DETERMINATION OF A SUBSET FROM CERTAIN
COMBINATORIAL PROPERTIES
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1. Let N be a finite set of # elements. A collection {S1,Ss, ..., S,} of sub-
sets of N is called a determining collection if an arbitrary subset 7 of N is
uniquely determined by the cardinalities of the intersections S; N T,
1 < 7 < m. The purpose of this paper is to study the minimum value D (n)
of m for which a determining collection of m subsets exists.

This problem can be expressed as a coin-weighing problem (1; 7).

In a recent paper Cantor (1) showed that D(n) = O(n/log log n), thus
proving a conjecture of N. J. Fine (3) that D(n) = o(n). More recently
Erdos and Rényi (2), Séderberg and Shapiro (7), Berlekamp, Mills, and Leo
Moser have independently found proofs that D(n) = O(n/log n).

In the present paper we show that a determining collection of 2¥ — 1 sub-
sets exists for » = 2¥-1k. This implies that

D(n) < nlog4/logn + O(n(log n)~2%log log n).

It follows from results of Erdds and Rényi (2) or Leo Moser (5, Adden-
dum) on the lower bound of D(n) that the constant log 4 is best possible.
More precisely, using Moser’s result we obtain the estimate

D(n) = nlog4/log n + O(n(log n)~2log log n).

B. Lindstréom (4; 5) has recently proved that D(s) is asymptotic to
n log 4/log n, which is a consequence of this estimate. His proof runs parallel
to ours, but is quite independent. He gives a construction of a determining
collection of 2¥ — 1 subsets for n = 2%k that is different from ours.

The authors would like to thank J. L. Selfridge for helpful conversations.

2. We now take N to be the set of the first # positive integers. Suppose
¢, =0o0r 1 (1 <j<n). Then a collection {Sy,Ss, ..., S} of subsets of N
is a determining collection if and only if the sums

gi=2 ¢ 1<i<m,
jeS:
determine the e; uniquely. If

o 40 ifjes,
4 1 ifjes,
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then
n

(1) g't:z:leijéj, 1<1<m.
=

It follows that D (%) is the minimum value of m such that there exists an
m by n matrix (e;;) of zeros and ones with the property that the sums (1)
determine the e; uniquely.

It is convenient to weaken the condition that the unknowns e; and the
matrix elements e;; be zeros or ones. For m < n we consider the m by =
matrices (e;;) with the property that if xi, %, ...,x, are integers with
x, = 0 or 1 for u > m, then the sums

(2) hi=Zeijxj, 1<i<m1
=1

determine the x; uniquely. Such matrices clearly exist because the n by n
identity matrix is one. Let Do(n) denote the minimum value of m for which
there exists such a matrix (e;;) consisting entirely of zeros and ones. Let
D;(n) denote the minimum value of m for which there exists such a matrix
(es;) consisting entirely of zeros, ones, and minus ones. Clearly

3) D(n) < Do(n) < n.

We know that D(n) and D,(n) are equal for very small values of #, and
we shall show that they are asymptotic for large #, but we have been unable
to determine whether or not they are equal for all values of .

3. Lower bounds for Dy(z) and D(z). Our lower bounds for Dy(z) and
D;(n) depend on the following lemma:

LemMMA 1. Let m and t be positive integers. Let X be the additive group of all
m-dimensional column vectors with integer elements, let Y be a finite set of t-
dimensional column vectors with integer elements, and let ¢ be the cardinality
of Y. Suppose that A is an m by m matrix of integers, and that B is an m by ¢
matrix of integers. If, for x € X and y € Y, the column vector Ax + By deter-
mines x and y uniquely, then |det A| > c.

Proof. Let G be the subgroup of X generated by the columns of 4. Thus
G is the set of all vectors Ax with x € X. By hypothesis the column vectors
of the form Ax + By, with x € X and y € Y, are all distinct. Therefore as
y ranges over the ¢ elements of ¥, By ranges over ¢ distinct cosets of G in
X. Hence the index X: G of G in X is at least ¢. On the other hand X: G
is equal to the absolute value of the determinant of 4. Thus

|det 4] = X:G > ¢,

and the proof is complete.
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LemmaA 2. If m = Do(n), then
4" < (m 4 1)+,
and if m = Dy(n), then
4" < (dm)™.

