Can. J. Math., Vol. XXIX, No. 2, 1977, pp. 421-428

ON STEENROD'S PROBLEM FOR CYCLIC *p*-GROUPS

JAMES E. ARNOLD, JR.

1. Introduction. Let G be a finite group and A a Z[G] module.

Definition (1.1). A simply connected CW complex X is of type (A, n) if G operates on X cellularly, and $\tilde{H}_i(X) = 0$, $i \neq n$, $H_n(X) \cong A$ as Z[G] modules.

If A is a f.g. (finitely generated) Z[G] module, we consider the following problems:

I. Is there a complex of type (A, n)?

II. Is there a finite complex of type (A, n)?

The second question was posed by Steenrod, and considered by R. Swan in [5]. In [1] we used an invariant of Swan denoted Sw(A) to obtain the following solution for $G = Z_p$, the cyclic group of prime order p:

THEOREM. Let A be a f.g. $Z[Z_p]$ module. There are complexes of type (A, n), $n \ge 3$, and there is a finite complex of type (A, n) if and only if Sw(A) = 0.

In this paper we obtain a similar result for G a cyclic p-group.

2. Preliminary definitions and lemmas.

Definition (2.1). A Z[G] module M is a signed permutation module if M is free abelian with a set of generators permuted up to sign G.

Let $G_0(Z[G])$ denote the Grothendieck group of f.g. Z[G] modules, and S the subgroup generated by the f.g. signed permutation modules.

Definition (2.2). Given a f.g. Z[G] module A, Sw(A) is the class of A in the group $G_0(Z[G])/S$.

We will say that X is a *G-complex* if X is a *CW* complex and *G* operates effectively and cellularly on X. The cellular chain complex of X denoted $C_*(X)$ will then be a Z[G] chain complex, and $C_n(X) = H_n(X^n, X^{n-1})$ is a signed permutation module for all $n \ge 0$ (see [1]). If X is a finite *G*-complex,

$$\sum (-1)^{i} Sw(H_{i}(X)) = \sum (-1)^{i} Sw(C_{i}(X)) = 0.$$

Thus a necessary condition for there to be a finite complex of type (A, n) is that Sw(A) = 0.

The following two lemmas from [1] are useful in constructing *G*-complexes. We include the proofs for completeness.

Received June 8, 1976.

LEMMA (2.3). Let X and Y be G-complexes where

a) $X = \bigvee_{\alpha \in A} S_{\alpha}^{n}$ with G permuting the n-spheres S_{α}^{n} freely and fixing the base point x_{0} ; and

b) Y is n - 1 connected with a 0-cell y_0 fixed by G.

Then any Z[G] homomorphism $h: H_n(X) \to H_n(Y)$ is realized by an equivariant cellular map $f: X \to Y$.

Proof. Let X_0 be the subcomplex of X consisting of one sphere from each orbit of *n*-spheres. Let $f_0: (X_0, x_0) \to (Y, y_0)$ be a cellular map realizing the induced homomorphism

$$\pi_n(X_0, x_0) \subset \pi_n(X, x_0) = H_n(X) \xrightarrow{h} H_n(Y) = \pi_n(Y, y_0).$$

 f_0 is then extended to $f: (X, x_0) \to (Y, y_0)$ by defining $fg(x) = gf_0(x)$ for all $g \in G, x \in X_0$.

LEMMA (2.4). Let X and Y be G complexes where

a) dim (X) = n and G permutes the n-cells of X freely; and

b) Y is n-1 connected and G fixes a 0-cell y_0 of Y.

Then any Z[G] homomorphism $h: H_n(X) \to H_n(Y)$ which factors through a projective Z[G] module is realized by a G equivariant cellular map $f: X \to Y$.

