic.
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In similar situations, engineering design fields utilize metamo-
dels (simple approximations of higher fidelity models) to explore
large sets of design alternatives at a lower computational cost
(Alexandrov et al., 2001; Simpson et al., 2001; Fernández-
Godino et al., 2016). In the AEC field, there has been a recent
surge in metamodels for structural analysis (Brown and
Mueller, 2016; Unal and Warn, 2017; Unal et al., 2017;
Chhabra and Warn, 2018), energy (Tresidder et al., 2012;
Muthumanickam et al., 2018; and daylighting (Wortmann

et al., 2015; Ayoub, 2020; Muthumanickam et al., 2022a). Given
such developments, it might be possible to strategically use meta-
models of increasing fidelity across multiple phases of building
design as a means to identify the optimal solutions at a lesser
computational cost. To that end, this paper illustrates strategies
to organize energy and daylighting metamodels of varying fideli-
ties (proposed in Muthumanickam et al., 2018, 2022a, respec-
tively) across multiple phases of design optimization of an
office building. Specifically, a modified bin method and a degree

Fig. 8. Output of the generative algorithm: batch modeling of integrated building models.

Fig. 9. Generative algorithm: data translation nodes.
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Fig. 10. Conceptual overview of the workings of the generative algorithm. IFC translation shown for a sample wall. In reality, similar translations are done for all components (floor slabs, envelope, windows, etc.) in each design option
(option 1, option 2… option n).
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day method (uses lower-order physics equations for heat balance
calculation than sophisticated tools like EnergyPlus™) and
EnergyPlus™ were used for energy estimation in the example.
A detailed overview of the differentiating features of the modified
bin method, the degree day method, and EnergyPlus™ that
makes them models of varying fidelities is covered in
Muthumanickam et al. (2018). Similarly, an artificial neural net-
work (ANN)-based metamodel trained using input–output data-
set from higher fidelity tool – RADIANCE™, Diva-for-Rhino™,
and native RADIANCE™ – were used for spatial daylight auton-
omy (sDA) estimation, in the example. A detailed illustration of
the construction of the ANN-based daylighting metamodel and
the training, testing, and validation entailing the construction of
the ANN model architecture is covered in detail in
Muthumanickam et al. (2022a). Diva-for-Rhino™ simulations
run with a default limit of two ambient light bounces, making
it lower fidelity to native RADIANCE™, which uses seven
ambient light bounces. Furthermore, we used lower radiance
parameters (setting -ab5 -ad1000) in Diva-for-Rhino™, while
native RADIANCE™ by default uses higher radiance parameters
(-ab7 -ad1500). These details are extensively covered in
Muthumanickam et al. (2022a). The benefits of organizing such
metamodels of incremental fidelities across multiple phases of
design optimization in terms of computational time is discussed
in the section “Preservation of globally optimal solutions”.

Centralized relational database for interoperability between
tools

In general, optimization requires multiple 3D models of the build-
ings being generated, and multidisciplinary analysis tools to ana-
lyze the models for various performance factors. Traditionally,
these 3D models are saved as individual files and exported to
the various analysis tools which, in turn, output the performance
of the building model stored as a file. Modern analysis tools have
automation capabilities that can automate the analysis of a batch
of 3D building models (open the model > analyze > store result >
repeat for next model). However, when dealing with large sets of
such building models (inputs), the optimization results generated
from multidisciplinary analysis tools become storage intensive
and difficult to manage. For example, when a building design is
optimized for structural, energy and daylighting objectives, each
input model generated will have three analysis result files, respec-
tively. Hence, with a slight increase in the parametric combination
of design variables, a greater number of building models need to
be generated, resulting in an exponential increase in the number
of analysis result files for each model in the catalog of design alter-
natives. Such a scenario is both data intensive and leads to a sit-
uation where modifying a specific design option requires querying
through multiple design model files and corresponding analysis
results.

To overcome this issue, at the core of the developed system
rests a centralized relational database where all the information
about the generated models (design variables such as length,
width, breadth, and material type) and the corresponding analysis
results (heating load, cooling load, build cost, etc.) are stored as
relationships in a tabular database. For example, a sample rela-
tional database consisting of information about some design
options (models) is shown in Figure 11. Here, all the generated
design options are stored in a “Models” table with specific IDs.
Similarly, each model ID will have a “Floors” table with the spe-
cific number of rows reflecting the number of floors in the

particular model ID (design option). Furthermore, there is a
“Walls” table which has information such as wall ID, with each
ID pointing to a particular model ID, floor ID, size and shape
information and material ID. The material ID is retrieved from
a “Materials” table that has the material type information
(Brick, CMU, etc.) against each ID. There is also a “Windows”
table which has a list of window IDs with each ID pointing to a
wall ID, size, and the number of panes. Similarly, there are tables
for storing analysis results such as “Heating Load”, “Cooling
Load”, “Energy”, “Daylighting”, and “Construction”. The number
of tables, field types, and the type of information stored are mod-
ified according to the problem formulation.

Intuitively, it is easier for the analysis tools to retrieve informa-
tion about a specific model by tracing the IDs between the tables.
For example, model ID (1) has two floors, with two walls on floor
1, with wall ID 1 being a concrete masonry unit (CMU) (mtl. ID
2) and wall ID 2 being a brick wall (mtl. ID 1). Furthermore, there
is a window measuring 1.2 m × 1.8 m with two glass panes in wall
ID 1 and another window measuring 1.2 m × 1.8 m with three
panes in wall ID 2. Similarly, all the information about the gener-
ated design options is stored as relationships between multiple
tables and hence the name relational database. The information
from multiple such tables can be compiled together to form a
master table as shown at the bottom of Figure 11. All such tables
and the relationships between them together constitute the cen-
tralized database.

An Object-Oriented Relational Database Management System
(OORDBMS) – PostgreSQL was used for developing the database
(setting up the various types of tables and the fields in each table)
due to its capability to support storage of multiple data formats
including texts, integers, and 3D models as polygons, among
other formats. This facilitates storing geometrical information of
building components along with their properties in an IFC
schema in various fields of appropriate tables in the SQL database.
Furthermore, benchmark testing of query performance of IFC
models using OORDBMS have indicated the benefits of
OORDBMS in terms of easy retrieval of references (design vari-
ables) from multiple sources (Lee et al., 2014; Li et al., 2016;
Cho et al., 2018). The database was hosted in Microsoft®
Azure™ (Cloud server). This database is further connected to
the generative algorithm, the optimizer, the analysis tools (meta-
models), and the tradespace visualizer with bi-directional feed-
back loop (to support Create, Read, Update, Delete – CRUD
operations) for dynamic information exchange (Fig. 12). For
instance, when a design agent, say, an architect, changes the
dimension of the building and a wall section detail in Revit™
or Rhino™, the changes associated design variables are updated
in the appropriate tables in the centralized relational database
which, in turn, updates the values in the analysis and optimization
tools connected to that particular table. Such an interface couples
all the shared design variables (Fig. 12).

In the SQL database, the building components of each model
in the design catalog were stored in an “entities” table along with
their properties in the IFC schema in an “attributes” table which
is, in turn, linked to multiple other tables pertaining to various
design objectives. In simple terms, the entities table consists of
geometrical information, and the attributes table contains proper-
ties such as material type and insulation type. Such a setup sim-
plifies the number of tables in use and makes it easier for other
tools (analysis tools) to query and access the information needed
for relevant analysis from a fewer number of tables. This method
of storing information in tables is more efficient since all the
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Fig. 11. Sample SQL database showing relationships between models, floors, walls, materials, and windows.
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modeling, analysis, and optimization tools access a common mas-
ter table as opposed to multiple files (Nour, 2009; Fig. 13).

Translating building geometry data from IFC schema to a rela-
tional database format is a complex and tedious task with compu-
tational complexities. Hence, tested methods proposed by Solihin
et al. (2017) and Wyszomirski and Gotlib (2020) along with tech-
nical suggestions provided in reputed forums such as buildings-
mart.org (Bock, 2019) were used to develop the necessary data
translations from the Industry Foundation Class (IFC) to SQL.
Initially, 3D models are converted to BIM using the data transla-
tion nodes, which is further stored in an IFC schema (IFC STEP
file). This IFC STEP file is further converted into a series of SQL
scripts which, in turn, is stored in various tables in the SQL data-
base (Fig. 10 in Section “Generative algorithm for design catalog
generation”). The SQL scripts were written and executed using
PostgreSQL. Setting up a database and server-side connections,
as well as developing APIs to connect the toolsets to the database
and automating the subsequent database management during the
optimization routine, is dependent on the mathematical formula-
tion of the design problem and setting up the tool couplings
between the various tools. This entire process is problem specific
but is a one-time process. More details about computational codes
used for the data translation from IFC to SQL, SQL database
setup, hierarchy of tables in the SQL database, and the mapping
of data fields between IFC schema and the SQL database are pro-
vided in Muthumanickam (2021).

