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Some Norm Inequalities for Operators
Fuad Kittaneh

Abstract. Let Ai , Bi and Xi (i = 1, 2, . . . , n) be operators on a separable Hilbert space. It is shown that if
f and g are nonnegative continuous functions on [0,∞) which satisfy the relation f (t)g(t) = t for all t in
[0,∞), then ∥∥∥

∣∣∣
∣∣∣

n∑
i=1

A∗i Xi Bi

∣∣∣r
∥∥∥
∣∣∣2 ≤

∥∥∥
∣∣∣
( n∑

i=1

A∗i f (|X∗i |)
2Ai

)r∥∥∥
∣∣∣
∥∥∥
∣∣∣
( n∑

i=1

B∗i g(|Xi |)
2Bi

)r∥∥∥
∣∣∣

for every r > 0 and for every unitarily invariant norm. This result improves some known Cauchy-Schwarz
type inequalities. Norm inequalities related to the arithmetic-geometric mean inequality and the classical
Heinz inequalities are also obtained.

1 Introduction

Let B(H) denote the space of bounded linear operators on a separable Hilbert space H. Let
||| . ||| denote a unitarily invariant norm defined on a norm ideal associated with it. For the
sake of brevity, we will make no explicit mention of this ideal. Thus when we consider |||T|||
we are assuming that the operator T belongs to the norm ideal associated with ||| . |||. For
the theory of unitarily invariant norms we refer to [11], [24] or [25].

It has been shown by Bhatia and Kittaneh in [7] that if A, B are operators in B(H), then

2‖|A∗B‖| ≤ ‖|AA∗ + BB∗‖|,(1)

‖|A∗B + B∗A‖| ≤ ‖|A∗A + B∗B‖|(2)

for every unitarily invariant norm. These inequalities can be considered as noncommuta-
tive versions of the familiar arithmetic-geometric mean inequality for real numbers.

The inequality (1) has attracted the attention of several mathematicians, and different
proofs of a stronger version of it have been given. See [4], [15], [19] and [22]. This stronger
version asserts that if A, B and X are operators in B(H), then

2‖|A∗XB‖| ≤ ‖|AA∗X + XBB∗‖|(3)

for every unitarily invariant norm. The usual operator norm version of (3) has been proved
earlier in [23].

The inequality (2) has been obtained in [7] as an application of the following Cauchy-
Schwarz inequality. If A, B are operators in B(H), then

‖|A∗B‖|2 ≤ ‖|AA∗‖| ‖|BB∗‖|(4)
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for every unitarily invariant norm. See [2], [13], [14] or [26]. This inequality is a spe-
cial case of the following inequality which has been proved by Horn and Mathias in [14,
Example 3.1] for the finite-dimensional case. See also [2]. If A, B are operators in B(H),
then

‖| |A∗B|r‖|2 ≤ ‖|(AA∗)r‖| ‖|(BB∗)r‖|(5)

for every positive real number r and for every unitarily invariant norm. Here |T| stands for
the positive (semidefinite) operator (T∗T)1/2.

A recent stronger version of (5), which has been given in [5], asserts that if A, B and X
are operators in B(H), then

‖||A∗XB|r‖|2 ≤ ‖||AA∗X|r‖| ‖||XBB∗|r‖|(6)

for every positive real number r and for every unitarily invariant norm. For the usual
operator norm and the case r = 1, the inequality (6) has been also obtained earlier in [23].

The inequalities (3)–(6) have been very useful in applications, especially to perturbation
inequalities and geometric inequalities for operators. In addition to this, the importance
of the inequalities (3)–(6) also stems from the fact that these inequalities are closely related
to some classical inequalities due to Heinz. See [1], [2], [3], [5], [10], [12], [16], [20]
and [23].

In this paper we present a two-fold improvement of the inequality (2). In Section 2 we
invoke the arithmetic-geometric mean inequality (1) to refine the inequality (2). In Sec-
tion 3 we give a stronger version of (2) by inserting a positive operator X in the proper
places in (2). This is achieved by utilizing a basic Cauchy-Schwarz type inequality in [14,
Theorem 2.3], from which the inequality (5) has been derived. As in the case of the in-
equalities (3) and (6), our stronger version of (2) seems natural enough to be widely useful.
In Section 3 we establish two inequalities that are equivalent to two of the classical Heinz
inequalities.

2 A Refinement of the Inequality (2)

To refine the inequality (2) we need the following folk lemma. For the reader’s convenience,
we provide a proof of it.

