ON STEENROD'S PROBLEM FOR CYCLIC p-GROUPS

JAMES E. ARNOLD, JR.

1. Introduction. Let G be a finite group and A a $Z[G]$ module.

Definition (1.1). A simply connected $C W$ complex X is of type (A, n) if G operates on X cellularly, and $\tilde{H}_{i}(X)=0, i \neq n, H_{n}(X) \cong A$ as $Z[G]$ modules.

If A is a f.g. (finitely generated) $Z[G]$ module, we consider the following problems:
I. Is there a complex of type (A, n) ?
II. Is there a finite complex of type (A, n) ?

The second question was posed by Steenrod, and considered by R. Swan in [5]. In [1] we used an invariant of Swan denoted $\operatorname{Sw}(A)$ to obtain the following solution for $G=Z_{p}$, the cyclic group of prime order p :

Theorem. Let A be a f.g. $Z\left[Z_{p}\right]$ module. There are complexes of type (A, n), $n \geqq 3$, and there is a finite complex of type (A, n) if and only if $\operatorname{Sw}(A)=0$.

In this paper we obtain a similar result for G a cyclic p-group.

2. Preliminary definitions and lemmas.

Definition (2.1). A $Z[G]$ module M is a signed permutation module if M is free abelian with a set of generators permuted up to sign G.

Let $G_{0}(Z[G])$ denote the Grothendieck group of f.g. $Z[G]$ modules, and S the subgroup generated by the f.g. signed permutation modules.

Definition (2.2). Given a f.g. $Z[G]$ module $A, \operatorname{Sw}(A)$ is the class of A in the group $G_{0}(Z[G]) / S$.

We will say that X is a G-complex if X is a $C W$ complex and G operates effectively and cellularly on X. The cellular chain complex of X denoted $C_{*}(X)$ will then be a $Z[G]$ chain complex, and $C_{n}(X)=H_{n}\left(X^{n}, X^{n-1}\right)$ is a signed permutation module for all $n \geqq 0$ (see [1]). If X is a finite G-complex,

$$
\sum(-1)^{i} \operatorname{Sw}\left(H_{i}(X)\right)=\sum(-1)^{i} \operatorname{Sw}\left(C_{i}(X)\right)=0 .
$$

Thus a necessary condition for there to be a finite complex of type (A, n) is that $\operatorname{Sw}(A)=0$.

The following two lemmas from [1] are useful in constructing G-complexes. We include the proofs for completeness.

Lemma (2.3). Let X and Y be G-complexes where
a) $X=\bigvee_{\alpha \in A} S_{\alpha}{ }^{n}$ with G permuting the n-spheres $S_{\alpha}{ }^{n}$ freely and fixing the base point x_{0}; and
b) Y is $n-1$ connected with a 0 -cell y_{0} fixed by G.

Then any $Z[G]$ homomorphism $h: H_{n}(X) \rightarrow H_{n}(Y)$ is realized by an equivariant cellular map $f: X \rightarrow Y$.

Proof. Let X_{0} be the subcomplex of X consisting of one sphere from each orbit of n-spheres. Let $f_{0}:\left(X_{0}, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a cellular map realizing the induced homomorphism

$$
\pi_{n}\left(X_{0}, x_{0}\right) \subset \pi_{n}\left(X, x_{0}\right)=H_{n}(X) \xrightarrow{h} H_{n}(Y)=\pi_{n}\left(Y, y_{0}\right)
$$

f_{0} is then extended to $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ by defining $f g(x)=g f_{0}(x)$ for all $g \in G, x \in X_{0}$.

Lemma (2.4). Let X and Y be G complexes where
a) $\operatorname{dim}(X)=n$ and G permutes the n-cells of X freely; and
b) Y is $n-1$ connected and G fixes a 0 -cell y_{0} of Y.

Then any $Z[G]$ homomorphism $h: H_{n}(X) \rightarrow H_{n}(Y)$ which factors through a projective $Z[G]$ module is realized by a G equivariant cellular map $f: X \rightarrow Y$.

Proof. Let $h=\beta \alpha$ where $\alpha: H_{n}(X) \rightarrow P, \beta: P \rightarrow H_{n}(Y)$ and P is projective. Since P is weakly injective and $H_{n}(X)$ is a Z-summand of $C_{n}(X), \alpha$ extends to $C_{n}(X)=H_{n}\left(X / X^{n-1}\right)$. Let $h^{\prime}: H_{n}\left(X / X^{n-1}\right) \rightarrow H_{n}(Y)$ denote the corresponding extension of h. By Lemma (2.3) there is a G-equivariant cellular map f^{\prime} : $X / X^{n-1} \rightarrow Y$ realizing h^{\prime}, and the composite $X \rightarrow X / X^{n-1} \xrightarrow{f^{\prime}} Y$ realizes h.