Interactive module for problem formulation, process
integration, and tradespace visualization

When dealing with information from multiple such modeling and
analysis tools, key to enabling MDO across multiple design phases
is to enable seamless changes to the mathematical formulation of
the optimization problem reflecting any modifications to the design
brief. Especially, this involves streamlining the sequence of tasks and
data exchange between the modeling, analysis, and optimization
tools in use, and collect and analyze the results using tradespace
exploration tools. The centralized relational database developed in
the section “Centralized relational database for interoperability
between tools” solves this problem partially since all the modeling,
analysis tools and the optimizer are connected to a single source of
data – the master database. However, due to the usage of multiple
tools, it is necessary to map which tool updates what field (rows
and columns) in the database during optimization.

For example, the generative algorithm generates a catalog of
building design models in the native 3D representation format,
which is then translated into a BIM model using the data transla-
tion nodes. This BIM model is then translated into an IFC schema
(geometries + properties of geometries). Now the geometries and
the properties of the geometries of each model are stored as input
variables (say x1, x2, x3, and x4) in the design tables as shown
in Figure 14. These are then used by the respective analysis tools
to calculate few output variables (say f1, f2, and f3) for each
design. The objectives (say minimize f1, maximize f2) and the

Fig. 12. Proposed centralized object-oriented relational database (OORDB SQL) for model and simulation-based information exchange.

Fig. 13. File-based information exchange versus centralized database.
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constraints (say x1 should be between 30 and 75) are defined in
the optimizer which uses search algorithms to find the optimal
solution, which in turn is supplied back to the 3D model.

Though there are tools like Design Explorer™ and Autodesk®
Refinery™ that simplify this process, they are still limited to
implementation during early-stage design optimization and lack
the capabilities to be scaled for MDO across multiple phases.
Alternatively, Grasshopper plugins such as Honeybee™,
Ladybug™, ClimateStudio™, and Diva-for-Rhino™ (which are
interfaces to tools like EnergyPlus™ and RADIANCE™) enable
automated optimization workflows. However, it should be noted
that such interface plugins despite using advanced tools like
EnergyPlus™ and RADIANCE™, do not provide the granular
level of controls/settings provided by native EnergyPlus™ or
RADIANCE™. Hence, detailed design optimization at later
phases which use such sophisticated analysis tools in their native
environment, are predominantly implemented using manual file-
based exchanges. Here, a catalog of 3D models is generated, input
variables needed from these models for a particular type of anal-
ysis are stored as data files (in Excel or .csv format) and manually
exported to the analysis tool. The output variables calculated by
the analysis tools are then stored again as a data file (Excel or
.csv format) and manually transmitted to an optimizer. To over-
come this issue and automate the entire data exchange between
tools per the optimization formulation, a dedicated problem
structuring module is developed. The developed problem struc-
turing module has three components, namely:

Component 1

An interactive optimization formulation module leveraging PIDO tool
modeFrontier™, where objectives and constraints can be modified.

Component 2

An interactive process map within modeFrontier™ to streamline the data
exchanges between various tools in use (tool coupling).

Component 3

A web-based tradespace exploration dashboard that enables visualizing
the optimization results using various types of plots like parallel
coordinates plot, scatter plots, and so on.

The optimization formulation can be implemented computa-
tionally using the first two components in a step-by-step manner,
as follows:

Step 1

Connect PIDO tool with centralized database.

Step 2

Define the columns containing the input variables and output variables,
respectively (Fig. 15).

Step 3

Define objectives. For example, say maximize f1 to be above 150 as
shown in Figure 16.

Step 4

Define constraints on input variables. For example, say input variable 1 (
x1) should be greater than 25 and input variable 2 ( x2) should be lesser
than 75 as shown in Figure 16.

Step 5

Define process map showing sequence of tasks and data exchange
between various tools (tool couplings) as shown in Figure 16.

Fig. 14. Sample design data table for a catalog of design options.
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Furthermore, the PIDO tool also offers the ability to visualize
tradeoffs between the various design options using a range of
plots such as a parallel coordinates plot, as shown in Figure 17,
where the design space can be explored interactively.

Despite the interactivity offered in terms of tradespace visuali-
zation by the PIDO tool, they lack the capability to visualize the
actual geometries of the design options in the tradespace. This
limitation is crucial since designers and engineers in the building
design field are used to dealing with 3D models to make design
decisions (Wortmann, 2018). To overcome this, a web-based
dashboard environment was developed to visualize the 3D geo-
metries of the generated options in the design space along with
other tradespace plots (Fig. 18). The dashboard was developed
in Microsoft® PowerBI™ and was connected to the centralized
database and PIDO tool and hence gets updated in real time
per the optimization formulation. Furthermore, the dashboard
environment has interactive capabilities such as controlling the
objectives with numerical sliders where the objective values can
be adjusted by the designer. The design options satisfying these
objectives are displayed with their corresponding design IDs on

top. The tradespace plots can be edited to visualize which objec-
tive is plotted on which axis (for example, energy along the X-axis
and daylighting along the Y-axis and so on). Also, the dashboard
shows basic information about the design options selected such as
the number of floors, wall to window ratio, envelope assembly and
the number of glazing panes. The dashboard can be modified to
display other parameters per project requirements.

Furthermore, since the dashboard environment was hosted in
a cloud server (MS Azure™), it can be viewed from multiple
devices such as a personal computer, tablet computer, and mobile
phone, with an internet connection (Fig. 19). This enhances col-
laborative tradespace exploration when dealing with multidiscipli-
nary design agents.

In summary, the PIDO tool for optimization formulation
and tool couplings and the web-based dashboard for interactive
tradespace exploration together constitute the overall interactive
problem structuring module as shown in Figure 20. Details about
code used to develop the various components of the interactive
problem structuring module is provided in Muthumanickam
(2021).

Fig. 15. Interactive problem formulation (input
and output variables) using modeFrontier™.
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Multi-phase concurrent coupled MDO framework

The technologies developed as outlined in sections “Generative
algorithm for design catalog generation”, “Multi-fidelity metamo-
dels for multidisciplinary analysis”, “Centralized relational data-
base for interoperability between tools”, and “Interactive module
for problem formulation, process integration, and tradespace

visualization” together constitute a concurrent MDO framework
that can span across multiple phases of building design.
Specifically, the generative algorithm in the section “Generative
algorithm for design catalog generation” helps generate a large
catalog of significantly detailed building design models with mini-
mal modeling effort. Such relatively detailed building design

Fig. 16. Interactive problem formulation (objectives, constraints, and tool couplings) using modeFrontier™.
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models help account for design details during early-stage analysis,
which was not possible with a simple massing model alone. The
modified bin, degree day methods, and the ANN-based daylight-
ing metamodels cited in the section “Multi-phase concurrent
coupled MDO framework” showcase promising potential to
help evaluate large sets of building designs for energy and day-
lighting at a lower computational expense. While the working
mechanisms of these multi-fidelity metamodels are extensively
covered in Muthumanickam et al. (2018) (metamodels for
energy) and Muthumanickam et al. (2022a) (metamodels for day-
lighting), this paper focuses more on optimal organization and
usage of these metamodels across multiple phases of building
design to ensure that optimal solutions are preserved at a rela-
tively lower computational expense and time than classical simu-
lations. It should be noted that by using a variety of such
metamodels to evaluate large catalogs of generated design options,
more amount of design data is generated. In such a data-intensive
scenario, the centralized database developed in the section

“Centralized relational database for interoperability between
tools” enhances the interoperability between the modeling, analy-
sis/metamodels, and optimization tools. Furthermore, coupling
the centralized database with an interactive module developed
in the section “Interactive module for problem formulation, pro-
cess integration, and tradespace visualization”, enables seamless
mapping of design variables between the various tools which
reflects any modifications made to the optimization formulation
across multiple phases. Additionally, the along with tradespace
exploration capabilities of the interactive module enable visualizing
tradeoffs. The multi-phase concurrent MDO framework along with
all the aforementioned components is illustrated in Figure 21.

A standard operating procedure (SOP) for implementing the
developed MDO framework is listed in Table 1 along with an
illustration of the sequence of steps in Figure 22.

