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1. Let N be a finite set of n elements. A collection {Si, S2, . . . , Sm} of sub­
sets of N is called a determining collection if an arbitrary subset T of N is 
uniquely determined by the cardinalities of the intersections 5* Pi T, 
1 < i < m. The purpose of this paper is to study the minimum value D{n) 
of m for which a determining collection of m subsets exists. 

This problem can be expressed as a coin-weighing problem (1; 7). 
In a recent paper Cantor (1) showed that Dirt) = O(n/log log w), thus 

proving a conjecture of N. J. Fine (3) that D(n) = o{n). More recently 
Erdôs and Rényi (2), Sôderberg and Shapiro (7), Berlekamp, Mills, and Leo 
Moser have independently found proofs that D(n) = O(n/logn). 

In the present paper we show that a determining collection of 2k — 1 sub­
sets exists for n = 2k~1k. This implies that 

D(n) < n log 4/log n + O(n(\og n)~2 log log n). 

It follows from results of Erdôs and Rényi (2) or Leo Moser (5, Adden­
dum) on the lower bound of D(n) that the constant log 4 is best possible. 
More precisely, using Moser's result we obtain the estimate 

D(n) = n log 4/log n + O(n(log n)~~2 log log n). 

B. Lindstrom (4; 5) has recently proved that D(n) is asymptotic to 
n log 4/log n, which is a consequence of this estimate. His proof runs parallel 
to ours, but is quite independent. He gives a construction of a determining 
collection of 2k — 1 subsets for n — 2]c~1k that is different from ours. 

The authors would like to thank J. L. Self ridge for helpful conversations. 

2. We now take N to be the set of the first n positive integers. Suppose 
€j = 0 or 1 (1 < j < n). Then a collection {Si, S2, . . . , Sm) of subsets of N 
is a determining collection if and only if the sums 

jeSi 

determine the tj uniquely. If 

e« - { 1 
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1 < i < m, 

if j € Su 

if j G S t , 
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then 

n 

(1) gi = y£eijej, 1 < i < m. 

It follows that D(n) is the minimum value of m such that there exists an 
m by n matrix (etJ) of zeros and ones with the property that the sums (1) 
determine the €j uniquely. 

It is convenient to weaken the condition that the unknowns €j and the 
matrix elements etj be zeros or ones. For m < n we consider the m by n 
matrices (e0) with the property that if X\, x^, . . . , xn are integers with 
xu = 0 or 1 for u > m, then the sums 

(2) *< = ]C e«j **t 1 < i < m, 

determine the x^ uniquely. Such matrices clearly exist because the n by n 
identity matrix is one. Let D0(n) denote the minimum value of m for which 
there exists such a matrix (etj) consisting entirely of zeros and ones. Let 
D\(n) denote the minimum value of m for which there exists such a matrix 
(etj) consisting entirely of zeros, ones, and minus ones. Clearly 

(3) Bin) < D0(n) < n. 

We know that D(n) and D0(n) are equal for very small values of n, and 
we shall show that they are asymptotic for large n, but we have been unable 
to determine whether or not they are equal for all values of n. 

3. Lower bounds for D0(n) and Dx(n). Our lower bounds for D0(n) and 
D\(n) depend on the following lemma: 

LEMMA 1. Let m and t be positive integers. Let X be the additive group of all 
m-dimensional column vectors with integer elements, let Y be a finite set of t-
dimensional column vectors with integer elements, and let c be the cardinality 
of Y. Suppose that A is an m by m matrix of integers, and that B is an m by t 
matrix of integers. If, for x £ X and y Ç Y, the column vector Ax + By deter­
mines x and y uniquely, then |det A \ > c. 

Proof. Let G be the subgroup of X generated by the columns of A. Thus 
G is the set of all vectors Ax with x £ X. By hypothesis the column vectors 
of the form Ax + By, with x £ X and y £ Y, are all distinct. Therefore as 
y ranges over the c elements of Y, By ranges over c distinct cosets of G in 
X. Hence the index X: G of G in X is at least c. On the other hand X: G 
is equal to the absolute value of the determinant of A. Thus 

\detA\ = X:G> c, 

and the proof is complete. 
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LEMMA 2. If m = Do(n), then 

4W < (m + l)<™+i>; 

and if m = Di(n), then 

4W < (4ra)m. 