As in [1], the proof of the main theorem relies on the construction of complexes satisfying the following:

Definition (2.5). X is tractable of type (A, n) if X is an n-dimensional G complex of type (A, n) so that G permutes the n-cells of X freely and fixes a 0 -cell.

Given G and an integer $N \geqq 2$, we consider the following properties:
$P(N)$: For any Z-torsion free f.g. $Z[G]$ module A, there is a G-complex X of type $(A, N-k)(k \geqq 0$ fixed $)$ such that $\operatorname{dim}(X)=N$, G fixes a 0 -cell of X, and X is finite if $\operatorname{Sw}(A)=0$.
$P^{\prime}(N)$: For any Z-torsion free f.g. $Z[G]$ module A, there is a G-complex X of type $(A, N-k)(k \geqq 0$ fixed $)$ as in $P(N)$, and so that G permutes the N-cells of X freely.
$Q(N)$: For any Z-torsion free f.g. $Z[G]$ module A, there are tractable complexes of type (A, N) (finite if $\operatorname{Sw}(A)=0)$.
$R(N)$: For any f.g. $Z[G]$ module A, there are complexes of type $(A, n) n \geqq$ N (finite complexes if $\operatorname{Sw}(A)=0)$.

Lemma (2.6). $P(N) \Rightarrow Q(N+1), P^{\prime}(N) \Rightarrow Q(N)$, and $Q(N) \Rightarrow R(N)$.

Proof. $P(N) \Rightarrow Q(N+1)$: Given k as in $P(N)$, choose an exact sequence C_{*} of the form $0 \rightarrow Z \rightarrow F_{k}{ }^{\prime} \rightarrow \ldots \rightarrow F_{0}{ }^{\prime} \rightarrow M \rightarrow 0$ with $F_{i}{ }^{\prime}$ f.g. free, and $M Z$-torsion free. Such a sequence is determined for example, by part of a complete resolution for G (see [2]). If A is a f.g. Z-torsion free $Z[G]$ module, then $C * \otimes_{z} A$ with $g(x \otimes y)=g x \otimes g y$ defines an exact sequence of the form

$$
0 \rightarrow A \rightarrow F_{k} \xrightarrow{\epsilon_{k}} F_{k-1} \rightarrow \ldots \xrightarrow{\epsilon_{1}} F_{0} \xrightarrow{\epsilon_{0}} B \rightarrow 0
$$

with F_{i} f.g. free and $B Z$-torsion free. Since the F_{i} are f.g. free $\operatorname{Sw}(B)=$ $\pm \mathrm{Sw}(A)$.

Now let X be a G-complex of type $(B, N-k)$ as in $P(N)$. If $\operatorname{Sw}(A)=0$, then $\operatorname{Sw}(B)=0$ and X is finite. Let X_{i} be a wedge of $N-k+i$ spheres (freely permuted by G) of type ($F_{i}, N-k+i$). By Lemma (2.3), there is an equivariant cellular map $f_{0}: X_{0} \rightarrow X$ realizing ϵ_{0}, and $C f_{0}$ (the mapping cone of f_{0}) is of type ($\left.\operatorname{Kern}\left(\epsilon_{0}\right), N-k+1\right)$. Iterating this argument with $X_{i} \xrightarrow{f_{i}} C f_{i-1}$ realizing $\epsilon_{i}: F_{i} \rightarrow \operatorname{Kern}\left(\epsilon_{i-1}\right)$, we attach a finite number of cells to X and obtain a complex Y of type $(A, N+1)$. Since the attached cells are freely permuted by G, Y is tractable and we have $Q(N+1)$.
$P^{\prime}(N) \Rightarrow Q(N)$: Given A, we proceed as in the previous argument using an exact sequence $0 \rightarrow A \rightarrow F_{k-1} \rightarrow \ldots \rightarrow F_{0} \rightarrow B \rightarrow 0$. Since the N-cells of the complex X are permuted freely, we obtain a tractable complex of type (A, N) as in $Q(N)$.
$Q(N) \Rightarrow R(N):$ Let A be a f.g. $Z[G]$ module, and $0 \rightarrow B \xrightarrow{\alpha} F \rightarrow A \rightarrow 0$ an exact sequence with F f.g. free. By $Q(N)$ there is a tractable complex X of type (B, N) (finite if $\operatorname{Sw}(B)=-\operatorname{Sw}(A)=0$). Let Y be a wedge of N-spheres of type (F, N). By Lemma (2.4) there is a G-equivariant cellular map $f: X \rightarrow Y$ realizing α. Cf is then of type (A, N), and finite if $\operatorname{Sw}(A)=0$. Complexes of type $(A, n) n>N$ are obtained by suspension.
3. Proof of the main theorem. Let $Z_{p^{n}}$ denote the cyclic group of order p^{n} (p prime) with generator t. Given a module M, we let M^{k} denote the direct sum of k copies of M. The main theorem relies on the following algebraic result whose proof we defer to $\S 4$.

