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DISTANCE FOR BEZIER CURVES AND DEGREE REDUCTION

BYUNG-GOOK L E E AND YUNBEOM PARK

An algorithmic approach to degree reduction of Bezier curves is presented. The
algorithm is based on the matrix representations of the degree elevation and degree
reduction processes. The control points of the approximation are obtained by the
generalised least squares method. The computations are carried out by minimising
the Z/2 a nd discrete 1% distance between the two curves.

1. INTRODUCTION

Bezier curves are basically and widely used in CAGD - short for Computer Aided
Geometric Design. Bezier curves were independently developed by de Casteljau about
1959 [2] and by Bezier about 1962 [1]. The underlying mathematical theory is based on
the concept of Bernstein polynomials. De Casteljau directly exploited this relationship;
but it was not until 1970 that Forrest[ll] discovered the connection between Bezier's
work and Bernstein polynomials. Bezier and de Casteljau developed their theories as
part of CAD systems that were being built up at two French car companies, Renault
and Citroen. The Renault system UNISURF (by Bezier) was soon described in several
publications; this is the reason that the underlying theory now bears Bezier's name.
Bezier curves and surfaces are now established as the mathematical basis of many CAD
systems, they have also become a major tool for the development of new methods for
curve and surface descriptions. Farin [10] summarises the basic theory of such curves
and provides many relevant references.

The Bezier representation uses Bernstein polynomials as basis functions for the linear
space of polynomials. In terms of the Bernstein polynomials of degree n,

Bn
k{t) = M ( 1 - t)n~kt\ <U t ^ 1, * = 0, • • •,n,

a parametric polynomial curve of degree n (n > 0) in the plane, can be expressed as

*=o
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The points 6 ,̂ k = 0,---,n are called the control points for the polynomial, and the
polygon formed by joining successive control points is the control polygon. Notice that
b0 and bn are the endpoints of the curve corresponding to t = 0 and t = 1; we shall refer
to these particular points as anchor points. Moreover, the vector b( — 60 and bn — &„_!
define the tangents to the curve at the two anchor points respectively.

In general, degree reduction of Bezier curves address the following problem.

PROBLEM 1. (Degree Reduction.) Let {&i}"=o C R2 be a given set of control points
which define the Bezier curve

t=0

of degree n. Then find another point set {c;}™_0 C M2 defining the approximative Bezier
curve

771

cm(t) = Y,c<B?(t), < U * ^ 1
!=0

of lower degree m < n so that a suitable distance function d(bn,cm) between bn and cm

is minimised.

In the literature [3, 4, 6, 7, 9, 11, 14, 15, 17, 19] one can find several schemes
producing solutions for this approximation problem. These schemes mainly differ in the
choice of the distance function and requiring the solution to be either best or only nearly
best relative to the distance function. For instance, one special type of degree reduction
schemes works recursively by lowering the degree only by one in every step - a procedure
commonly known as economisation.

Examples for such a stepwise method were recently given in [6] or [19] where a very
simple geometric construction of the new control points in each step is described. And
the method allows detailed error analysis for the other methods (for example, [11] and
[9], see [18]). However, this general construction contains some scalar - valued degrees
of freedom which are then chosen in such a way that the maximal Euclidean distance

between two curves with respect to the given parameterisation is minimisied.

The derivation is mainly based on the so-called constrained Chebyshev polynomials.
Unfortunately, the constrained Chebyshev polynomials are not known explicitly so their
coefficients have to be determined numerically, which itself needs a lot of implementation
effort.

This major disadvantage is avoided in the current paper. In more detail, we minimisie
the least squares distance function
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The algorithm presented is faster, more stable and much easier to implement. Moreover,
the procedure can reduce the degree from n to m in only one step.