It should be noted that Steps 3, 4, 5, 6, and 8 are automated
and run in the background and are modified as and when there
is a change made by the design team in the interactive module

Fig. 17. Interactive tradespace exploration which permits interactive change of design objectives and constraints (the purple sliders with box markers can be
adjusted).

Fig. 18. Front end for interactive tradespace visualization.
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as the design progresses. However, if more design objectives apart
from the initial setup are considered, then minor modifications,
like mapping shared design variables and connections between
newly added metamodels or analysis tools and the centralized
database, need to be done as a one-time process. To illustrate
how the design variables used by the metamodels of various fide-
lities change across multiple design phases, the general form for
mathematically formulating (variables, objectives, and con-
straints) a sample problem with three subsystems (and three
objective functions) is shown below.

Furthermore, a conceptual diagram of the SOP across the three
design phases (conceptual, preliminary, and detailed) for the sample
problem is shown in Figure 23. These diagrams show how the num-
ber of variables considered by the metamodels of varying fidelities
vary from phase to phase. Note that the SOPs for the three design
phases in Figure 23 might look similar (in print media), but the vari-
ables used in the objective functions and the metamodels are differ-
ent for each design phase. For example, higher fidelity analysis tool
(Fidelity 3) used during the detailed phase of design require n input
variables, whereas the simpler metamodels of lower fidelity (Fidelity
1 and 2) used during the conceptual and preliminary design phases
just require (n− j) and (n− k) input variables, respectively.

Design of an office building

Overview of the office building design problem

The developed MDO framework was implemented to assist the
design of a simple multistoried office building that adheres to

Fig. 19. Snapshots of the web-based dashboard environment being accessed from a Microsoft® Windows™ computer and an Apple® iPad™.

f1, f2, f3 are the objective functions (say three in this case)

xi, …, xn−j are the independent design variables from the 3Dmodel

of subsystem 1 for use in Fidelity 1

yi, …, yn−j are the independent design variables from the 3Dmodel

of subsystem 2 for use in Fidelity 1

zi, …, zn−j are the independent design variables from the 3Dmodel

of subsystem 3 for use in Fidelity 1

xi, …, xn−k are the independent design variables from the 3Dmodel

of subsystem 1 for use in Fidelity 2

yi, …, yn−k are the independent design variables from the 3Dmodel

of subsystem 2 for use in Fidelity 2

zi, …, zn−k are the independent design variables from the 3Dmodel

of subsystem 3 for use in Fidelity 2

xi, …, xn are the independent design variables from the 3Dmodel

of subsystem 1 for use in Fidelity 3

yi, …, yn are the independent design variables from the 3Dmodel

of subsystem 2 for use in Fidelity 3

zi, …, zn are the independent design variables from the 3Dmodel

of subsystem 3 for use in Fidelity 3

where j, k ≤ n ∀ n = 1, 2, 3, . . .

xsh, ysh, zsh are the shared design variables of subsystems
1, 2, and 3, respectively

x∗sh, y∗sh, z∗sh are the optimal shared design variables of subsystems

1, 2, and 3 given by the optimizer, respectively

x∗i , y∗i , z∗i are the optimal independent design variables of

subsystems 1, 2, and 3 given by the optimizer, respectively

The lower and upper limits of the constraints can be set as per requirement

of the design agents as below:

a1 ≤ xi ≤ a2
b1 ≤ yi ≤ b2
c1 ≤ zi ≤ c2
d1 ≤ xsh ≤ d2
e1 ≤ ysh ≤ e2
g1 ≤ zsh ≤ g2
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minimum regulations for medium/large office buildings per
ASHRAE 90.1 benchmark standards. This includes aspects such as
enhanced access to natural lighting, reduced energy consumption,
efficient indoor air circulation, and indoor environmental quality
(Reinhart, 2015; ASHRAE, 2019). Each of these aspects can be mea-
sured in terms of objective metrics such as spatial daylight autonomy,
annual heating and cooling load, and energy utilization index.
Modern day office buildings typically have envelope assemblies
such as curtain wall systems with floor-to-ceiling windows as they
are a great selling or renting point (Turan et al., 2020). Though
such large windows maximize the amount of daylight penetration,
they might be detrimental to the overall performance of the building
in other aspects such as thermal comfort inside the building.

For example, a sample two-story office building with an area
of 325 m2 was selected from the ASHRAE 90.1 energy modeling
benchmark database (ASHRAE, 2020). When simulated for the
spatial daylight autonomy with a wall-to-window ratio (WWR)
of 50% (floor-to-ceiling curtain wall), using Pittsburgh as the
design location, the design had very low daylighting values
below the optimal values suggested by IESNA. In particular,
IESNA recommends a minimum illuminance of 300 lux for at
least half the occupied hours in a year for a building interior
(also called as spatial Daylight Autonomy – sDA) to be consid-
ered well lit (ASHRAE, 2019). To achieve optimal indoor light-
ing levels (sDA + artificial lighting), two design strategies can be
applied namely, increasing the WWR to allow more daylight

Fig. 20. Interactive module comprising optimizer, PIDO tool for tool coupling, and tradespace exploration components.
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penetration or increase the artificial lighting to compensate for
the reduced daylighting.

Ideally, increasing the WWR helps reduce the dependence on
artificial lighting and thereby reducing power consumption.
Subsequently, the design was modified to have an increased
WWR (75%), which resulted in better daylighting penetration,
but also resulted in more heat retention thereby leading to indoor
thermal discomfort. Subsequently, more cooling energy was
required to compensate for the increased heat retention. A com-
parison of the original design (1) and modified design (2) and
their respective daylighting, heat retention, and cooling energy
values are shown in Figure 24.

It was noted that though increased WWR led to greater day-
lighting penetration and reduced artificial power consumption,
it was detrimental in terms of an increase in cooling energy
needed to dissipate excess heat retained. Hence, it is evident
that trying to minimize one objective (artificial lighting power)
leads to the increase of another objective (cooling energy), thereby
leading to a tradeoff as shown in Figure 25.

Hence in office buildings, to maintain optimal daylighting fac-
tor, as well as thermal comfort inside the building, it is necessary
to concurrently optimize the building design for daylighting, ther-
mal loads, and energy consumption values. The developed MDO
framework is demonstrated by using it to design and optimize a
sample multistorey office building for multiple objectives such
as thermal loads, energy, and daylighting. The various steps in
implementing the MDO framework per the SOP prescribed in
Table 1 in the section “Multi-phase concurrent coupled MDO
framework” is discussed in the following.

MDO framework implementation

Problem structuring (Step 1 of SOP)
For the sake of this technology demonstration, the design objec-
tives and constraints were set by the author instead of design
charettes with a multidisciplinary team. The data file and score
card file from the ASHRAE 90.1 database for prototype office
buildings (ASHRAE, 2020) was used as a reference to frame the
design objectives. Furthermore, based on the building descrip-
tions, operating schedules, and other key modeling input infor-
mation available in the data file, input variables were
mathematically formulated as shown in Table 2.

The design location was selected to be Pittsburgh and the val-
ues for outside temperature (To), solar azimuth angle (θ), and illu-
minance (E) were derived from the TMY-3 weather data file and
CIE sky model for the said location, respectively. Furthermore, the
indoor set point temperatures were set to be 68 degrees (Ti, min)
and 70 degrees (Ti, max). Material values such as shading coeffi-
cients (Sc,i), solar heat gain coefficients (SHGCi,), visible transmit-
tance (VTi) of windows, and R values of the wall assembly were
extracted for each window and wall assembly from the various
models generated by the generative algorithm. Three objectives
were defined, namely, minimizing the energy utilization index,
minimizing the annual cooling load of the building, and maxi-
mizing the annual spatial daylight autonomy of the building as
shown in Table 3. Actually, both heating and cooling loads
were calculated as part of the overall energy utilization index of
the building. However, since WWR was one of the variables
which was varied parametrically, cooling load was visualized as
a separate function. This helped in evaluating the impact of

Fig. 21. Developed MDO framework with an interactive module for problem structuring, generative algorithm for model generation, multi-fidelity analysis tools to
be used across multiple phases, and a centralized relational database for enhanced interoperability.
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increases glass on heat gain inside the building and subsequent
increase in cooling load.

As proposed in the section “Multi-fidelity metamodels for
multidisciplinary analysis”, metamodels such as a modified bin
method and a degree day method, and the machine learning-
based daylighting estimation tool were used for facilitating faster
analysis of large batches of design options for energy and day-
lighting during the earlier phases of design. Table 4 shows the
metamodels and analysis tools of varying fidelities used for esti-
mating the output variables across multiple design phases. The
differences in variables considered by each analysis fidelity are
shown in the objective functions in Tables 6, 9, and 10 represent-
ing the conceptual, preliminary, and detailed design phases,
respectively.