Theorem (3.1). Let A be a f.g. Z-torsion free $Z\left[Z_{p^{n}}\right]$ module. There is an exact sequence of $Z\left[Z_{p^{n}}\right]$ modules

$$
0 \rightarrow A \oplus P \rightarrow F \oplus Z\left[Z_{p^{n-1}}\right]^{k} \rightarrow B \rightarrow 0
$$

with the following properties:
a) P is a f.g. projective $Z\left[Z_{p^{n}}\right]$ module, and F is f.g. free;
b) B is a $Z\left[Z_{p^{n-1}}\right]$ module (i.e. $t^{p n-1} \cdot x=x$ for all $x \in B$); and
c) if $\mathrm{Sw}(A)=0, P$ is free and $\operatorname{Sw}(B)=0$ in $G_{0}\left(Z\left[Z_{p^{n-1}}\right]\right) / S$.

We now prove the main theorem modulo Theorem (3.1).
Theorem (3.2). Let A be a f.g. $Z\left[Z_{p^{n}}\right]$ module. There are complexes of type $(A, m)(m \geqq n+2)$, and finite complexes of type (A, m) if and only if $\mathrm{Sw}_{\mathrm{w}}(A)=0$.

Proof. By Lemma (2.6) it is sufficient to show that $P^{\prime}(n+2)$ holds for $Z_{p^{n}}$. Specifically we prove that for A a f.g. Z-torsion free $Z\left[Z_{p^{n}}\right]$ module, there is an $n+2$ dimensional complex of type $(A, n+1)$ (finite if $\operatorname{Sw}(A)=0$) such that $Z_{p^{n}}$ permutes the $n+2$ cells freely and fixes a 0 -cell. We prove this by induction on n.
$n=1$: Let A be a f.g. Z-torsion free $Z\left[Z_{p}\right]$ module. Then $A=M \oplus Z^{s}$, and there is an exact sequence

$$
0 \rightarrow F_{1} \oplus Z^{r} \xrightarrow{\alpha} F \rightarrow M \rightarrow 0
$$

with F and F_{1} free (f.g. free if $\operatorname{Sw}(A)=0$). This follows as in Lemma (3.1) of [1] replacing the sequences $0 \rightarrow \mathscr{B} \rightarrow \mathscr{B}_{\bar{\omega}} \rightarrow Z \rightarrow 0$ by the sequences constructed in (4.5) (this paper). Let X_{1} be a tractable complex of type ($F_{1} \oplus Z^{r}, 2$), and Y a tractable complex of type $(F, 2)$ as constructed in [1]. By Lemma (2.4), there is a Z_{p} equivariant cellular map f realizing α, and $C f$ is of type $(M, 2)$ with 3 -cells freely permuted by Z_{p}. Let $X=C f \bigvee X_{2}$ where X_{2} is tractable of type $\left(Z^{s}, 2\right) . X$ is 3 -dimensional of type $(A, 2)$ and satisfies the requirements of $P^{\prime}(3)$.
$n-1 \Rightarrow n$: Given an f.g. Z-torsion free $Z\left[Z_{p^{n}}\right]$ module A, let

$$
0 \rightarrow A \oplus P \rightarrow F \oplus Z\left[Z_{p^{n-1}}\right]^{k} \xrightarrow{\beta} B \rightarrow 0
$$