Proof. Let $h = \beta \alpha$ where α : $H_n(X) \to P, \beta : P \to H_n(Y)$ and P is projective. Since P is weakly injective and $H_n(X)$ is a Z-summand of $C_n(X)$, α extends to $C_n(X) = H_n(X/X^{n-1})$. Let $h' : H_n(X/X^{n-1}) \to H_n(Y)$ denote the corresponding extension of h. By Lemma (2.3) there is a G-equivariant cellular map f':

 $X/X^{n-1} \to Y$ realizing h', and the composite $X \to X/X^{n-1} \xrightarrow{f'} Y$ realizes h.

As in [1], the proof of the main theorem relies on the construction of complexes satisfying the following:

Definition (2.5). X is tractable of type (A, n) if X is an n-dimensional G-complex of type (A, n) so that G permutes the n-cells of X freely and fixes a 0-cell.

Given G and an integer $N \ge 2$, we consider the following properties:

- P(N): For any Z-torsion free f.g. Z[G] module A, there is a G-complex X of type $(A, N k)(k \ge 0 \text{ fixed})$ such that dim (X) = N, G fixes a 0-cell of X, and X is finite if Sw(A) = 0.
- P'(N): For any Z-torsion free f.g. Z[G] module A, there is a G-complex X of type $(A, N k)(k \ge 0 \text{ fixed})$ as in P(N), and so that G permutes the N-cells of X freely.
- Q(N): For any Z-torsion free f.g. Z[G] module A, there are tractable complexes of type (A, N) (finite if Sw(A) = 0).
- R(N): For any f.g. Z[G] module A, there are complexes of type $(A, n)n \ge N$ (finite complexes if Sw(A) = 0).

Lemma (2.6). $P(N) \Rightarrow Q(N+1), P'(N) \Rightarrow Q(N), and Q(N) \Rightarrow R(N).$

Proof. $P(N) \Rightarrow Q(N + 1)$: Given k as in P(N), choose an exact sequence C_* of the form $0 \rightarrow Z \rightarrow F_k' \rightarrow \ldots \rightarrow F_0' \rightarrow M \rightarrow 0$ with F_i' f.g. free, and M Z-torsion free. Such a sequence is determined for example, by part of a complete resolution for G (see [2]). If A is a f.g. Z-torsion free Z[G] module, then $C_* \otimes_Z A$ with $g(x \otimes y) = gx \otimes gy$ defines an exact sequence of the form

 $0 \to A \to F_k \xrightarrow{\epsilon_k} F_{k-1} \to \dots \xrightarrow{\epsilon_1} F_0 \xrightarrow{\epsilon_0} B \to 0$

with F_i f.g. free and B Z-torsion free. Since the F_i are f.g. free $Sw(B) = \pm Sw(A)$.

Now let X be a G-complex of type (B, N - k) as in P(N). If Sw(A) = 0, then Sw(B) = 0 and X is finite. Let X_i be a wedge of N - k + i spheres (freely permuted by G) of type $(F_i, N - k + i)$. By Lemma (2.3), there is an equivariant cellular map $f_0: X_0 \to X$ realizing ϵ_0 , and Cf_0 (the mapping cone of f_0) is of type (Kern $(\epsilon_0), N - k + 1$). Iterating this argument with $X = \frac{f_i}{f_i} Cf_i$, realizing $\epsilon_i: F_i \to Kern (\epsilon_i)$, we attach a finite number of cells

 $X_i \xrightarrow{f_i} Cf_{i-1}$ realizing $\epsilon_i : F_i \to \text{Kern } (\epsilon_{i-1})$, we attach a finite number of cells to X and obtain a complex Y of type (A, N + 1). Since the attached cells are freely permuted by G, Y is tractable and we have Q(N + 1).

 $P'(N) \Rightarrow Q(N)$: Given A, we proceed as in the previous argument using an exact sequence $0 \to A \to F_{k-1} \to \ldots \to F_0 \to B \to 0$. Since the N-cells of the complex X are permuted freely, we obtain a tractable complex of type (A, N) as in Q(N).