Proof. Suppose that xi, X2, . . . , xn are integers with xu = 0 or 1 for u > m. 
Let (ei3) be an m by n matrix such that the sums (2) determine the xù uniquely. 
We apply Lemma 1 with A the matrix consisting of the first m columns of 
(etj), B the matrix consisting of the remaining n — m columns of (e^), and 
Y the set of all (n — m)-dimensional vectors of zeros and ones. Then Y 
contains exactly 2n~m elements. Hence 

|det i l | > 2n~m. 

Suppose first that {etj) is a matrix of zeros and ones. I t is well known (6) 
that the determinant of an m by m matrix of zeros and ones is at most 
2~m{m + l)C«+«/2. H e n c e 

2~m(m + 1)(™+D/2 > \detA\ > 2n~m. 

Therefore if m = Do(n), then 

(m + l)m+1 > 22n = 4n. 

Now suppose that (etj) is a matrix of zeros, ones, and minus ones. Since 
the determinant of an m by m matrix of zeros, ones, and minus ones is at 
most mm/2j we have 

mm/2 > |deti4| > 2n~m. 

Therefore, if m = D\{n), then 

22mmm > 22w, 

which completes the proof. 

4. Explicit constructions. 

LEMMA 3. Let k be a non-negative integer, r — 2k, and s = 2k~1(k + 2). Then 
there exists an r by s matrix B — (bi3), of zeros, ones, and minus ones, such 
that 

(i) the bottom row of B contains only zeros and ones, and 
(ii) if Xi, X2, . . . ,xs are integers with xu = 0 or 1 for u > r, then the sums 

s 

A* = S btjXj, 1 < i < r, 

determine the Xj uniquely. 

Proof by induction on k. For & = 0 we take B to be the 1 by 1 identity 
matrix (1). This matrix satisfies conditions (i) and (ii). Now suppose that 
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B = Bk is a 2k by 2k~1(k + 2) matrix of zeros, ones, and minus ones satis­
fying conditions (i) and (ii) for a given value of k. Set 

, _ (B -B A 
B -\B B Oj' 

where 0 and / are the r by r zero and identity matrices respectively. Then 
Br is a 2k+1 by 2k(k + 3) matrix of zeros, ones, and minus ones, and the 
bottom row of B' contains only zeros and ones. Let 

xi, x2, . . . , xs; yl9 y2, . . . , ys) zh z2, . . . , zr 

be integers with xu = 0 or 1 and yu = 0 or 1, for u > r, and Zj = 0 or 1 
for all j . The new values of A* corresponding to the matrix B' are the 2r sums 

s s 

\/ = X btj Xj - ^2 bv yj + zu 1 < i < r, 

and 
s s 

X/' = X &<j ** + X) &i* 3̂ > 1 < i < r. 

We have 
X/ + X," s s, (mod 2). 

Hence X/ and X/' determine 2* uniquely. Since 

X/ + X/' = 2 ^ btjXj + zu 1 < i < r, 

it now follows from the induction hypothesis that the X/ and the X/' deter­
mine the Xj uniquely. Finally, since 

X/' — \t = 2 ^ 6^3^ - z ,̂ 1 < i < r, 

it follows that the X/ and the A/' also determine the 3^ uniquely. Therefore, 
by a suitable permutation of the columns of B'', we obtain a matrix i^+i of 
the correct dimensions satisfying conditions (i) and (ii). This completes the 
proof. 

COROLLARY. If k is a non-negative integer, then 

Dl{2k-1{k + 2)) = 2k. 

Proof. Lemma 2 implies that Di(2k-1(k + 2)) > 2*. On the other hand, 
the matrix B of Lemma 3 is a 2k by 2k~~1(k + 2) matrix of zeros, ones, and 
minus ones with the appropriate properties. Therefore Di(2k~1(k + 2)) < 2k, 
which establishes the corollary. 

