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Abstract

An additive basis A is finitely stable when the order of A is equal to the order of A ∪ F for all finite subsets
F ⊆ N. We give a sufficient condition for an additive basis to be finitely stable. In particular, we prove
that N2 is finitely stable.
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1. Introduction
An additive basis is a subset A ⊆ N = {0, 1, 2, 3, . . .} with the property that there exists
h ∈ Z+ = N − {0} such that every n ∈ N is the sum of h elements of A. The minimum h
satisfying this definition is called the order of A and is denoted by h = o(A). Examples
of additive bases are:

(a) the squares N2 = {0, 1, 4, 9, 16, . . .}, which has order 4 (Lagrange’s theorem);
(b) the cubes N3 = {0, 1, 8, 27, 64, . . .}, which has order 9 (Wieferich’s theorem);
(c) the triangular numbers N3 = {0, 1, 3, 6, 10, . . .}, which has order 3 (Gauss’s

theorem).

For more information on additive bases, see [2].
An additive basis is called finitely stable when o(A) = o(A ∪ F) for all finite subsets

F ⊆ N. It is obvious from these definitions that N is finitely stable. Moreover, it is easy
to see that an additive basis A of order 2 is finitely stable if and only ifN − A is infinite.
So, the study of finitely stable additive bases is nontrivial only for bases whose order
is greater then 2. This article aims to present a sufficient condition for an additive basis
of order greater than 2 to be finitely stable. As an application of the result, we prove
that N2 is finitely stable.

2. The results
We first set the notation. If A, B ⊆ N, then

A + B = {a + b : a ∈ A, b ∈ B}.
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If t ∈ Z+ and A ⊆ N, then tA = A + · · · + A︸       ︷︷       ︸
t times

. Also, we define 0A = {0}. Finally, if A ⊆ N

and n ∈ N, then A(n) = |{a ∈ A : 1 ≤ a ≤ n}|.

Lemma 2.1 (Binomial theorem for additive bases). If {0} ⊆ A, B ⊆ N and t ∈ Z+, then

t(A ∪ B) =

t⋃
i=0

[(t − i)A + iB].

Proof. Note that n ∈ t(A ∪ B) if and only if there exists i, 0 ≤ i ≤ t, such that

n = a1 + a2 + · · · + at−i + b1 + b2 + · · · + bi,

where a j ∈ A for j = 1, . . . , t − i and b j ∈ B for j = 1, . . . , i. That is, n ∈ t(A ∪ B) if and
only if n ∈ (t − i)A + iB for some i. The lemma follows. �

Theorem 2.2. Let A be an additive basis and suppose that o(A) = h ≥ 3. If

lim
n→∞

((h − 2)A)(n)
n

= 0

and
lim sup

((h − 1)A)(n)
n

< 1,

then A is finitely stable.

Proof. Note first that since tA ⊆ (t + 1)A for all t ∈ Z+, then limn→∞(tA)(n)/n = 0 for
all t ∈ {1, . . . , h − 2}. Now suppose that the statement is false. Then there exists a
finite subset F ⊆ N such that o(A ∪ F) < o(A). Suppose without loss of generality that
F ∩ A = ∅. Since o(A ∪ F) < h, then (h − 1)(A ∪ F) = N. So, if n ∈ Z+, then

n = ((h − 1)(A ∪ F))(n) =

( h−1⋃
i=0

(h − 1 − i)A + iF
)
(n)

≤

h−1∑
i=0

((h − 1 − i)A + iF)(n) ≤
h−1∑
i=0

|iF| · ((h − 1 − i)A)(n).

Dividing by n and taking lim sup,

1 ≤ lim sup
h−1∑
i=0

|iF| · ((h − 1 − i)A)(n)
n

≤

h−1∑
i=0

|iF| lim sup
((h − 1 − i)A)(n)

n

= lim sup
((h − 1)A)(n)

n
+

h−1∑
i=1

|iF| lim sup
((h − 1 − i)A)(n)

n

= lim sup
((h − 1)A)(n)

n
< 1,

which is a contradiction. Hence, A is finitely stable. �
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As an application of the previous theorem, we will prove that N2 is finitely stable.
For this, we will need the following results of Landau [1].

Theorem 2.3 (Landau).

lim
n→∞

(2N2)(n)
n(log n)−1/2 =

(
2
∏

p

(1 − p−2)
)−1/2
,

the product being taken over all primes p such that p ≡ 3 mod 4.

Theorem 2.4 (Landau).

lim
n→∞

(3N2)(n)
n

=
5
6
.

Corollary 2.5. N2 is finitely stable.

Proof. Since o(N2) = 4, Theorems 2.3 and 2.4 show that the hypotheses of Theorem
2.2 are satisfied. Thus, N2 is finitely stable. �
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Cidade Universitária, São Paulo, SP 05508-090, Brazil
e-mail: luan@ime.usp.br

https://doi.org/10.1017/S0004972717001204 Published online by Cambridge University Press

http://orcid.org/0000-0002-3963-6714
mailto:luan@ime.usp.br
https://doi.org/10.1017/S0004972717001204

	Introduction
	The results
	References