 $Q(N) \Rightarrow R(N)$: Let A be a f.g. Z[G] module, and $0 \to B \xrightarrow{\alpha} F \to A \to 0$ an exact sequence with F f.g. free. By Q(N) there is a tractable complex X of type (B, N) (finite if Sw(B) = -Sw(A) = 0). Let Y be a wedge of N-spheres of type (F, N). By Lemma (2.4) there is a G-equivariant cellular map $f: X \to Y$ realizing α . Cf is then of type (A, N), and finite if Sw(A) = 0. Complexes of type (A, n)n > N are obtained by suspension.

3. Proof of the main theorem. Let Z_{p^n} denote the cyclic group of order p^n (*p* prime) with generator *t*. Given a module *M*, we let M^k denote the direct sum of *k* copies of *M*. The main theorem relies on the following algebraic result whose proof we defer to § 4.

THEOREM (3.1). Let A be a f.g. Z-torsion free $Z[Z_{p^n}]$ module. There is an exact sequence of $Z[Z_{p^n}]$ modules

 $0 \to A \oplus P \to F \oplus Z[Z_{p^{n-1}}]^k \to B \to 0$

with the following properties:

a) P is a f.g. projective $Z[Z_{p^n}]$ module, and F is f.g. free;

b) B is a $Z[Z_{p^{n-1}}]$ module (i.e. $t^{p^{n-1}} \cdot x = x$ for all $x \in B$); and

c) if Sw(A) = 0, P is free and Sw(B) = 0 in $G_0(Z[Z_{p^{n-1}}])/S$.

We now prove the main theorem modulo Theorem (3.1).

THEOREM (3.2). Let A be a f.g. $Z[Z_{p^n}]$ module. There are complexes of type $(A, m) (m \ge n + 2)$, and finite complexes of type (A, m) if and only if Sw(A) = 0.

Proof. By Lemma (2.6) it is sufficient to show that P'(n + 2) holds for Z_{p^n} . Specifically we prove that for A a f.g. Z-torsion free $Z[Z_{p^n}]$ module, there is an n + 2 dimensional complex of type (A, n + 1) (finite if Sw(A) = 0) such that Z_{p^n} permutes the n + 2 cells freely and fixes a 0-cell. We prove this by induction on n.

n = 1: Let A be a f.g. Z-torsion free $Z[Z_p]$ module. Then $A = M \oplus Z^s$, and there is an exact sequence

$$0 \to F_1 \oplus Z^r \xrightarrow{\alpha} F \to M \to 0$$

with F and F_1 free (f.g. free if Sw(A) = 0). This follows as in Lemma (3.1) of [1] replacing the sequences $0 \to \mathscr{B} \to \mathscr{B}_{\overline{\omega}} \to Z \to 0$ by the sequences constructed in (4.5) (this paper). Let X_1 be a tractable complex of type $(F_1 \oplus Z^r, 2)$, and Y a tractable complex of type (F, 2) as constructed in [1]. By Lemma (2.4), there is a Z_p equivariant cellular map f realizing α , and Cf is of type (M, 2) with 3-cells freely permuted by Z_p . Let $X = Cf \lor X_2$ where X_2 is tractable of type $(Z^s, 2)$. X is 3-dimensional of type (A, 2) and satisfies the requirements of P'(3).

 $n-1 \Rightarrow n$: Given an f.g. Z-torsion free $Z[Z_{p^n}]$ module A, let

$$0 \to A \oplus P \to F \oplus Z[Z_{p^{n-1}}]^k \xrightarrow{\beta} B \to 0$$

be the exact sequence in Theorem (3.1). By the inductive assumption there is an n + 1 dimensional $Z_{p^{n-1}}$ complex Y of type (B, n) with fixed 0-cell. If Sw(A) = 0, Sw(B) = 0 and we choose Y to be finite. Let X_1 be a wedge of *n*-spheres permuted by Z_{p^n} of type $(F \oplus Z[Z_{p^{n-1}}]^k, n)$. By Lemma (2.3) there is a Z_{p^n} equivariant map $f_1: X_1 \to Y$ realizing β . Cf_1 is then a Z_{p^n} complex of type $(A \oplus P, n + 1)$ and dimension n + 1 (finite if Sw(A) = 0). If Sw(A) =0, P is free and we let X_2 be a wedge of n + 1 spheres freely permuted by Z_{p^n} of type (P, n + 1). Otherwise, choose an exact sequence

$$0 \to P \to F_1 \xrightarrow{\epsilon} F_2 \to 0$$

with F_1 and F_2 free, and let X_2 be the mapping cone of an equivariant cellular map between tractable complexes which realizes ϵ . By Lemma (2.4), there is an equivariant cellular map $g: X_2 \to Cf$ realizing the inclusion $P \to A \oplus P$. Cg is then of type (A, n + 1) and satisfies the requirements of P'(n + 1).