Lemma 1 If A, B are operators in B(H), then

∥∥∥∥
∣∣∣∣
[

A B
B A

]∥∥∥∥
∣∣∣∣ =
∥∥∥∥
∣∣∣∣
[

A + B 0
0 A− B

]∥∥∥∥
∣∣∣∣

for every unitarily invariant norm.

Proof Let U = 1√
2

[
I −I
I I

]
, where I is the identity operator in B(H). Then U is unitary and

[
A B
B A

]
= U

[
A + B 0

0 A− B

]
U∗.

https://doi.org/10.4153/CMB-1999-010-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-010-6


Some Norm Inequalities for Operators 89

The result now follows by the unitary invariance of ||| . |||.
Based on the inequality (1) and Lemma 1, we have the following refinement of (2).

Theorem 1 If A, B are operators in B(H), then

2

∥∥∥∥
∣∣∣∣
[

A∗B + B∗A 0
0 0

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

(A + B)∗(A + B) 0
0 (A− B)∗(A− B)

]∥∥∥∥
∣∣∣∣(7)

for every unitarily invariant norm.

Proof Let T =
[

A 0
B 0

]
, S =

[
B 0
A 0

]
. Then by (1) we have 2|||T∗S||| ≤ |||TT∗ + SS∗|||. Thus

2

∥∥∥∥
∣∣∣∣
[

A∗B + B∗A 0
0 0

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

AA∗ + BB∗ AB∗ + BA∗

BA∗ + AB∗ AA∗ + BB∗

]∥∥∥∥
∣∣∣∣.

Using Lemma 1, we have

2

∥∥∥∥
∣∣∣∣
[

A∗B + B∗A 0
0 0

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

AA∗ + BB∗ + AB∗ + BA∗ 0
0 AA∗ + BB∗ − AB∗ − BA∗

]∥∥∥∥
∣∣∣∣

=

∥∥∥∥
∣∣∣∣
[

(A + B)(A + B)∗ 0
0 (A− B)(A− B)∗

]∥∥∥∥
∣∣∣∣

=

∥∥∥∥
∣∣∣∣
[

(A + B)∗(A + B) 0
0 (A− B)∗(A− B)

]∥∥∥∥
∣∣∣∣,

since |||RR∗||| = |||R∗R||| for every operator R. The proof of (7) is now complete.
To see how the inequality (7) is an improvement of (2), we need to recall that for positive

operators C , D in B(H) we have
∥∥∥∥
∣∣∣∣
[

C 0
0 D

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

C + D 0
0 0

]∥∥∥∥
∣∣∣∣(8)

for every unitarily invariant norm. See [6, Theorem 1] or [8, Lemma 4]. Since(A + B)∗(A +
B) + (A− B)∗(A− B) = 2(A∗A + B∗B), it follows from (7) and (8) that

2

∥∥∥∥
∣∣∣∣
[

A∗B + B∗A 0
0 0

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

(A + B)∗(A + B) 0
0 (A− B)∗(A− B)

]∥∥∥∥
∣∣∣∣

≤ 2

∥∥∥∥
∣∣∣∣
[

A∗A + B∗B 0
0 0

]∥∥∥∥
∣∣∣∣,

which clearly refines (2).
Specializing (7) to the usual operator norm and the Schatten p-norms, we obtain

2‖A∗B + B∗A‖ ≤ max
(
‖A + B‖2, ‖A− B‖2

)
,(9)

2p‖A∗B + B∗A‖p
p ≤ ‖A + B‖2p

2p + ‖A− B‖2p
2p(10)

for all p with 1 ≤ p <∞.
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3 A Stronger Version of the Inequality (2)

To obtain a stronger version of (2) along the lines of (3) and (6), we need the following basic
inequality, which has been established in [14, Theorem 23] for the finite-dimensional case.
However, a slight modification of the argument in [14] extends the result to the infinite-
dimensional case.

Lemma 2 Let A, B and C be operators in B(H) with A, B positive. If the operator matrix[
A C

C∗ B

]
is positive, then

‖||C|r‖|2 ≤ ‖|Ar‖| ‖|Br‖|(11)

for every r > 0 and for every unitarily invariant norm.

As mentioned in Section 1, the inequality (5) follows as a consequence of (11). It should
be mentioned here that the proof of (6) given in [5] depends on (5), the polar decomposi-
tion of an operator, and some basic majorization relations between eigenvalues and singular
values of compact operators. Here we give a natural generalization of (5) by applying (11)
to certain positive operators.