Proof. Suppose that x, xs, . . . , &, are integers with x, = 0 or 1 for u > m.
Let (ey;) be an m by # matrix such that the sums (2) determine the x; uniquely.
We apply Lemma 1 with 4 the matrix consisting of the first m columns of
(es;), B the matrix consisting of the remaining # — m columns of (e;;), and

Y the set of all (» — m)-dimensional vectors of zeros and ones. Then Y
contains exactly 2" elements. Hence

|det 4| > 2%,

Suppose first that (e;;) is a matrix of zeros and ones. It is well known (6)
that the determinant of an m by m matrix of zeros and ones is at most
2-™(m + 1)1 /2 Hence

2 m(m 4 1)™+D /2 > |det 4| > 2™,
Therefore if m = Dy(n), then
(m + 1)m+1 > 22 — 4",

Now suppose that (e;;) is a matrix of zeros, ones, and minus ones. Since
the determinant of an m by m matrix of zeros, ones, and minus ones is at
most m™/2, we have

m™’? > |det 4| > 2™,

Therefore, if m = Di(n), then
22mpm > Q2

which completes the proof.

4. Explicit constructions.

LeMMA 3. Let k be a non-negative integer, r = 2%, and s = 2¥1(k + 2). Then
there exists an r by s matrix B = (b;;), of zeros, ones, and minus ones, such

that
(1) the bottom row of B contains only zeros and ones, and
(i1) if x1, %2, . . . , x5 are integers with x, = 0 or 1 for u > r, then the sums

S
Ne=2 bix, 1<1<r,
j=1
determine the x; uniquely.

Proof by induction on k. For k = 0 we take B to be the 1 by 1 identity
matrix (1). This matrix satisfies conditions (i) and (ii). Now suppose that
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B = B, is a 2% by 2*1(k + 2) matrix of zeros, ones, and minus ones satis-
fying conditions (i) and (ii) for a given value of k. Set

B —B I
[
B = <B B 0) ’
where O and [ are the 7 by 7 zero and identity matrices respectively. Then

B’ is a 2%+ by 2%(k + 3) matrix of zeros, ones, and minus ones, and the
bottom row of B’ contains only zeros and ones. Let

X1y X2y« o oy X, V1, Y2y o ooy Vs 21y 32y« + + 4y 3y

be integers with x, =0 or 1 and y, =0 or 1, for # > 7, and 2;, =0 or 1
for all j. The new values of \; corresponding to the matrix B’ are the 27 sums

s s
No=2byx; =2 by e, 1<i<r,
=1 =1
and
)\inzzlb”xj—l—zlbijyj’ 1<1<7’
= =
We have
N+ N =3z, (mod2).

Hence N/ and \;/’ determine z; uniquely. Since

)\i'+)\i”=2zbi]‘xj+zi, 12K,
=1

it now follows from the induction hypothesis that the A,/ and the A,/ deter-
mine the x; uniquely. Finally, since

)\i”_)\i’=2zbi]‘yj_ziy 12K,
=1

it follows that the X\, and the )\, also determine the y; uniquely. Therefore,
by a suitable permutation of the columns of B’, we obtain a matrix By of
the correct dimensions satisfying conditions (i) and (ii). This completes the
proof.

COROLLARY. If k is a non-negative integer, then
Dy (2¥1(k + 2)) = 2%,

Proof. Lemma 2 implies that D;(2*1(k + 2)) > 2%, On the other hand,
the matrix B of Lemma 3 is a 2* by 2*1(k + 2) matrix of zeros, ones, and
minus ones with the appropriate properties. Therefore D;(2¥1(k + 2)) < 2%,
which establishes the corollary.