Furthermore, the tool couplings between the various analysis
tools were developed according to the PSM shown in Figure 26,
to enable concurrent coupled MDO. Subsequently, these objec-
tives, constraints, and the tool couplings between analysis tools
of varying fidelities (metamodels) used in the different design
phases were implemented computationally using the PIDO tool
modeFrontier™ in the interactive module (Step 1 of SOP)
(Fig. 27).

Model generation (Steps 2, 3, and 4 of SOP)
Once the problem was formulated mathematically, the generative
algorithm (implemented using Grasshopper for Rhino™) was
used to generate a catalog of design options as covered in the sec-
tion “Conceptual design phase”.

Table 1. Standard operating procedure for implementation of developed multi-phase concurrent coupled MDO framework to a design problem

Step 1 The design agents involved in a building design project get involved in a charette to set the design objectives, constraints (in the
optimizer), metamodels for multi-fidelity analysis, and tool couplings (in the PIDO tool) for the optimization using the interactive
module.

Step 2 The design agent (say architect) models the massing of the building during the conceptual stage in any 3D modeling (Rhino™) or
BIM tool (Revit™).

Step 3 The massing is fed as input to the generative algorithm which automatically generates LOD 350 architectural (floor slabs, false
ceilings, envelope, envelope layers, glazing, etc.), LOD 200 structural (columns, beams) and LOD 200 MEP (service cores, thermal
zones, plenum, lighting tracks, duct channels, etc.) based on the inputs defined by the designer in the algorithm. Multiple such
integrated (architectural, structural, and MEP) models are batch generated parametrically according to the user-defined variations.
The generated models can also be edited by designers from specific disciplines if needed by changing the inputs (number of floors,
wall thickness, massing shape, etc.) in the generative algorithm or by manual modeling effort.

Step 4 The data translation nodes in the generative algorithm (see Section “Generative algorithm for design catalog generation” for details)
convert the information from the generated models (length, breadth, thermal absorptivity of wall, and so on), from IFC (if Revit™)
and native 3D modeling formats (if Rhino™) to SQL format to be stored in the relational database.

Step 5 Multidisciplinary analysis tools of varying fidelities are interfaced (coupled) with each other through the centralized relational
database according to the tool couplings defined in the PIDO tool in Step 1 to enable concurrent coupled optimization. Design
variables of the generated options are provided to the analysis tool from the centralized relational database, whereas global
variables such as weather data and sky model are acquired from the 3D modeling tool(s).

Step 6 Optimizer embedded within the interactive problem structuring module is connected to the analysis tools via the centralized
relational database to facilitate bi-directional exchange of data (design variables) (green and blue arrow marks in Fig. 22).

Step 7 Optimizer and multidisciplinary analysis tools work in tandem to identify the design options satisfying the objectives and constraints
set in Step 1.

Step 8 The design options identified as feasible and Pareto optimal by the optimizer are visualized using the tradespace exploration tool in
the interactive module and evaluated by the design agents.

Step 9 Design agents select appropriate design options from the optimal designs based on preferences (if any) and make modifications (if
any). These selected design options these are fed into the generative algorithm for another iteration of optimization or is considered
for the next phase (preliminary design) per the preference of the design team.

Step 10 Step1 through Step 9 are repeated iteratively. The modeling fidelity is changed progressively as the design phase proceeds.
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Multidisciplinary analysis (Step 5 of SOP)
As mentioned in Table 4, analysis tools and metamodels of vary-
ing fidelities were used to estimate the cooling load, energy con-
sumption, and daylighting levels (sDA) in the generated building
design options. Specific to the thermal load (cooling load) and
energy analysis, typically, the 3D model of the building is divided
into volumetric zones based on the floor plan layout, i.e., each
room into individual volumes, or a cluster of rooms with similar
functions into a volume or a coarser discretization of the building
into core and perimeter zone volumes. Since the generative algo-
rithm was not programmed to generate any customized interior
floor plans with interior spaces and rooms, each floor was divided
into volumetric grids of 5 m × 5 m replicating thermal zones for
the sake of thermal load and energy calculations. The modified
bin method and the degree day method-based metamodels were
used during the conceptual and preliminary design phases for
thermal load analysis and energy analysis, respectively, whereas
EnergyPlus™ was used for the same during the detailed phase.

Similarly, a machine learning-based daylighting prediction
metamodel (Muthumanickam et al., 2022a), DIVA-for-Rhino™,
and Radiance™ were used as the three analysis fidelities to predict
the sDA values of the design options during the conceptual, pre-
liminary, and detailed design phases, respectively. It should be
noted that the machine learning-based metamodel was developed
to predict sDA values of a single floor in a building. Hence, for
each design, the machine learning-based metamodel was used
to predict the sDA values for each floor and an average of all
floor values was calculated to arrive at the total sDA of the
building.

Multidisciplinary optimization (Steps 6, 7, 8, 9, and 10 of SOP)
A conceptual representation of the overall implementation of the
MDO framework for the office building design is shown in

Figure 28. Furthermore, the next steps are listed in a
phase-by-phase manner to explain the process flow of the
framework.

Conceptual design phase

During the conceptual design phase, four different types of mas-
sing options, namely triangular, cubic, pentagonal, and hexagonal
were modeled in Rhino™ and provided as input to the generative
algorithm (implemented using Grasshopper for Rhino™).
Minimum and maximum values were set for specific input sliders
such as building length, width, height, the number of floors,
floor-to-ceiling height, column spacing, envelope assembly wall
type, WWR, and the number of glazing panes, as shown in
Table 5. Apart from the individual side wall lengths of the trian-
gular, cubic, pentagonal, and hexagonal massing, the overall
length and width of the geometry were calculated as the maxi-
mum length along the longest and shortest axis passing through
the centroid of the geometry. In this example, standard square
grids of 6 m × 6 m, 3 m × 3 m, and 1.5 m × 1.5 m were used for
columns, room, and artificial lighting layouts, respectively. The
interior room walls were generated to reflect the floor slab divided
into standard sized room grids with a door opening into every
grid cell. Column and beam dimensions and floor slab thickness
were kept at constant values in this example. Using a randomizer
node in the generative algorithm to parametrically vary the values
of these sliders, a sizeable catalog of 1512 building design options
were generated.

Figure 29 shows a sample subset of the design options gener-
ated using the generative algorithm. Each of these 1512 design
options included LOD 350 architectural components (floor
slabs, exterior walls, windows), LOD 200 structural components
(columns and beams) and LOD 200 MEP components (ceiling

Fig. 22. Standard operating procedure (SOP) for implementing the developed MDO framework.

20 Naveen Kumar Muthumanickam et al.

https://doi.org/10.1017/S0890060422000191 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060422000191


plenum, suspended ceiling, ducts, air handling units, and lighting
trays) as shown in Figure 30. Inclusion of such MEP system com-
ponents during the early stages of design facilitated relatively
enhanced thermal load and energy analysis during the conceptual
phase, which was not possible earlier without such details. The

design objectives, constraints, and the analysis tools used to esti-
mate these output variables were defined in the PIDO tool as
shown in Table 6.

These tools were connected with the centralized relational
database using the respective software application programming

Fig. 23. Developed framework spanning across all three design phases using metamodels of progressive fidelity as the design progresses. xn−j, xn−k indicate dimen-
sionality reduction in variables considered by metamodels as opposed to highest fidelity model considering xn variables.
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interfaces. The tool couplings between the various models, analy-
sis tools, optimizer, tradespace exploration module, and the cen-
tralized relational database were setup using the PIDO tool
modeFrontier™, as shown in Figure 31. Hence, the analysis
results of all the generated design options were stored in the
appropriate fields in the relational database (the master table).

Upon running multidisciplinary analysis of all the generated
design options using the modified bin method (for cooling load
and energy estimation) and the machine learning-based metamo-
del (for daylighting – sDA) in this phase, the optimizer
(Non-Dominated Sorting Genetic Algorithm-II or NSGA-II algo-
rithm) converged at 296 designs that were identified as feasible
options (satisfying all objectives and constraints). Furthermore,
six out of the 296 design options were identified as Pareto optimal
by the optimizer as shown in Table 7.

The input (Table 8) and output variables (Fig. 32) of the six
Pareto optimal design options were plotted to study the tradeoffs
between these designs.