Lemma 3 Let A, B and X be operators in B(H). If f and g are nonnegative continuous
functions on [0,∞) which satisfy the relation f (t)g(t) = t for all t in [0,∞), then

‖||A∗XB|r‖|2 ≤ ‖|
(
A∗ f (|X∗|)2A

)r
‖| ‖|
(
B∗g(|X|)2B

)r
‖|(12)

for every r > 0 and for every unitarily invariant norm.

Proof Let T =
[

A 0
0 B

]
, Y =

[
f (|X∗|)2 X

X∗ g(|X|)2

]
. Then Y is positive (see [18, Theorem 1]) and

so [
A∗ f (|X∗|)2A A∗XB

B∗X∗A B∗g(|X|)2B

]
= T∗Y T

is positive. The result now follows by invoking Lemma 2.
Observe that important special cases follow from (12) by letting f (t) = tα and g(t) =

t1−α, where α is a real number with 0 ≤ α ≤ 1. In particular, the case f (t) = g(t) = t1/2

ensures that

‖||A∗XB|r‖|2 ≤ ‖|(A∗|X∗|A)r‖| ‖|(B∗|X|B)r‖|.(13)

Using the fact that |||(T∗T)r||| = |||(TT∗)r||| for every operator T and for every r > 0,
we remark that our inequality (13) is equivalent to the inequality (13) in [5]. Moreover, as
one can infer from the proof of (6) given in [5], the right hand side of (13) is dominated by
that of (6).

Now we are in a position to establish a general Cauchy-Schwarz inequality, from which
we obtain our promised stronger version of (2).

Theorem 2 Let Ai , Bi and Xi (i = 1, 2, . . . , n) be operators in B(H). If f and g are as in
Lemma 3, then

∥∥∥∣∣∣ ∣∣∣
n∑

i=1

A∗i XiBi

∣∣∣r ∥∥∥∣∣∣2 ≤ ∥∥∥∣∣∣(
n∑

i=1

A∗i f (|X∗i |)
2Ai

)r∥∥∥∣∣∣ ∥∥∥∣∣∣(
n∑

i=1

B∗i g(|Xi |)
2Bi

)r∥∥∥∣∣∣(14)

for every r > 0 and for every unitarily invariant norm.
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Proof Let

A =




A1 0 · · · 0
A2 0 · · · 0
...

...
...

An 0 · · · 0


 , B =




B1 0 · · · 0
B2 0 · · · 0
...

...
...

Bn 0 · · · 0


 , and

X =




X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn


 .

Then

A∗XB =




∑n
i=1 A∗i XiBi 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0


 ,

A∗ f (|X∗|)2A =




∑n
i=1 A∗i f (|X∗i |)

2Ai 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


 , and

B∗g(|X|)2B =




∑n
i=1 B∗i g(|Xi |)2Bi 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0


 .

Now the inequality (14) follows from (12).
As an application of Theorem 2 we get the following corollary.

Corollary 1 If A, B and X are operators in B(H), then

‖||A∗XB + B∗XA|r‖|2 ≤ ‖|(A∗|X∗|A + B∗|X∗|B)r‖| ‖|(A∗|X|A + B∗|X|B)r‖|(15)

for every r > 0 and for every unitarily invariant norm.

Proof This follows from Theorem 2 by letting n = 2, f (t) = g(t) = t1/2, A1 = A, A2 = B,
B1 = B, B2 = A, and X1 = X2 = X.

Our stronger version of (2) can be stated as follows.

Corollary 2 If A, B and X are operators in B(H) with X normal, then

‖||A∗XB + B∗XA|r‖| ≤ ‖|(A∗|X|A + B∗|X|B)r‖|(16)

for every r > 0 and for every unitarily invariant norm. In particular, if X is positive, then

‖|A∗XB + B∗XA‖| ≤ ‖|A∗XA + B∗XB‖|(17)

for every unitarily invariant norm.
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Proof The inequality (16) follows from (15) since |X| = |X∗|. The inequality (17) is a
special case of (16).

We conclude this section with the following remarks.

Remark 1 The positivity assumption on X is essential for (17) to hold. Without this
assumption, (17) is false even for self-adjoint operators X. To see this, consider the ex-
ample A =

[
1 1
0 0

]
, B =

[
1 0
1 0

]
, and X =

[
0 1
1 0

]
. Then ‖A∗XB + B∗XA‖ = 1 +

√
2 and

‖A∗XA + B∗XB‖ = 2.