2. D E G R E E ELEVATION AND L2 DISTANCE

Suppose we were designing with Bezier curves trying to use a Bezier curve of degree
n. After modifying the polygon a few times, it may turn out that a degree n curve
does not possess sufficient flexibility to model the desired shape. One way to proceed
in such a situation is to increase the flexibility of the polygon by adding another vertex
to it. As a first step, one might want to add another vertex yet leave the shape of the
curve unchanged - this corresponds to raising the degree of the Bezier curve by one. We
can show that new vertices b\ are obtained from the old polygon by piecewise linear
interpolation at the parameter values i/(n+ 1)

b\1] = -^-f t i - i + fi - — r r V . , » = o, l , . . . ,n
n + 1 V n + 1 /

+ I.(1)

We can rewrite the formula (1) as a linear system TnB — B^l\ where the (n + 2) x
(n+1) matrix Tn is

T —
1

n + 1

' n + 1
1

0

0
0

\ 0

0
n
2

0
0
0

0
0

n - 1

0
0
0

. . . 0
0
0

. . . n - l
0

0

0
0
0

2
n

0

0
0
0

0
1

and the (n+1) vector B and the (n + 2) vector S(1) are

B = (&0, &!,... A ) '
D(1) _ (hW 1,(1) 1,(1) V

We may repeat this process and then obtain a sequence of control points. After r

degree elevations, we have a linear system TnrB = B^r\ where the (n + r + 1) x (n + 1)
matrix

J-n,r — -*n+r-l-'n+r-2 • • • -'n+l-'n

has elements
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The sum of any row and any column of the matrix Tn<r are 1 and (n + r + l ) / (n + 1)
respectively, that is, for any i,

n

k=0

and for any k,
yT _ n + r + 1

For the degree reduction of any given curves, we must compute the distance of two
Bezier curves. The most appropriate metric in geometrical terms would be the Hausdorff
distance [5]. Suppose (M,d) is a metric space with subsets A and B. We define the
Hausdorff metric dn by

dH(A,B) = max < supd(x, B), supd(y, A)

where
d(x, B) = inf d(x, y).

If we regard a plane curve as simply a locus of points without any underlying parameter-
isation, the Hausdorff metric for two such curves is essentially the radius of the largest
circle with its centre on one curve and touching the other curve. For general parametric
curves, this measure is truly independent of the relative parameterisations of two curves.
Emery [8] presents a method for explicit computation of the Hausdorff metric for piece-
wise linear curves, but the computation of the Hausdorff distance d# of two nonlinear
curves is not so easy. So we define and use the Li distance for the Bezier curves.

We first consider the functional case of Bezier curves for computation of the L2

distance of the two Bezier curves. Let an and bm be functional Bezier curves of degree n
and m (m < n), that is,

n m

an(t) = £ akB
n
k(t) , bm(t) = £ bkB?{t) ,

k=0 ifc=0

where the coefficients a^ and b^ are real numbers. The Li distance of the two Bezier
curves an and bm is defined as following:

1/2

d2(a
n,bm) =

Using the matrix TmiT, we can elevate the degree of bm from m to n,

B^ = Tm,rB.

https://doi.org/10.1017/S0004972700031312 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031312


[5] Bezier curves 511

Then, the curve bm of degree m is re-written as a curve of degree n

k=0

and the distance is

d2{an,bm) =

k=0

dt

2 < j * / 2

dt\ .

Let Ck = a^ — o£ for all /c. This is how we compute the L2 norm of a (functional) Bezier
curve of degree n.

The product of Bernstein polynomials is

i+j

(2) I

and the integration is

(3)

From these equations (2) and (3), we obtain the following computation for the L2 norm
of the functional Bezier curve c":

- / ; E <*«*"(<>
/fc=0

dt

2n

Let Qn be the (n + 1) x (n + 1) matrix

ao
™ 2n + l

Then, the Li norm of the Bezier curve c" is

l l - n i i 2 _
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The matrix Qn is a real symmetric matrix. The following lemma gives equivalent
conditions for the real symmetric matrix to be positive definite [16].

LEMMA 1 . Each of the following tests is a necessary and sufficient condition for

the real symmetric matrix A to be positive definite:

1. x*.4x > 0 for all nonzero vectors x.

2. All the eigenvalues of A are positive.

3. AH the upper left submatrices have positive determinants.

From the definition of the matrix Qn and mathematical induction, all the upper left
submatrices of the matrix Qn have positive determinants. Hence, the matrix Qn is real
symmetric positive definite.