From the above figures, it should be noted that all the Pareto
optimal options have a 45-degree orientation (in reference to the
True North), meaning for the given location, this orientation
results in maximum daylighting while having minimal energy
consumption. It should also be noted that options with more
than eight floors (IDs 346, 482, 724, 972) get relatively higher
amount of daylight than their counter parts (IDs 446 and 460).
A plausible reason behind this might be that there is increased
penetration of light to the interior of the building from lower azi-
muth sun angles through windows on top floors. In terms of the
energy utilization index, at a first glance, it seems like there is an
increase in energy consumption as the area increases. However, by
comparing options 446 and 972, it was noted that both options
had almost equivalent energy consumption values despite the for-
mer having a lower floor area than the latter. To further study the

tradeoffs and in turn aid the MDO of the building design options,
the Pareto optimal options were considered for further detailing
and optimization in the preliminary design phase.

Preliminary design phase

In the preliminary design phase, the identified Pareto optimal
design options from the conceptual design phase were optimized
for the same three objectives but considering an increased num-
ber of variables using analysis tools relatively with sophisticated
fidelities, as shown in Table 9. Specifically, the degree day method
and DIVA-for-Rhino™ were used for thermal/energy analysis
and daylighting analysis, respectively. As seen in Table 9, the
objective functions here calculate energy consumption, cooling
load, and daylighting as a function of the material and service
system-oriented variables in addition to the geometric and loca-
tion details. These include shading coefficient Sc (0.38), HVAC
schedule Hs (8 hours run time), and solar heat gain coefficient
SHGC (0.34).

Additionally, the bounds on the breadth and the height con-
straints of the building were increased as a measure for the opti-
mizer to find options with maximal floor area. Specifically,
increasing the lower bound on the height constraint led to focus-
ing on design options with more than seven floors in the trade-
space, which predominantly had an increased overall indoor
daylighting level (sDA), as observed in the tradespace plots during
the previous phase. Such changes to the variables, considered in
estimating the output variables and the geometrical constraints,
somewhat mimicked a shift in preferences as would happen in
real-life design charette sessions.

The interactive problem structuring module included in the
developed MDO framework helped implement such changes
seamlessly across the different design phases. The PIDO

Fig. 24. Design options 1 and 2 on the left and the plots showing sDA, heat retention and cooling energy values of (1) and (2).

Fig. 25. Tradeoff between artificial lighting and cooling energy for three design
options with different wall-to-window (WWR) ratios.
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component within the interactive problem structuring module
also helped in interactively changing the couplings between the
newly added analysis tools and connecting them with the centra-
lized relational database (Fig. 33).

The optimizer (NSGA-II algorithm) identified two options as
feasible (satisfying all constraints and objectives), as well as Pareto
optimal.

Total no. of Pareto optimal options from conceptual phase 6

Feasible options 2

Pareto optimal options 2

A comparison of the thermal load, energy consumption, and
sDA values of these two options estimated by the analysis tools
used in the previous phase (modified bin method for thermal/
energy and machine learning-based daylighting prediction tool
for sDA) and those used in the current phase (degree day method
for thermal/energy and DIVA-for-Rhino™ for sDA) is shown in

Table 2. High-level input variables used in the office building design

Category Input variables

Geometric hf Floor height (m)

nf Number of floors (number)

α Orientation of the building in reference to the True North (degrees)

ni Number of walls in a floor (number), where i is the floor number

(li, …) Wall lengths (m), where i is the wall ID

tw Wall thickness (m)

(βi, …) Wall orientations (degrees), where i is the wall ID and βi = f (α)

Af,i Net floor area (m2), where i is the floor number

l Overall length of building (m)

b Overall breadth of building (m)

h Overall height of building (m), where h = f (nf, hf)

Af Net floor area (m2), where Af = f (nf, Af,i)

W Wall-to-window ratio (WWR) (%)

wi Number of windows per floor (number), where i is the floor number

(xi, yi, zi) Window centroid positions (x, y, z coordinate), where i is the window ID

(lwi, …) Window lengths (m), where i is the window ID

(hwi, …) Window heights (m), where i is the window ID

np Window glass panes (number)

Material SC,i Shading coefficient, where i is the window ID

SHGCi Solar heat gain coefficient (SHGC) of glass, where i is the window ID

VTi Visible transmittance of window, where i is the window ID

R Insulation R-value

Services Hs Heating/Cooling schedule (h)

Ls Artificial lighting schedule (h)

Ti, min Minimum indoor set point temperature (degree Fahrenheit)

Ti, max Maximum indoor set point temperature (degree Fahrenheit)

Location (Lat, Long) Design location (Latitude, Longitude)

To Outside temperature (degree Fahrenheit)

θ Solar azimuth angle (degrees)

Eo Outside illuminance (lux)

Ei Inside illuminance at a point i inside the building (lux)

Table 3. Multidisciplinary objectives used in the office building design

Objectives Output variables

Minimize f1 annual cooling load of the building (kWh/m2/year)

Minimize f2 energy utilization index of the building (kWh/m2/
year), where f2 = f ( f1, f3)

Minimize f3 annual spatial daylighting autonomy of
the building (%)
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Figure 34. It should be noted that the daylighting analysis tool in
this phase used a lighting coefficient factor accounting for artifi-
cial lighting in each floor. The lighting coefficient factor was set
to 50% for the sake of calculation. Hence, the sDA calculated in

this phase are a summation of both natural as well as artificial
lighting. Despite the change in the consideration of variables, it
could be observed that the output variables estimated by both
the Degree Day metamodel for energy and the
DIVA-for-Rhino™ for daylighting analysis fall within a reason-
able range from that predicted by the metamodels used during
the previous phase. The two design options (IDs 446 and 460)
were six floor and seven floor versions, respectively, with a
45-degree orientation from the True North.

Detailed design phase

The two Pareto optimal options (IDs 446 and 460) were further
considered for more detailed evaluation using more sophisticated

Table 5. Conceptual design phase – variables

Variable Minimum Maximum

Building length 6 m 45 m

Building width 7 m 48 m

Building height 9 m 48 m

Orientation 30 60

Number of floors 5 15

Floor-to-ceiling height 3 m 4.5 m

Column spacing 3 m 9 m

Wall-to-window ratio 20% 80%

Number of glazing panes 1 3

Envelope assembly wall type Two options (Plaster, Brick,
Plaster and Brick, EPS, CMU)

HVAC/Lighting schedule Three options (8, 12, 24 h)

Table 6. Conceptual design phase – problem formulation

Objectives Functions
Modeling fidelity
for analysis

Min f1 (geometric, location variables) Using the modified
bin method

Min f2 (geometric, location variables) Using the modified
bin method

Max f3 (geometric, location variables) Using ML-based
daylighting metamodel

Constraints

s.t.
27.4 m≤ l≤ 60.9 m
13.7 m≤ b≤ 30.4 m
9.1 m ≤ h≤ 45.7 m
6038.6 m2≤ Af≤ 12,541.9 m2

Table 7. Summary of MDO results from the conceptual design phase.

Total no. of design options 1512

Feasible options 296

Pareto optimal options 6

Table 9. Preliminary design phase – problem formulation

Objectives Functions
Modeling fidelity for
analysis

Min f1 (geometric, material,
service, location variables)

Using the degree day
method

Min f2 (geometric, material,
service, location variables)

Using the degree day
method

Max f3 (geometric, material,
service, location variables)

Using
DIVA-for-Rhino™

Constraints

s.t.
27.4 m≤ l≤ 60.9 m
21.3 m≤ b≤ 30.4 m
18.2 m≤ h≤ 45.7 m
6038.6 m2≤ Af≤ 12,541.9 m2

Table 10. Detailed design phase – problem formulation

Objectives Functions
Modeling fidelity for
analysis

Min f1 (geometric, material, service,
location variables)

Using EnergyPlus™

Min f2 (geometric, material, service,
location variables)

Using EnergyPlus™

Max f3 (geometric, material, service,
location variables)

Using Radiance™

Constraints

s.t.
27.4 m≤ l≤ 60.9 m
21.3 m≤ b≤ 30.4 m
13.7 m≤ h≤ 36.5 m
6038.6 m2≤ Af≤ 12,541.9 m2

Table 4. Multi-fidelity analysis tools and metamodels used in the office building
design

Output
variables f1 f2 f3

Conceptual Modified bin
metamodel

Modified bin
metamodel

ML daylight
metamodel

Preliminary Degree day
method

Degree day
method

DIVA-for-Rhino™

Detailed EnergyPlus™ EnergyPlus™ Radiance™

Table 8. Summary of Pareto optimal design options from the conceptual
design phase

IDs 346 446 460 482 724 972

Floors 8 6 7 9 8 8

Net Area (m2) 6949.14 6354.56 7413.66 6521.79 8844.36 7729.53

Orientation (°) 45 45 45 45 45 45
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thermal/energy analysis and daylighting simulation tools such as
EnergyPlus™ and Radiance™, respectively, as shown in Table 10.