THEOREM 1. If k is a positive integer, then 

£>0(2*-i&) = 2* - 1. 
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Proof. It follows from Lemma 2 that D^^k) > 2* - 1. We set n = 2k~lk 
and m = 2* — 1. To complete the proof it is sufficient to show that there 
exists an m by n matrix E = (e^) of zeros and ones such that if Xi, x2, . . . , xn 

are integers with xu = 0 or 1 for u > ra, then the sums 
n 

hi = X^ en Xj, 1 < i < ra, 

determine the x3- uniquely. We proceed by induction on k. For k = 1 we 
take £ to be the 1 by 1 identity matrix (1). We now suppose that E = (e0) 
is a matrix with the desired properties for a given value of k. Let A = (atj) 
be the ra + 1 by n matrix of zeros and ones obtained by adding a row of 
zeros to the bottom of E. Thus 

_ (etj if 1 < i < ra, 1 < j < n, 
aij ~ \ 0 if i = m + 1, 1 < j < n. 

The matrix $ of Lemma 3 can be written in the form B = V — W> where 
V = (vij) a n d W = (iVij) are r by 5 matrices of zeros and ones, 

r = 2 * = m + l, 5 = 2k~1(k + 2), 

and the bottom row of W is identically zero. We set 

A'-[A V\ \A W)' 

We note that A' is a 2fc+1 by 2k(k + 1) matrix of zeros and ones and that 
the bottom row of Ar is identically zero. Let xi, x2, . . . , xn\ yi, y2, . . . , ys be 
integers with xu = 0 or 1 for u > m and yu = 0 or 1 for u > r. The sums ht 

corresponding to the matrix A' are 
n s 

h/ = 2 atj Xj + X va Jji I <i < r, 

and 
n 5 

hi' = X) aijXJ + 23 ww3>,, 1 < i < r. 

It follows from condition (ii) of Lemma 3 that the differences h/ — h/' 
(1 < i < r) determine the ys uniquely. Hence, by the induction hypothesis, 
the hi and the hi" determine both the Xj and the y j . Moreover, since hT" = 0, 
it follows that the xû and the yj are uniquely determined by the sums h/ 
(1 < i < r) and h" (1 < i < r — 1). Hence by permuting the columns of 
*4 ' and removing the bottom row of zeros we obtain a matrix with the desired 
properties. This completes the proof of the theorem. 

Theorem 1 enables us to obtain the following upper bound for D0(n): 

THEOREM 2. 

n log 4 
log n v \ log" i y log" ft / 
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Proof. We write Log x for log2#. We assume that n is large enough so that 
Log n > 3 Log Log ft, and we set 

k = [Log n — 3 Log Log ft] + 1. 

We write n = 2k~1kQ + R, where Q and R are integers and 0 < R < 2k~1k. 
We set Do(0) = 0. It follows at once from the definition of D0(n) that 
Do(s + t) < £*o(s) + Do(t) for all non-negative integers 5 and t. Hence 

D0(n) < QDQ(2^k) + D0(R) < (2* - l)Q + R. 

Now 

i? < 2*-^ < 2Log n ~ 3 Log Log nk = &ft Log"3 n < n Log"2 ft. 

Moreover, 

(2* - 1)<2 < 2* (? < 2ft/& < 2ft/(Log n - 3 Log Log ft) 

= ft log 4 0 / n log log ftj 
log n \ log2 ft / ' 

Combining the above inequalities, we obtain the desired result: 

5. Asymptotic estimates for D0(n) and D(n). Leo Moser has shown 
that 

(4) D(n) > n log 4/log n + 0(n log -2 ft). 

Moser's proof can be found in a generalized form in Lindstrôm's paper 
(5, pp. 488f.). We have already seen that D(n) < D0(n). Combining this with 
(4) and Theorem 2, we obtain asymptotic estimates for both D(n) and Do(n): 

THEOREM 3. 

Doin) = ^ + o (» log log n\ 
log n \ log n I 

and 

log ft \ log- ft / 

We note that the asymptotic estimate for D0(n) can be deduced directly 
from Theorem 2 and Lemma 2 without using Moser's result. Furthermore, 
from Lemma 2 and the corollary to Lemma 3 we can deduce the same asymp­
totic estimate for P i (ft). 

6. Modifications. In the original problem, one can use, instead of the 
intersections Si C\ T, the unions StU T, the differences St — T, the dif­
ferences T — Siy or the symmetric difference (St '\J T) — (St C\ T). However, 
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since the 5* are known sets, once the cardinality of T is known, the cardinality 
of Si C\ T can be deduced from the cardinality of any of these other sets 
and conversely. Hence replacing intersection by one of these other expressions 
changes the value of D(n) by at most one and so preserves the asymptotic 
estimate. 
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