Thus, we obtain the following theorem for the L2 distance between the Bezier curve
a" of degree n and the Bezier curve bm of degree m.

THEOREM 2 . The L2 distance between the two Bezier curves an and bm is

(4) d2(a\bm) = d2(an,6<r>) = yjD*QnD,

where D = A - Tm^B and A — ( a 0 , . . . , a n ) ' and B = (b0,..., bm)1.

The sum of any row and any column of the matrix Qn are both equal to l /(n + 1),

that is,
n n 1

j=0 .=0 n + l

3. DEGREE REDUCTION

By replacing the distance function d in Problem 1 and writing the distance d2 as in

(4), Problem 1 can be rewritten as the following:

PROBLEM 2. (L2 Degree Reduction.) Find another point set {c,}£L0 so that the least
squares distance

d2(b
n,cm) =

between {^}"=0 and {ct- }"=0 is minimised.

Note that Tm,TC = C<r) and B - C^ = D where D = (d0, du • • •, dn)\ d{ = b, - cf \ 1 =

0 , 1 , • • • , n .

For developing the method, rewrite DtQnD,

(5) D^D = [B - C^}lQn[B - C<r>]

= [B - T^rCfQniB - TmtTC]

= BlQnB - 2CtT^TQnB + C'T^QnT^C.
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One method of obtaining the vector C is the method of least squares. This method

consists of minimising DlQnD with respect to C. Choosing the vector C as that value of

C which minimises DlQnD involves differentiating DtQnD with respect to the elements

of C. On equating d(DtQnD)/dC to zero and writing the resulting equations in terms

of C, we find that these equations are

T*m,rQnTm,rC = T^rQnB.

They are known as the normal equations [12].

From the definition of the matrix T m r and Qn, we have that the matrix product

TmrQnTm,r is Qm • Hence, the real symmetric positive definite matrix X^rQnTm,. = Qm

is invertible. Provided (T^ rQnTm,r J exists, we have the unique solution for C,

(6) C

The approximate curve by using (6) is the best approximation with respect to the L2

norm. The L2 best approximation is the Legendre polynomials. See Eck [7] for detailed
discussion.

For an error analysis, we need the definition of the Moore-Penrose inverse.

DEFINITION 1: Let A be the nxm matrix (n > m). The mxn matrix X is called
the Moore-Penrose inverse of the A, if it satisfies the following conditions known as the
Moore-Penrose conditions:

AX A = A, {AX)1 = AX

XAX = X, {XAf = XA.

The Moore-Penrose inverse of A is usually denoted by A+. The Moore-Penrose inverse
A+ of the matrix A is uniquely determined [13]. If rank(A) = m, then A+ = (AtA)~ A1,

while if rank(A) = m = n, then A+ = A~l [13].

The matrix M = (T^QnTms) T^rQn is the Moore-Penrose inverse of the matrix
T
1 m,r-

To obtain the approximation error £i2, put C into equation (5).
THEOREM 3 . The error of the solution C of the Problem 2 is

. - l

For simple computation we may use the discrete h distance function. Then the

Problem 1 may be rewritten as the following:

PROBLEM 3. (l2 DEGREE REDUCTION) Find control points {c,}™0 so that the dis-

tance
dDLs(bn,cm) = dDLS(b

n,c^) = VDW

between {6,}"=0 and {c-r'}"=0 is minimised.
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As in the case of Li degree reduction, we obtain the solution CDLS as

The matr ix (T^TmA T^r is also the Moore-Penrose inverse of T m r . By the

uniqueness of the Moore-Penrose inverse, the Li solution C and the discrete \i solution

are equal, tha t is,

C =

Thus the L2 degree reduction curve and the discrete I2 degree reduction curve are same.

To obtain the approximation error el2, put CDLS into the equation in Problem 3.

THEOREM 4 . The error of the solution CDLS of Problem 3 is

4=
The (TO + 2) x (m + 2) matrix Pm = I - T^T^T^T^ = {PlJ} has elements

(m+l\

P i j = (-l) ,i,j = 0,l,...,m+l.
\m+l)
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