Specifically, these tools use higher-order physics equations that
involve an increased number of variables, finer discretization of
geometry, and robust timeseries analysis algorithms, thereby
yielding more accurate results. Furthermore, the design options
were detailed to have a false ceiling below the plenum with inte-
grated lighting panels distributed at a specified distance from each
other as shown in Figure 35. The optimizer was used to determine
the appropriate spacing between the lighting panels (dl) which
yielded an optimal distribution of indoor lighting levels. The

optimizer was programmed to try out multiple variations by con-
trolling the spacing parametrically using the generative algorithm.
Unlike in the previous phase, where a generic lighting coefficient
was used to account for artificial lighting, actual 3D models of
lighting fixtures in the model were used in this phase. Lighting
simulations in Radiance™ utilize the position and intensity of
illuminance of the light fixtures, while estimating the sDA of
the floor using advanced ray tracing algorithms. Since the render-
ing of false color maps in Radiance™ takes extensive computa-
tional time, the values of illuminance at each grid point were
stored in a .csv file and a custom script in Grasshopper for

Fig. 26. PSM for concurrent coupled MDO in design of office building.

Fig. 27. Computational implementation of the PSM using PIDO tool modeFrontier™.
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Rhino™ was used to render the false color maps using these val-
ues (Fig. 35). This saved significant time in terms of simulating
daylighting values for multiple options. Lighting schedule (Ls)
was set to 8 h and a visible transmittance (VT) value of 0.45
was used for the glazing panes. The artificial lighting

consumption-related variables were also used in the heat reten-
tion/thermal load and energy consumption calculations by
EnergyPlus™.

Subsequently, the tool couplings between the various modeling
and analysis tools, optimizer, and the interactive tradespace

Fig. 28. MDO framework implementation for the office building design.

Fig. 29. 3D geometry of the building massing provided (left) and a variety
of design options generated (right).
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Fig. 30. Integrated building model with various systems generated when a basic massing is input into the generative design algorithm.

Fig. 31. Tool coupling implementation between modified bin for energy and ML-based metamodels for daylighting estimation using the PIDO tool.

Fig. 32. EUI, cooling load (CL) (left), and sDA (right) of the Pareto optimal options from the conceptual design phase.
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Fig. 33. Tool coupling implementation between degree day metamodel and Diva-for-Rhino™ for energy and daylighting estimation using the PIDO tool.

Fig. 34. EUI, cooling load (CL) (left), and sDA (right) of the Pareto optimal options from the preliminary design phase.

Fig. 35. Sample 3D model showing the lighting
trays integrated into the false ceiling component
(left); false color rendering of lighting levels gener-
ated by illuminance values from Radiance™
simulations.
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module were computationally implemented using the PIDO tool
modeFrontier™ to automate the optimization as shown in
Figure 36.

After an exhaustive variation of the input variables such as the
spacing between the lighting trays and their positions, the optimi-
zer (NSGA-II algorithm) converged on two values – 3.04 and
3.81 m spacing between the lighting trays for the two design
options, respectively. Upon plotting the cooling load, energy con-
sumption, and daylighting values estimated by EnergyPlus™ and
Radiance™, against those estimated by the tools/metamodels
used in the previous phases (conceptual and preliminary) for

the same design options, it was observed that the values were
within an acceptable range of delta, as shown in Figure 37, with-
out any drastic differences. This further helps assert the usage of
the proposed metamodels to preserve the globally optimum
design options with a significant level of confidence in a multi-
phase building design process.

Detailed-extended phase

To further optimize the six and seven floor options identified as
Pareto optimal options from the previous phase, the two options

Fig. 36. Detailed design phase – framework using fidelity 3 analysis tools (EnergyPlus™ and Radiance™).

Fig. 37. EUI, cooling load (CL) (left), and sDA (right) of the Pareto optimal options from the detailed design phase.
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were mutated (modified) by parametrically controlling other vari-
ables such as wall type, glazing panels, HVAC, and lighting sched-
ules, as shown in Table 11. This expanded the tradespace to
contain 32 design options with basically the first 16 mutations
evolving from design ID 446 (six floor options) and the subse-
quent 16 mutations evolving from design ID 460 (seven floor
options). The 16 options evolving from design ID 446 are
assigned new IDs as A1–A16, whereas those evolving from design
ID 460 are assigned new IDs as B17–B32.

Basically, through the process of mutation, the feasible region
identified in the previous phase (detailed design phase) was popu-
lated with a greater number of design options. This ensured that
the objectives (energy utilization index, annual cooling load, and
spatial daylight autonomy) did not exceed the previously obtained
results. The output variables were estimated using the same anal-
ysis tools used during the detailed design phase (Table 12).

The optimizer (NSGA-II algorithm) converged on 13 design
options that were identified as Pareto optimal design options.
Among these 13 Pareto optimal options from the
detailed-extended phase, it can be noted that majority of them
are six floor options (Table 13), which are basically evolutions
of design ID 446 from the detailed design phase. Only three
Pareto optimal options are 7-floor options (evolutions of design
ID 460).

The energy consumption, cooling load, and daylighting levels
(sDA) of the 13 Pareto optimal options are shown in Figure 38. In
the previous phase (detailed design), the spatial daylight auton-
omy values of option 446 and 460 from the detailed design
phase were 68% and 59.5%, respectively. An interesting observa-
tion in this phase was that, despite changes like the number of
glazing panes and lighting schedules in this phase, almost all
the Pareto optimal options yield a spatial daylight autonomy
value averaging between 55% and 70% (Fig. 38). This shows
that the optimizer ensures that global optimality in terms of day-
lighting and energy is preserved by parametrically finding the cor-
rect balance between the number of glazing panes, lighting
schedules, and wall type, among other input variables.

Validation of MDO results

The results obtained by implementing the developed MDO
framework to the office building design were validated by com-
paring them with documented benchmark standards, and the

Table 11. Detailed design-extended phase – additional variables introduced

Variables Options Description Attributes

Wall type (Wt) Option 1 Plaster, Brick,
Plaster

U-value: 1.57 W/m2K

Option 2 Brick, EPS, CMU U-value: 0.44 W/m2K

Glazing panels Option 1 2 panes SHGC: 0.86; VT: 0.45

Option 2 3 panes SHGC: 0.56; VT: 0.34

HVAC schedule Option 1 8 h DX System

Option 2 12 h DX System

Lighting
schedule

Option 1 8 h EnergyPlus™
Defaults

Option 2 12 h EnergyPlus™
Defaults

Table 12. Detailed design-extended phase – problem formulation

Objectives Functions
Modeling fidelity
for analysis

Min f1 (geometric, material, service,
location variables)

Using EnergyPlus™

Min f2 (geometric, material, service,
location variables)

Using EnergyPlus™

Max f3 (geometric, material, service,
location variables)

Using Radiance™

Constraints

s.t.
27.4 m≤ l≤ 60.9 m
21.3 m≤ b≤ 30.4 m
13.7 m≤ h≤ 36.5 m
6038.6 m2≤ Af≤ 12,541.9 m2

Table 13. Comparison of 13 Pareto optimal options from the detailed-extended
design phase

ID’s Floors

Net
area
(m2) Wall type

Glazing
(Panes)

HVAC
schedule
(h)

Lighting
schedule
(h)

A1 6 6354.56 Plaster,
Brick,
Plaster

2 8 8

A2 6 6354.56 Plaster,
Brick,
Plaster

2 12 8

A3 6 6354.56 Plaster,
Brick,
Plaster

2 8 12

A4 6 6354.56 Plaster,
Brick,
Plaster

2 12 12

A5 6 6354.56 Plaster,
Brick,
Plaster

3 8 8

A6 6 6354.56 Plaster,
Brick,
Plaster

3 12 8

A10 6 6354.56 Brick,
EPS, CMU

2 12 8

A11 6 6354.56 Brick,
EPS, CMU

2 8 12

A12 6 6354.56 Brick,
EPS, CMU

2 12 12

A15 6 6354.56 Brick,
EPS, CMU

3 8 12

B17 7 7413.65 Plaster,
Brick,
Plaster

2 8 8

B18 7 7413.65 Plaster,
Brick,
Plaster

2 12 8

B25 7 7413.65 Brick,
EPS, CMU

2 8 8
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optimal options with those obtained from sequential design opti-
mization frameworks.