THEOREM 1. If k is a positive integer, then

Do(2%1k) = 28 — 1.
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Proof. 1t follows from Lemma 2 that Do(2¥ k) > 2¥ — 1. We set n = 2%k
and m = 2¥ — 1. To complete the proof it is sufficient to show that there
exists an m by # matrix £ = (e;;) of zeros and ones such that if xy, xs, . .., %,
are integers with x, = 0 or 1 for # > m, then the sums

hi=Zeijx,-, 1<’L<m,
=1

determine the x; uniquely. We proceed by induction on k. For £ =1 we
take E to be the 1 by 1 identity matrix (1). We now suppose that E = (e,;)
is a matrix with the desired properties for a given value of k. Let 4 = (ay;)
be the m 4+ 1 by # matrix of zeros and ones obtained by adding a row of
zeros to the bottom of E. Thus

P L2 fl1<i<m1<j<mn,
H 0 fi=m+1,1<j<n

The matrix B of Lemma 3 can be written in the form B = V — W, where
V = (v;;) and W = (w;;) are r by s matrices of zeros and ones,

r=2=m+1, s =21k 4 2),

and the bottom row of W is identically zero. We set

A TV
r
A = ( 4 W).
We note that 4’ is a 2¥! by 2¥(k + 1) matrix of zeros and ones and that
the bottom row of A’ is identically zero. Let x1, s, . . ., %u; Y1, ¥2, ..., ¥s be

integers with x, = 0 or 1 for # > m and y, = 0 or 1 for # > r. The sums £,
corresponding to the matrix 4’ are

n s
hi'=z:laijxj+zl‘vijyj, 1<1<r,
= =

and
n 3
hi"=zlaijxj+z:l'wijyj, 1<’L<r.
= 1=

It follows from condition (ii) of Lemma 3 that the differences %,/ — &,”
(1 < 7 < 7) determine the y; uniquely. Hence, by the induction hypothesis,
the &,/ and the %"’ determine both the x; and the y;. Moreover, since 4,”" = 0,
it follows that the x, and the y; are uniquely determined by the sums %,
(1<i<r)and k' (1 <2< r—1). Hence by permuting the columns of
A’ and removing the bottom row of zeros we obtain a matrix with the desired
properties. This completes the proof of the theorem.

Theorem 1 enables us to obtain the following upper bound for Dg(n):

THEOREM 2.

n log 4 <n log log n>
Do) < log 7 +0 log” n ’
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Proof. We write Log x for logsx. We assume that » is large enough so that
Log n > 3 Log Log n, and we set

k = [Logn — 3 Log Log n] + 1.

We write n = 2*12Q 4+ R, where Q and R are integers and 0 < R < 2¥1%,
We set Dy(0) = 0. It follows at once from the definition of Dy(n) that
Do(s 4+ t) < Do(s) + Do(?) for all non-negative integers s and ¢. Hence

Do(n) < QDo(2¥%) + Do(R) < 2*— 1)Q + R.
Now

R < 2F1p L 2Losn—3Log Lognp — by J.og=3n < n Log—2n.
Moreover,

2* —1)Q0 <20 < 2n/k < 2n/(Logn — 3 Log Log n)

_ n log 4 n 0<nlog:}ogn> .
log n log“ n

Combining the above inequalities, we obtain the desired result:

K n log 4 <n log log n)
Dy(n) < (2 DO+ R Tog 7 + 0 Tog” 7 .

5. Asymptotic estimates for Dy(n) and D(n). Leo Moser has shown
that

(4) D(n) > nlog 4/log n + O(nlog=2n).

Moser’s proof can be found in a generalized form in Lindstrém’s paper
(5, pp. 488f.). We have already seen that D(n) < Do(n). Combining this with
(4) and Theorem 2, we obtain asymptotic estimates for both D (n) and Dy(n):

THEOREM 3.
Do(n) = nllog4 10 <n lloggog n>
ogn og' n
and

D(n) = nlog4+ 0<nlog§ogn> '
log n log” n
We note that the asymptotic estimate for Dy(n) can be deduced directly
from Theorem 2 and Lemma 2 without using Moser’s result. Furthermore,
from Lemma 2 and the corollary to Lemma 3 we can deduce the same asymp-
totic estimate for D;(n).

6. Modifications. In the original problem, one can use, instead of the

intersections .S; /M 7, the unions S;\U T, the differences S; — 7, the dif-
ferences T — S, or the symmetric difference (S;\J I') — (S; N T"). However,
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since the S; are known sets, once the cardinality of T is known, the cardinality
of S;MN T can be deduced from the cardinality of any of these other sets
and conversely. Hence replacing intersection by one of these other expressions
changes the value of D(#) by at most one and so preserves the asymptotic
estimate.
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