This completes the induction, and we have the main theorem modulo (3.1).

4. The proof of Theorem (3.1).

Definition (4.1). A commutative diagram of rings and ring homomorphisms

$$\begin{array}{c} R & \stackrel{i_1}{\longrightarrow} R_1 \\ i_2 \downarrow & \qquad \downarrow j_1 \\ R_2 & \stackrel{j_2}{\longrightarrow} \bar{R} \end{array}$$

is a fibered product diagram (or pullback diagram) if

$$R \simeq \{ (r_1, r_2) | r_i \in R_i, j_1(r_1) = j_2(r_2) \} \subset R_1 \oplus R_2.$$

As an example, if I and J are ideals in R, the following is a fibered product diagram:

Our main interest in fibered product diagrams is the following construction of projective modules due to Milnor (see [3]): Assume that we have a diagram as in (4.1) with at least one of j_1 , j_2 onto. Then given P_i f.g. projective R_i modules i = 1, 2, and an isomorphism $h: \overline{R} \otimes_{R_1} P_1 \to \overline{R} \otimes_{R_2} P_2$, let P = $\{(p_1, p_2) \in P_1 \oplus P_2 | \alpha(p_1) = \beta(p_2)\}$ where $\alpha(p_2) = 1 \otimes p_2$, and $\beta(p_1) =$ $h(1 \otimes p_1)$. In short, P is the pullback in the following diagram:

$$\begin{array}{ccc} P & \to & P_1 \\ \downarrow & & \downarrow \beta. \\ P_2 \xrightarrow{\alpha} \bar{R} \otimes P_2 \\ R_2 \end{array}$$

P is then a f.g. projective R module with $(r_1, r_2) \cdot (p_1, p_2) = (r_1p_1, r_2p_2)$.

Now consider the principal ideals $I = (t^{p^{n-1}} - 1)$, $J = (\phi_{p^n}(t)) = (\phi_p(t^{p^{n-1}}))$ in $Z[Z_{p^n}]$ where $\phi_m(t)$ denotes the *m*th cyclotomic polynomial. Since $I \cap J = 0$, we have the fibered product diagram

$$(4.3) \qquad \begin{array}{c} Z[Z_{p^n}] \longrightarrow Z[Z_{p^n}]/J \\ \downarrow \\ Z[Z_{p^n}]/I \longrightarrow Z[Z_{p^n}]/I + J \end{array}$$

Identifying the rings in (4.3) we have the diagram

where ζ_{p^n} is a primitive p^n -th root of unity and $Z[\zeta_{p^n}]$ is the p^n -th cyclotomic integers.

Note that since $Z[\zeta_{p^n}]$ is a Dedekind domain, every ideal is projective, and every f.g. Z-torsion free $Z[\zeta_{p^n}]$ module is isomorphic to a direct sum of ideals.

 $R/I \cap J \to R/I$

If $M = \mathscr{A}_1 \oplus \ldots \oplus \mathscr{A}_k$, we let

cl
$$(M) = \prod_{i=1}^{k} \mathscr{A}_{i} \in C(Z[\zeta_{p^{n}}]),$$

the ideal class group of $Z[\zeta_{p^n}]$. Since

$$\mathscr{A}_1 \oplus \ldots \mathscr{A}_k \simeq Z[\zeta_{p^n}]^{k-1} \oplus \prod_{i=1}^k \mathscr{A}_i,$$

cl(M) is trivial if and only if M is a free $Z[\zeta_{p^n}]$ module. The following lemma is an application of Milnor's construction:

LEMMA (4.5). Let M be a f.g. Z-torsion free $Z[\zeta_{p^n}]$ module. There is an exact sequence $0 \to Z[Z_{p^{n-1}}]^k \to P \to M \to 0$ where P is a f.g. projective $Z[Z_{p^n}]$ module, and P is free if cl (M) = 1.