Comparing with benchmark standards
The EUI and sDA of the 13 Pareto optimal solutions from the
detailed design-extended phase (Table 13) were compared with
baseline benchmark values prescribed by ASHRAE 90.1
(ASHRAE, 2019, 2020) and LEED v4 BD + C (Council, 2014),
respectively (Fig. 39).

In particular per ASHRAE 90.1 benchmark standards for pro-
totype office buildings, the energy utilization values for medium
and large-scale office buildings averages between 200 and
250 kWh/m2/year. Additionally, the LEED v4 standards for new
building and construction (BD + C), prescribes 55% of the inter-
ior layout to have an sDA above 300 lux to be considered nomin-
ally lit and 75% as the preferred optimum. From Figure 39, it can
be observed that the EUI of the Pareto optimal options does not
exceed the upper bound of the benchmark EUI (250 kWh/m2/
year), i.e., the options have minimal energy consumption.
Similarly, it can be observed that almost all the Pareto optimal
options fall within the range of 55%–75% sDA, meeting the values
prescribed by the LEED v4 standard. This demonstrates that the
results obtained using the developed MDO framework are well
within the nominal benchmarks estimated for medium-scale

office buildings and hence can be generalizable to similar design
conditions.

Preservation of globally optimal solutions
Subsequently, to check if globally optimal design options were
preserved across multiple phases by the developed MDO frame-
work, the following step-by-step strategy was used:

1. The initially generated 1512 design options were sequentially
optimized for cooling load, EUI, and daylighting, one after
another, by using high-fidelity analysis tools (EnergyPlus™
and Radiance™) as the respective analysis tools and a set of
Pareto optimal options were identified (Set A).

2. The same 1512 design options were concurrently optimized for
cooling load, EUI, and daylighting by using high-fidelity anal-
ysis tools (EnergyPlus™ and Radiance™) as the respective
analysis tools and a set of Pareto optimal options were iden-
tified (Set B).

3. The two Pareto optimal options (Design IDs 446 and 460)
obtained from the detailed design phase by using the devel-
oped MDO framework using metamodels of varying fidelities
were considered as Set C.

Then, these three sets could be compared to check if the Pareto
options identified by the developed MDO framework (Set C)

Fig. 38. EUI, cooling load (CL) (left), and sDA (right) of the Pareto optimal options from the detailed design-extended phase.

Fig. 39. Comparison of EUI and sDA values of 13 Pareto optimal options with ASHRAE 90.1 benchmark (left) and LEED v4 BD + C baseline (right).
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belonged to Set A and/or Set B. Note that Set C consisted of Pareto
optimal options from the detailed design phase (Design IDs 446 and
460), instead of from the detailed-extended phase because the 13
Pareto optimal options from the detailed-extended phase were
mutations of design IDs 446 and 460 created by introducing new
variables. Hence, these options could not be in Set A or B.

Additionally, it should be noted with caution that though Set
A consists of Pareto optimal options identified by using the high-
est fidelity analysis tools, there is a high probability of missing out
on globally optimal design options due to the sequential optimi-
zation. Hence, it is not essential that Set C is always a subset of Set
A. However, Set C should always be a subset of Set B, since Set B

is the result of concurrently optimizing for all three aspects using
the highest fidelity analysis tools.

After setting up the optimization formulations and computa-
tional batch analysis of the designs using the highest fidelity,
the sequential and concurrent MDO identified the Pareto optimal
options constituting Set A (6 designs) and Set B (5 designs),
respectively, as shown in Table 14.

It can be observed that both options 446 and 460 from Set C
were part of Set B, whereas only of those (Option 460) was found
in Set A. It is also interesting to note that Pareto optimal solutions
(as identified in Set A) are drastically different from Sets B and
C. This can be attributed to the fact that the sequential MDO
while trying to achieve each objective sequentially eliminates
potentially optimal candidates that might be Pareto optimal
when optimized concurrently for all aspects. It should also be
highlighted that Set C despite being a subset of Set B, still misses
more than half of the options in Set B. Upon closer examination,
it was found out that the metamodels used in the conceptual
phase preserve the options in Set B as Pareto optimal, whereas
the metamodels used in the preliminary design phase discard
options 157, 482, and 972 as dominated solutions. Hence, it is
fair to assume that the metamodels used in the preliminary
phase of the proposed MDO framework have limitations in
terms of preserving global optimality. However, the most interest-
ing aspect of the developed MDO framework is its ability to iden-
tify the Pareto optimal options at a significantly lower
computational time than its counterparts, as shown in Figure 40.

Table 14. Design IDs of Pareto optimal options identified by sequential MDO
(Set A), concurrent MDO using high fidelity (Set B), and developed MDO
framework (Set C)

Set A Set B Set C

23 157 446

75 446 460

185 460

189 482

460 972

1351

Fig. 40. Comparison of computational time of SDO, concurrent MDO using high-fidelity analysis, and concurrent MDO using the developed MDO framework (using
multi-fidelity analysis).
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It can be seen from Figure 40, that the developed MDO frame-
work takes a cumulative computational time of 20 h and 33 min,
whereas the other two methods take almost 10 days (approx.) and
27 days (approx.), respectively. Also, it should be noted that the
cumulative computational time for the developed MDO frame-
work also includes that of the detailed-extended phase, where
new design mutations were developed by introducing new vari-
ables. The same initial problem formulation used for the devel-
oped MDO was used for these optimizations as well, and the
optimizations were run using a high-performance computer
with multiple-core, multi-thread processor (Intel® Core™
i9-10900 K 3.5 GHz) and a graphic processing unit (NVIDIA®
Quadro™ RTX 5000). The energy analysis and daylighting simu-
lations using the highest fidelity tools took several days to weeks to
complete and hence were run in batches at intermittent time
intervals adhering to schedule and computational resource avail-
ability constraints. The cumulative computational time of the
concurrent MDO with multi-fidelity models does not include
the research and development time of energy metamodels and
the training (∼45 h and 23 min) and validation time (∼9 h and
37 min) of the ML-based daylighting metamodel. Even if these
values are added, the cumulative computational time of the pro-
posed MDO framework will still be drastically lower than its
counterparts. More details about the average computational
time recorded for analyzing the design options using the various
metamodels are provided in Muthumanickam (2021).

Summary of MDO implementation to the office design problem

In summary, the developed MDO framework was implemented to
aid the design process of a sample office building spanning across
multiple design phases, namely, conceptual, preliminary, detailed,
and detailed-extended [Fig. 28 in Section “Multidisciplinary opti-
mization (Steps 6, 7 ,8, 9, and 10 of SOP)”]. The benefits offered
by the various components of the MDO framework are listed
below.

Generative algorithm – The generative design algorithm outlined
in the section “Generative algorithm for design catalog genera-
tion” was significantly helpful in generating a large set of inte-
grated (detailed) design options as outlined in the section
“Model generation (Steps 2, 3, and 4 of SOP)”, offering para-
metric capabilities to the designer to control the various
input variables.

Machine learning-based metamodel for daylighting estimation –
The usage of the machine learning-based metamodel for pre-
dicting daylighting (as developed in Muthumanickam et al.,
2022a) enabled rapid analysis of large sets of building design
options as opposed to the computational graphics intensive
ray tracing-based simulations.

Multi-fidelity modeling approach – Subsequently, it is clear from
Figure 40 that by organizing energy and daylighting analysis
of varying fidelity, which also includes the developed machine
learning-based metamodel for predicting daylighting, it is pos-
sible to identify Pareto optimal building design options with
multidisciplinary optimality at staggeringly lower computa-
tional time.

Interactive problem formulation – Using the interactive features in
the PIDO tool modeFrontier™ as outlined in the section
“Interactive module for problem formulation, process integra-
tion, and tradespace visualization”, it was possible to change
the problem formulation at ease during each phase as shown

in Tables 6, 9, 10, and 12, respectively. Specifically, the change
of metamodels/analysis tools at each phase required changes to
the tool couplings and mapping of the variables between the
modeling, analysis, and optimization tools with the centralized
relational database. The interactive features and application
programming interfaces of the PIDO tool helped to implement
these changes using a drag-and-drop interface to define the
process map [Fig. 27 in Section “Problem structuring (Step 1
of SOP)”]. Specifically, it facilitated designer intervention to
enable design mutations during the detailed-extended phase.
In the absence of such interactive problem structuring modules,
such mutations of Pareto optimal solutions are only possible by
setting up an entirely new optimization problem with revised
variables and constraints specific to the detailed design
phase, which requires extensive setup time (the reason why
Fig. 40 does not have detailed-extended phase for frameworks
other than the proposed MDO). Comparison of such setup
time might have been valuable to demonstrate the benefits of
the interactive problem structuring module objectively, but
was not included in the original scope of this paper and
hence is suggested as a potential avenue for future research.