Remark 2 Using the fact that |||T∗||| = |||T||| for every operator T, one can conclude
from (3) that if A, B and X are operators in B(H) with X self-adjoint, then

‖|A∗XB + B∗XA‖| ≤ ‖|AA∗X + XBB∗‖|(18)

for every unitarily invariant norm. For the general case where X is not necessarily self-
adjoint, replace A, B and X in (18) by

[
A 0
0 A

]
,
[

B 0
0 B

]
, and

[
0 X

X∗ 0

]
, respectively, to get

∥∥∥∥
∣∣∣∣
[

0 A∗XB + B∗XA
A∗X∗B + B∗X∗A 0

]∥∥∥∥
∣∣∣∣ ≤
∥∥∥∥
∣∣∣∣
[

0 AA∗X + XBB∗

AA∗X∗ + X∗BB∗ 0

]∥∥∥∥
∣∣∣∣,

(19)

which is a generalization of (18).
When specialized to the usual operator norm and the Schatten p-norms, the inequal-

ity (19) yields

‖A∗XB + B∗XA‖ ≤ max
(
‖AA∗X + XBB∗‖, ‖AA∗X∗ + X∗BB∗‖

)
,(20)

2‖A∗XB + B∗XA‖p
p ≤ ‖AA∗X + XBB∗‖p

p + ‖AA∗X∗ + X∗BB∗‖p
p(21)

for all p with 1 ≤ p <∞.

Remark 3 In view of the inequalities (17) and (18), it is reasonable to conjecture that if A,
B and X are operators in B(H) with X positive, then

‖|A∗XB + B∗XA‖| ≤ ‖|A∗AX + XB∗B‖|,(22)

‖|A∗XB + B∗XA‖| ≤ ‖|AXA∗ + BXB∗‖|(23)

for every unitarily invariant norm. However, this conjecture is refuted by the example
A = X =

[
1 0
0 0

]
and B =

[
0 1
0 0

]
, for which ‖A∗XB + B∗XA‖1 = 2 and ‖A∗AX + XB∗B‖1 =

‖AXA∗ + BXB∗‖1 = 1.

Remark 4 It has been remarked in [5] that if A, B are operators in B(H) with AB normal,
then

‖|AB‖| ≤ ‖|BA‖|(24)
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for every unitarily invariant norm. Moreover, it has been mentioned in [5] that another
proof of the case r = 1 of (6) could be given based on (24), the polar decomposition of X,
and (4).

It should be remarked here that the argument used in [5] to derive (24) (see also The-
orem 8.1 in [25]) yields the following generalization of (24). If A, B are operators in B(H)
with AB normal, then

‖||AB|r‖| ≤ ‖||BA|r‖|(25)

for every r > 0 and for every unitarily invariant norm. We conclude this section by pre-
senting a short proof of (6) based on (5) and (25). The proof goes like this:

‖||A∗XB|r‖|2 = ‖|(B∗X∗AA∗XB)r/2‖|2

≤ ‖||X∗AA∗XBB∗|r/2‖|2 (by (25))

≤ ‖||AA∗X|r‖| ‖||XBB∗|r‖| (by (5)).

Remark 5 As an immediate consequence of the arithmetic-geometric mean inequality (3),
it has been shown in [21] that if R, S and T are operators in B(H) with R, S invertible, then

2‖|T‖| ≤ ‖|R∗TS−1 + R−1TS∗‖|(26)

for every unitarily invariant norm. See also [1] and references therein.
In the same mould, the Cauchy-Schwarz inequality (6) leads to the related inequality

‖||T|r‖|2 ≤ ‖||R∗TS−1|r‖| ‖||R−1TS∗|r‖|(27)

for every r > 0 and for every unitarily invariant norm.
The inequality (27) can be derived from (6) in the same way that (26) was derived from

(3). Just substitute A = R∗, B = S and X = R−1TS−1.