Proof. Let $M = \mathscr{A}_1 \oplus \ldots \oplus \mathscr{A}_k$ where \mathscr{A}_i is an ideal in $Z[\zeta_{p^n}]$ $i = 1, \ldots k$.

$$Z_p[Z_{p^{n-1}}] \bigotimes_{Z[\zeta_{p^n}]} M = \mathscr{A}_1/\bar{I} \cdot \mathscr{A}_1 \oplus \ldots \oplus \mathscr{A}_k/\bar{I} \cdot \mathscr{A}_k$$

where \overline{I} is the ideal in $Z[\zeta_{p^n}]$ corresponding to I. Given an ideal \mathscr{A} in $Z[\zeta_{p^n}]$, $\mathscr{A} \simeq \mathscr{B}$ where \mathscr{B} is relatively prime to \overline{I} , and

$$\mathscr{A}/\bar{I} \cdot \mathscr{A} \simeq \mathscr{B}/\bar{I} \cdot \mathscr{B} = \mathscr{B}/\bar{I} \cap \mathscr{B} \simeq (\mathscr{B} + \bar{I})/\bar{I} \\ = Z[\zeta_{p^n}]/\bar{I} \simeq Z_p[Z_{p^{n-1}}].$$

Therefore

$$Z_p[Z_{p^{n-1}}] \underset{Z[\zeta_p n]}{\otimes} M \sim Z_p[Z_{p^{n-1}}]^k \sim Z_p[Z_{p^{n-1}}] \underset{Z[Z_p n-1]}{\otimes} Z[Z_{p^{n-1}}]^k,$$

and we apply Milnor's construction to obtain the pullback diagram:

$$P \longrightarrow M$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z[Z_{p^{n-1}}]^k \stackrel{\psi}{\to} Z_p[Z_{p^{n-1}}]^k$$

P is a f.g. projective $Z[Z_{p^n}]$ module, and if cl (M) = 1, *P* is free. Now consider the exact sequence

 $0 \to Kern \ (\psi) \xrightarrow{i_1} P \xrightarrow{\pi_2} M \to 0$ where $i_1(x) = (x, 0)$ and $\pi_2(x, y) = y$. $Kern(\psi) = \phi_{p^n}(t) \cdot Z[Z_{p^{n-1}}]^k = \phi_p(t^{p^{n-1}}) \cdot Z[Z_{p^{n-1}}]^k$ $= p \cdot Z[Z_{p^{n-1}}]^k \simeq Z[Z_{p^{n-1}}]^k.$

Therefore we have the sequence

$$0 \to Z[Z_{p^{n-1}}]^k \to P \xrightarrow{\pi_2} M \to 0.$$

We now prove Theorem (3.1).

https://doi.org/10.4153/CJM-1977-044-2 Published online by Cambridge University Press

426

THEOREM (3.1). Let A be a f.g. Z-torsion free $Z[Z_{p^n}]$ module. There is an exact sequence of $Z[Z_{p^n}]$ modules $0 \to A \oplus P \to F \oplus Z[Z_{p^{n-1}}]^k \to B \to 0$ with the following properties:

- a) P is a f.g. projective $Z[Z_{p^n}]$ module, and F is f.g. free;
- b) B is a $Z[Z_{p^{n-1}}]$ module; and
- c) if Sw(A) = 0, P is free and Sw(B) = 0 in $G_0(Z[Z_{p^{n-1}}])/S$.