Interactive tradespace exploration – The interactive tradespace
exploration module of the developed MDO framework enabled
interactive visualization of the tradeoffs between the various
input and output variables using a variety of plots such as scat-
ter plots and parallel coordinates plots, as shown in Figures 41
and 42. Such interactive exploration of the tradespace helped
get a visual glimpse of how the tradespace progressively con-
verged toward the Pareto optimal solutions through various
phases. The web-based dashboard environment was not used
much in this technology demonstration since the problem for-
mulation and design development was a single person activity
involving just the author, as opposed to a multidisciplinary
environment in real-life project settings.

Centralized relational database – Setting up a centralized cloud-
based OORDBMS database that stores data from multiple
modeling tools (retrieved as IFC and translated to SQL to be
stored in the OORDBMS), metamodels and tradespace analysis
tools that works in tandem with the PIDO tools was helpful to
automate the data exchange between multiple tools. However,
relying on the promising potential of such state-of-the-art
data exchange infrastructures indicated in various literature
and benchmark testing (Nour, 2009; Lee et al., 2014; Li et al.,
2016; Solihin et al., 2017; Cho et al., 2018; Bock, 2019;
Wyszomirski and Gotlib, 2020), the scope of the paper was
limited to just demonstrate the setup and use of such infra-
structure as one of the components within the overall MDO
framework proposed and not on the rigorous and objective
evaluation of the infrastructure.

Conclusion, limitations, and recommendations

What is the novelty of the proposed MDO framework?

Researchers in the AEC field have contributed immensely to the
research and development of topic areas such as algorithms for
generating large sets of design options, metamodels for faster
analysis of large sets of design options, optimization algorithms
for sorting through large design spaces, and tools for visualizing
tradeoffs. However, despite such developments, industry adoption
of optimization frameworks by the larger AEC community is still
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in its infancy. For increased adoption by practitioners, it is neces-
sary to address all the above topics collectively than a piecemeal
approach of implementing these strategies as standalone methods,
or tools. For example, for effective implementation of an optimi-
zation framework, it is necessary to generate many design options,
to analyze them faster, to visualize the tradeoffs effectively, and to
modify the optimization framework seamlessly to reflect the
requirements across design phases. This shall enable visualizing
more “what-if” scenarios, which in turn shall be beneficial for
AEC researchers and practitioners to take informed design deci-
sions. Hence, building on top of the valuable knowledge base
established by the AEC research community on these topic
areas, this paper has developed a novel MDO framework that
leverages the collective benefits of generative algorithm, metamo-
dels, database management systems, and tradespace visualization

tools (see Section “Summary of MDO implementation to the
office design problem”) that can be plausibly implemented across
multiple design phases. This has been demonstrated using an
office building example spanning across multiple phases.

What are the limitations of the proposed MDO framework and
future research avenues?

Despite such potential, it is also important to acknowledge the
limitations of the proposed MDO framework in its current
state of implementation. Firstly, there is a probability of the
global optima not being in the parametrically generated design
space by the generative algorithm. Solutions for this limitation
can be manifold – increase the design space to include more
design options or strategically iterating feasible building design

Fig. 41. Parallel coordinates plot showing convergence
of the tradespace toward the optimal options as the
design phase progresses from conceptual to
detailed-extended design.
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solutions to increase the chance of finding the global optima or
an exhaustive enumeration of all possible building design
options. However, these alternatives have deficiencies as well.
For example, there is still a chance for the global optima to
not be present in the design space despite an increased number
of options. Convergence to a global optimum cannot be guaran-
teed by an iterative search either and sometimes do not even
guarantee convergence at all if started in a bad location in the
search space. And an exhaustive enumeration of building design
options (including 3D components of multiple systems as done
in this paper) is practically impossible in multi-phase design
processes for two reasons, namely: (a) there is virtually no end
to the number of building design options that can be generated
since the design brief and boundary conditions are prone to

undergo many modifications as different stakeholders enter
and exit the building design process, and (b) need for exponen-
tially high computational resource and time for generating large
sets of highly detailed 3D models of buildings with multiple
integrated systems. Given that this is a limitation in any optimi-
zation method (increasing the size of the design space, iterative
search, and an exhaustive enumeration of design options), future
research upon comparison of various search methods applied to
multi-phased building design problem is recommended to gain
more insights into optimization algorithm efficiency. Despite
such deficiencies, trying to increase the size of the design
space might always lead to a slight increase in the probability
of consisting of the global optima. Hence, research pertaining
to computationally inexpensive methods to generate large design

Fig. 42. Tradespace exploration of the office building
design through multiple design phases.
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spaces of highly detailed building models is a fertile ground for
future research.

Secondly, the benefits of the proposed MDO framework in
terms of its speed in identifying Pareto optimal solutions,
comes at a cost of missing out on few Pareto optimal solutions
when a higher fidelity model is used. However, this limitation is
specifically associated with just the metamodels used in the pre-
liminary design phase as discussed in Section “Preservation of
globally optimal solutions”. Future research on how to improve
these metamodels to better preserve global optima while not com-
promising on the speed benefit is required. Also, it should be
noted that using the proposed metamodels as opposed to the
high-fidelity models used in the sequential and concurrent
MDO frameworks, as shown in Figure 40, can help understand
the metamodels performance in varying MDO approaches.
Moreover, since the proposed framework utilizes multiple meta-
models (for energy and daylighting) at each phase, there can be
multiple versions of sequential and concurrent MDO done
using various combinations of these metamodels and in different
orders of arrangement. This can help identify how the ordering
and orchestration of the various combinations of metamodels
impact the optimization results.

Thirdly, the implementation of the developed MDO frame-
work across multiple design phases in a project requires stringent
project management controls where a designated personnel or
team needs to orchestrate the standard operating procedure.
Additionally, the IFC to SQL translation used in this paper show-
cases promising potential in a well-defined problem. However, the
efficiency of such a conversion in real-life projects dealing with
multiple stakeholders dealing with unstructured data and formats
is subject to further study. Given such requirements, it might be
tedious to setup the MDO framework and a project manager
responsible for orchestrating the MDO might conclude that, for
a small-scale residential project with very basic technical require-
ments, the cost of the setup outweighs the benefits of implemen-
tation, as opposed to large-scale commercial projects. Moreover,
the MDO framework might need upgrades in several aspects to
perform efficiently in real-life commercial scale projects. Firstly,
expanding the capability of the generative algorithm to support
organic and customized shapes and interior floor layouts is
needed. Secondly, better version control and tracking mechanisms
are needed especially when dealing with projects involving large
teams collaborating from a variety of design and engineering
firms. Software platforms such as Autodesk® BIM 360™ offer
insights into how changes to a single BIM model can be tracked.
However, in the case of MDO, such tracking needs to be done on
a large set of design options in various modeling and analysis
tools, which is too complex. This requires more nuanced database
management techniques and hence is a fertile area for future
research. Finally, application of the developed framework to
design different typologies of buildings, under varied climatic
conditions, with increased objectives and constraints is needed
to validate the accuracy of the optimization results across a
range of project types. Rigorous analysis of how sensitive the opti-
mization results are to change in specific building design variables
might help gain more insights about the effectiveness of the opti-
mization framework to meet performance objectives.
Additionally, testing the developed MDO framework in real-life
projects involving large design teams that contractually follow
design and construction phases as prescribed by the AIA or
RIBA Plan of Work might be beneficial for assessing the ease of
use and barriers to adoption. Also, real-life projects involve

incorporation of many subjective preferences in addition to the
objective performance goals. Research about modes and methods
to incorporate designer preferences into the MDO framework is
also a very important area for future research. Overall, the compo-
nents of the proposed MDO framework showcase promising poten-
tial to implement MDO to multi-phase design problems, with more
room for improvements on several aspects, as mentioned above.

Data availability

More details about computational codes used for the data translation
from IFC to SQL, SQL database setup, hierarchy of tables in the SQL
database, and the mapping of data fields between IFC schema and
the SQL database are provided in Muthumanickam (2021). Access
to the repositories containing the code for generative algorithm,
code for the development of .3js based dashboard for interactive
problem structuring and SQL-based database management can be
requested from the author at https://github.com/vrmnk.
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