be the exact sequence in Theorem (3.1). By the inductive assumption there is an $n+1$ dimensional $Z_{p^{n-1}}$ complex Y of type (B, n) with fixed 0 -cell. If $\mathrm{Sw}(A)=0, \operatorname{Sw}(B)=0$ and we choose Y to be finite. Let X_{1} be a wedge of n-spheres permuted by $Z_{p^{n}}$ of type $\left(F \oplus Z\left[Z_{p^{n-1}}\right]^{k}, n\right)$. By Lemma (2.3) there is a $Z_{p^{n}}$ equivariant map $f_{1}: X_{1} \rightarrow Y$ realizing β. $C f_{1}$ is then a $Z_{p^{n}}$ complex of type $(A \oplus P, n+1)$ and dimension $n+1$ (finite if $\operatorname{Sw}(A)=0)$. If $\operatorname{Sw}(A)=$ $0, P$ is free and we let X_{2} be a wedge of $n+1$ spheres freely permuted by $Z_{p^{n}}$ of type ($P, n+1$). Otherwise, choose an exact sequence

$$
0 \rightarrow P \rightarrow F_{1} \xrightarrow{\epsilon} F_{2} \rightarrow 0
$$

with F_{1} and F_{2} free, and let X_{2} be the mapping cone of an equivariant cellular map between tractable complexes which realizes ϵ. By Lemma (2.4), there is an equivariant cellular map $g: X_{2} \rightarrow C f$ realizing the inclusion $P \rightarrow A \oplus P$. $C g$ is then of type $(A, n+1)$ and satisfies the requirements of $P^{\prime}(n+1)$.

This completes the induction, and we have the main theorem modulo (3.1).

4. The proof of Theorem (3.1).

Definition (4.1). A commutative diagram of rings and ring homomorphisms

is a fibered product diagram (or pullback diagram) if

$$
R \simeq\left\{\left(r_{1}, r_{2}\right) \mid r_{i} \in R_{i}, j_{1}\left(r_{1}\right)=j_{2}\left(r_{2}\right)\right\} \subset R_{1} \oplus R_{2}
$$

As an example, if I and J are ideals in R, the following is a fibered product diagram:

Our main interest in fibered product diagrams is the following construction of projective modules due to Milnor (see [3]): Assume that we have a diagram as in (4.1) with at least one of j_{1}, j_{2} onto. Then given P_{i} f.g. projective R_{i} modules $i=1,2$, and an isomorphism $h: \bar{R} \otimes_{R_{1}} P_{1} \rightarrow \bar{R} \otimes_{R_{2}} P_{2}$, let $P=$ $\left\{\left(p_{1}, p_{2}\right) \in P_{1} \oplus P_{2} \mid \alpha\left(p_{1}\right)=\beta\left(p_{2}\right)\right\} \quad$ where $\alpha\left(p_{2}\right)=1 \otimes p_{2}$, and $\beta\left(p_{1}\right)=$ $h\left(1 \otimes p_{1}\right)$. In short, P is the pullback in the following diagram:

P is then a f.g. projective R module with $\left(r_{1}, r_{2}\right) \cdot\left(p_{1}, p_{2}\right)=\left(r_{1} p_{1}, r_{2} p_{2}\right)$.
Now consider the principal ideals $I=\left(t^{p n-1}-1\right), J=\left(\phi_{p^{n}}(t)\right)=\left(\phi_{p}\left(t^{p-1}\right)\right)$ in $Z\left[Z_{p^{n}}\right]$ where $\phi_{m}(t)$ denotes the m th cyclotomic polynomial. Since $I \cap J=0$, we have the fibered product diagram

Identifying the rings in (4.3) we have the diagram

where $\zeta_{p^{n}}$ is a primitive p^{n}-th root of unity and $Z\left[\zeta_{p^{n}}\right]$ is the p^{n}-th cyclotomic integers.

Note that since $Z\left[\zeta_{p^{n}}\right]$ is a Dedekind domain, every ideal is projective, and every f.g. Z-torsion free $Z\left[\zeta_{p^{n}}\right]$ module is isomorphic to a direct sum of ideals.

If $M=\mathscr{A}_{1} \oplus \ldots \oplus \mathscr{A}_{k}$, we let

$$
\mathrm{cl}(M)=\prod_{i=1}^{k} \mathscr{A}_{i} \in C\left(Z\left[\zeta_{p^{n}}\right]\right)
$$

the ideal class group of $Z\left[\zeta_{p^{n}}\right]$. Since

$$
\mathscr{A}_{1} \oplus \ldots \mathscr{A}_{k} \simeq Z\left[\zeta_{p^{n}}\right]^{k-1} \oplus \prod_{i=1}^{k} \mathscr{A}_{i}
$$

$\mathrm{cl}(M)$ is trivial if and only if M is a free $Z\left[\zeta_{p^{n}}\right]$ module. The following lemma is an application of Milnor's construction:

Lemma (4.5). Let M be a f.g. Z-torsion free $Z\left[\zeta_{p^{n}}\right]$ module. There is an exact sequence $0 \rightarrow Z\left[Z_{p^{n-1}}\right]^{k} \rightarrow P \rightarrow M \rightarrow 0$ where P is a f.g. projective $Z\left[Z_{p^{n}}\right]$ module, and P is free if $\mathrm{cl}(M)=1$.