Proof. Given A, let $0 \to A \to F_1 \to C \to 0$ be an exact sequence with F_1 f.g. free and C Z-torsion free. Note that $Sw(A) = 0 \Leftrightarrow Sw(C) = 0$. Let $B = \{x \in C | (t^{p^{n-1}} - 1) \cdot x = 0\}$. B is a $Z[Z_{p^{n-1}}]$ module, and Sw(A) = Sw(C) = Sw(B) + Sw(C/B) since $0 \to B \to C \to C/B \to 0$ is exact. C/B is Z-torsion free and is annihilated by J since $\phi_{p^n}(t) \cdot C \subset B$. Therefore C/B is a projective $Z[\zeta_{p^n}]$ module, and is free if and only if cl (C/B) = 1. From [4, § 13] it follows that

$$\varphi \colon G_0(Z[Z_{p^n}])/S \to (G_0(Z[Z_{p^{n-1}}])/S \oplus C(Z[\zeta_{p^n}]))$$

by $\operatorname{Sw}(C) \to (\operatorname{Sw}(B), \operatorname{cl}(C/B))$ defines an isomorphism. Thus $\operatorname{Sw}(A) = 0 \Leftrightarrow \operatorname{Sw}(C) = 0 \Leftrightarrow \operatorname{Sw}(B) = 0$ and $\operatorname{cl}(C/B) = 1$. Let $0 \to Z[Z_{p^{n-1}}]^k \to P' \to C/B \to 0$ be the exact sequence of Lemma (4.5). P' is f.g. projective and is free if $\operatorname{Sw}(A) = 0$. Since P' is projective, there is a commutative diagram

$$(4.6) \qquad \begin{array}{c} 0 \longrightarrow Z[Z_{p^{n-1}}]^k \longrightarrow P' \longrightarrow C/B \longrightarrow 0 \\ \downarrow^{\hat{f}} \qquad \qquad \downarrow^{\hat{f}} \qquad \qquad \downarrow^f \qquad \qquad \downarrow^f \qquad \qquad \downarrow^1 \\ 0 \longrightarrow B \longrightarrow C \longrightarrow C/B \longrightarrow 0 \end{array}$$

Now choose a surjection $g: F_2 \to B$ where F_2 is a free $Z[Z_{p^n}]$ module. The sequence

$$(4.7) \quad 0 \to K \to F_2 \oplus P' \xrightarrow{\gamma} C \to 0$$

is exact where $\gamma(x, y) = g(x) - f(y)$, and $K = \{(x, y) | g(x) = f(y)\}$. Since the image of g is B, and $f(x) \in B \Leftrightarrow x \in Z[Z_{p^{n-1}}]^k$ (by 4.6),

$$K = \{ (x, y) \in F_2 \oplus Z[Z_{p^{n-1}}]^k | g(x) = \hat{f}(y) \}.$$

Therefore the sequence

$$(4.8) \quad 0 \to K \to Z[Z_{p^{n-1}}]^k \oplus F_2 \xrightarrow{\mathbf{c}} B \to 0$$

is exact where $\epsilon(x, y) = g(x) - \hat{f}(y)$. Now since $0 \to A \to F_1 \to C \to 0$ and $0 \to K \to P' \oplus F_2 \to C \to 0$ are exact, $A \oplus P' \oplus F_2 \simeq F_1 \oplus K$ by Schanuel's Lemma. Adding F_1 to (4.8), and using this isomorphism, we obtain the exact sequence

$$0 \to A \oplus P \to F \oplus Z[Z_{p^{n-1}}]^k \to B \to 0$$

where $P = P' \oplus F_2$ and $F = F_2 \oplus F_1$.

JAMES E. ARNOLD, JR.

References

- 1. J. E. Arnold, A solution of a problem of Steenrod for cyclic groups of prime order, Proc. Amer. Math. Soc. (to appear).
- 2. H. Cartan and S. Eilenberg, Homological algebra (Princeton, 1956).
- 3. J. Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies 72, Princeton, 1971.
- 4. R. G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.
- 5. Invariant rational functions and a problem of Steenrod, Inventiones Math. 7 (1969), 148–158.

University of Wisconsin, Milwaukee, Wisconsin