4 On the Heinz Inequalities

The arithmetic-geometric mean inequality (3) and the Cauchy-Schwarz inequality (6) (the
case r = 1) play a central role in the proofs of the following famous Heinz-McIntosh in-
equalities. If A, B and X are operators in B(H) with A, B positive, then

‖|AαXB1−α + A1−αXBα‖| ≤ ‖|AX + XB‖|,(28)

‖|AαXB1−α − A1−αXBα‖| ≤ |2α− 1| ‖|AX − XB‖|,(29)

‖|AαXB1−α‖| ≤ ‖|AX‖|α ‖|XB‖|1−α(30)

for every α with 0 ≤ α ≤ 1 and for every unitarily invariant norm.
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For the usual operator norm the inequalities (28) and (29) have been proved by
Heinz [12] using a somewhat complicated complex analysis proof. However, for the same
norm, elegant convexity and induction arguments have been used by McIntosh [23] to
obtain (28), (29) from (3) and (30) from the case r = 1 of (6). See also [5], [9] and [20].

It has been shown in [20] that the inequality (30) is equivalent to the form

‖|AαXBα‖| ≤ ‖|X‖|1−α ‖|AXB‖|α(31)

which, for the usual operator norm, is essentially due to Kato [17]. In the same spirit, we
have the following theorem.

Theorem 3 If A, B and X are operators in B(H) with A, B positive, then

‖|AαXBα + A1−αXB1−α‖| ≤ ‖|AXB + X‖|,(32)

‖|AαXBα − A1−αXB1−α‖| ≤ |2α− 1| ‖|AXB− X‖|,(33)

for every α with 0 ≤ α ≤ 1 and for every unitarily invariant norm. Moreover, the inequalities
(32) and (33) are equivalent to (28) and (29), respectively.

Proof We only prove that (28) implies (32). The other conclusions can be accomplished
by similar arguments. For every ε > 0, let Aε = A + εI. Then Aε is invertible for every
ε > 0. Using (28), we have

‖|AαεXBα + A1−α
ε XB1−α‖| = ‖|(A−1

ε )α(AεX)B1−α + (A−1
ε )1−α(AεX)Bα‖|

≤ ‖|A−1
ε (AεX) + (AεX)B‖|

= ‖|X + AεXB‖|.

Letting ε→ 0 and invoking continuity arguments, we obtain

‖|AαXBα + A1−αXB1−α‖| ≤ ‖|AXB + X‖|,

as desired.
As an application of the inequality (31) we can show that if A, B and X are operators

in B(H) such that (A∗A)2 ≤ A∗
2

A2 and (BB∗)2 ≤ B2B∗
2

(in particular, if A and B∗ are
hyponormal), then

‖|AXB‖|n ≤ ‖|X‖|n−1 ‖|AnXBn‖|(34)

for every integer n ≥ 1 and for every unitarily invariant norm. This result, which is a
considerable improvement of Theorem 3 in [20], can be proved by using Lemmas 6 and 8
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in [20] together with an induction argument.
In [20, Theorem 3] the inequality (34) has been derived under the stronger assumption

that (A∗A)n ≤ A∗
n
An and (BB∗)n ≤ BnB∗

n
for every integer n ≥ 1. It should be noticed

here that in the finite-dimensional case (or, more generally, if A is compact), the conditions
(A∗A)2 ≤ A∗

2
A2 and (A∗A)n ≤ A∗

n
An for every integer n ≥ 1, are equivalent. In fact, each

of these conditions is equivalent to the normality of A. However, for noncompact operators
the situation is different. To see this, assume H is an infinite-dimensional Hilbert space with
an orthonormal basis{e j}. Let A = U + I, where U is the unilateral shift operator defined

on H by U e j = e j+1 for j = 1, 2, . . . . Then A∗
2
A2− (A∗A)2 = I−UU ∗, which is positive.

On the other hand, A∗
3
A3 − (A∗A)3 = 6(I − UU∗) + U (I − UU∗) + (I − UU∗)U ∗ is

not positive. In fact, the compression of A∗
3
A3 − (A∗A)3 to the two-dimensional subspace

spanned by e1, e2 has the matrix representation
[

6 1
1 0

]
, which is clearly not positive.
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[12] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123(1951), 415–438.
[13] R. A. Horn and R. Mathias, An analog of the Cauchy-Schwarz inequality for Hadamard products and unitarily

invariant norms. SIAM J. Matrix Anal. Appl. 11(1990), 481–498.
[14] , Cauchy-Schwarz inequalities associated with positive semidefinite matrices. Linear Algebra Appl.

142(1990), 63–82.
[15] R. A. Horn, Norm bounds for Hadamard products and an arithmetic-geometric mean inequality for unitarily

invariant norms. Linear Algebra Appl. 223/224(1995), 355–361.
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