Proof. Let $M=\mathscr{A}_{1} \oplus \ldots \oplus \mathscr{A}_{k}$ where \mathscr{A}_{i} is an ideal in $Z\left[\zeta_{p^{n}}\right] i=1, \ldots k$.

$$
Z_{p}\left[Z_{p^{n-1}}\right] \underset{Z\left[\zeta_{\left.p^{n}\right]}\right.}{\otimes} M=\mathscr{A}_{1} / \bar{I} \cdot \mathscr{A}_{1} \oplus \ldots \oplus \mathscr{A}_{k} / \bar{I} \cdot \mathscr{A}_{k}
$$

where \bar{I} is the ideal in $Z\left[\zeta_{p^{n}}\right]$ corresponding to I. Given an ideal \mathscr{A} in $Z\left[\zeta_{p^{n}}\right]$, $\mathscr{A} \simeq \mathscr{B}$ where \mathscr{B} is relatively prime to \bar{I}, and

$$
\begin{aligned}
& \mathscr{A} / \bar{I} \cdot \mathscr{A} \simeq \mathscr{B} / \bar{I} \cdot \mathscr{B}=\mathscr{B} / \bar{I} \cap \mathscr{B} \simeq(\mathscr{B}+\bar{I}) / \bar{I} \\
& \quad=Z\left[\zeta_{p^{n}}\right] / \bar{I} \simeq Z_{p}\left[Z_{p^{n-1}}\right] .
\end{aligned}
$$

Therefore

$$
Z_{p}\left[Z_{p^{n-1}}\right] \underset{Z\left(\zeta_{p} n\right]}{\otimes} M \sim Z_{p}\left[Z_{p^{n-1}}\right]^{k} \sim Z_{p}\left[Z_{p^{n-1}}\right] \underset{Z\left[Z_{p} n-1\right]}{\otimes} Z\left[Z_{p^{n-1}}\right]^{k}
$$

and we apply Milnor's construction to obtain the pullback diagram:

P is a f.g. projective $Z\left[Z_{p^{n}}\right]$ module, and if $\mathrm{cl}(M)=1, P$ is free.
Now consider the exact sequence

$$
0 \rightarrow K \operatorname{ern}(\psi) \xrightarrow{i_{1}} P \xrightarrow{\pi_{2}} M \rightarrow 0
$$

where $i_{1}(x)=(x, 0)$ and $\pi_{2}(x, y)=y$.

$$
\begin{aligned}
& \operatorname{Kern}(\psi)=\phi_{p^{n}}(t) \cdot Z\left[Z_{p^{n-1}}\right]^{k}=\phi_{p}\left(t^{p^{n-1}}\right) \cdot Z\left[Z_{p^{n-1}}\right]^{k} \\
&=p \cdot Z\left[Z_{p^{n-1}}\right]^{k} \simeq Z\left[Z_{p^{n-1}}\right]^{k}
\end{aligned}
$$

Therefore we have the sequence

$$
0 \rightarrow Z\left[Z_{p^{n-1}}\right]^{k} \rightarrow P \xrightarrow{\pi_{2}} M \rightarrow 0
$$

We now prove Theorem (3.1).

Theorem (3.1). Let A be a f.g. Z-torsion free $Z\left[Z_{p^{n}}\right]$ module. There is an exact sequence of $Z\left[Z_{p^{n}}\right]$ modules $0 \rightarrow A \oplus P \rightarrow F \oplus Z\left[Z_{p^{n-1}}\right]^{k} \rightarrow B \rightarrow 0$ with the following properties:
a) P is a f.g. projective $Z\left[Z_{p^{n}}\right]$ module, and F is f.g. free;
b) B is a $Z\left[Z_{p^{n-1}}\right]$ module; and
c) if $\operatorname{Sw}(A)=0, P$ is free and $\operatorname{Sw}(B)=0$ in $G_{0}\left(Z\left[Z_{p^{n-1}}\right]\right) / S$.

Proof. Given A, let $0 \rightarrow A \rightarrow F_{1} \rightarrow C \rightarrow 0$ be an exact sequence with F_{1} f.g. free and $C Z$-torsion free. Note that $\operatorname{Sw}(A)=0 \Leftrightarrow \operatorname{Sw}(C)=0$. Let $B=\left\{x \in C \mid\left(t^{p n-1}-1\right) \cdot x=0\right\} . B$ is a $Z\left[Z_{p^{n-1}}\right]$ module, and $\operatorname{Sw}(A)=\operatorname{Sw}(C)$ $=\mathrm{Sw}(B)+\mathrm{Sw}(C / B)$ since $0 \rightarrow B \rightarrow C \rightarrow C / B \rightarrow 0$ is exact. C / B is Z-torsion free and is annihilated by J since $\phi_{p^{n}}(t) \cdot C \subset B$. Therefore C / B is a projective $Z\left[\zeta_{p^{n}}\right]$ module, and is free if and only if $\mathrm{cl}(C / B)=1$. From [4, § 13] it follows that

$$
\varphi: G_{0}\left(Z\left[Z_{p^{n}}\right]\right) / S \rightarrow\left(G_{0}\left(Z\left[Z_{p^{n-1}}\right]\right) / S \oplus C\left(Z\left[\zeta_{p^{n}}\right]\right)\right.
$$

by $\mathrm{Sw}(C) \rightarrow(\mathrm{Sw}(B), \mathrm{cl}(C / B))$ defines an isomorphism. Thus $\operatorname{Sw}(A)=$ $0 \Leftrightarrow \mathrm{Sw}(C)=0 \Leftrightarrow \mathrm{Sw}(B)=0$ and $\mathrm{cl}(C / B)=1$. Let $0 \rightarrow Z\left[Z_{\gamma^{n-1}}\right]^{k} \rightarrow P^{\prime} \rightarrow$ $C / B \rightarrow 0$ be the exact sequence of Lemma (4.5). P^{\prime} is f.g. projective and is free if $\operatorname{Sw}(A)=0$. Since P^{\prime} is projective, there is a commutative diagram

Now choose a surjection $g: F_{2} \rightarrow B$ where F_{2} is a free $Z\left[Z_{p^{n}}\right]$ module. The sequence

$$
\begin{equation*}
0 \rightarrow K \rightarrow F_{2} \oplus P^{\prime} \xrightarrow{\gamma} C \rightarrow 0 \tag{4.7}
\end{equation*}
$$

is exact where $\gamma(x, y)=g(x)-f(y)$, and $K=\{(x, y) \mid g(x)=f(y)\}$. Since the image of g is B, and $f(x) \in B \Leftrightarrow x \in Z\left[Z_{p^{n-1}}\right]^{k}$ (by 4.6),

$$
K=\left\{(x, y) \in F_{2} \oplus Z\left[Z_{p^{n-1}}\right]^{k} \mid g(x)=\hat{f}(y)\right\} .
$$

Therefore the sequence

$$
\begin{equation*}
0 \rightarrow K \rightarrow Z\left[Z_{p^{n-1}}\right]^{k} \oplus F_{2} \xrightarrow{\epsilon} B \rightarrow 0 \tag{4.8}
\end{equation*}
$$

is exact where $\epsilon(x, y)=g(x)-\hat{f}(y)$. Now since $0 \rightarrow A \rightarrow F_{1} \rightarrow C \rightarrow 0$ and $0 \rightarrow K \rightarrow P^{\prime} \oplus F_{2} \rightarrow C \rightarrow 0$ are exact, $A \oplus P^{\prime} \oplus F_{2} \simeq F_{1} \oplus K$ by Schanuel's Lemma. Adding F_{1} to (4.8), and using this isomorphism, we obtain the exact sequence

$$
0 \rightarrow A \oplus P \rightarrow F \oplus Z\left[Z_{p^{n-1}}\right]^{k} \rightarrow B \rightarrow 0
$$

where $P=P^{\prime} \oplus F_{2}$ and $F=F_{2} \oplus F_{1}$.

References

1. J. E. Arnold, A solution of a problem of Steenrod for cyclic groups of prime order, Proc. Amer. Math. Soc. (to appear).
2. H. Cartan and S. Eilenberg, Homological algebra (Princeton, 1956).
3. J. Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies 72, Princeton, 1971.
4. R. G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.
5. -Invariant rational functions and a problem of Steenrod, Inventiones Math. 7 (1969), 148-158.

University of Wisconsin, Milwaukee, Wisconsin

