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The generic rank of the Baum–Bott map for foliations

of the projective plane

A. Lins Neto and J. V. Pereira

Abstract

Our main result says that the generic rank of the Baum–Bott map for foliations of degree d,
d � 2, of the projective plane is d2 + d. This answers a question of Gómez-Mont and
Luengo and shows that are no other universal relations between the Baum–Bott indexes
of a foliation of P2 besides the Baum–Bott formula. We also define the Camacho–Sad field
for foliations on surfaces and prove its invariance under the pull-back by meromorphic
maps. As an application we prove that a generic foliation of degree d � 2 is not the
pull-back of a foliation of smaller degree. In Appendix A we show that the monodromy
of the singular set of the universal foliation with very ample cotangent bundle is the full
symmetric group.
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1. Introduction and statement of results

1.1 The Baum–Bott map

One of the most basic invariant for singularities of holomorphic foliations of surfaces is the Baum–
Bott index: if F is a germ of holomorphic foliation of (C2, 0) induced by a holomorphic 1-form
ω = A(x, y) dy − B(x, y) dx with an isolated singularity at 0, then the Baum–Bott index of F at 0
is defined as

BB(F , 0) =
1

(2πi)2

∫
Γ
η ∧ dη

where η is any (1, 0)-form (C∞ on a punctured neighborhood of 0 ∈ C2) satisfying dω = η ∧ ω and
Γ is the boundary of a small ball around 0 (see, for instance, [Bru04]). When the dual vector field
X = A(x, y)∂x +B(x, y)∂y has an invertible linear part, i.e. det(DX(0)) �= 0, a simple computation
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shows that

BB(F , 0) =
tr2(DX (0))
det(DX (0))

.

Singularities with invertible linear part are usually called simple singularities.
Let S be a compact complex surface S. A singular foliation by curves F on S can be defined

by a global holomorphic section of TS ⊗ L, for a suitable line bundle L. This line bundle L is the
cotangent bundle of F and is usually denoted by T ∗

F . We will denote by Fol(L) the space of foliations
on S with cotangent bundle L, i.e.

Fol(L) = PH0(S,TS ⊗L).

For any F ∈ Fol(L) with isolated singularities, sing(F), the singular set of F , contains N(L) =
c2(TS ⊗ L) singularities counted with multiplicities.

If there exists a foliation F0 ∈ Fol(L) with only simple singularities then the set U ⊂ Fol(L) of
foliations with only simple singularities is an open Zariski set. In this case any foliation F ∈ Fol(L)
has exactly N(L) = N singularities. If sing(F0) = {p1, . . . , pN}, then there exist a neighborhood
V ⊂ U and holomorphic maps γ1, . . . , γN : V → S such that γj(F0) = pj and, for any F ∈ V , we
have sing(F) = {γ1(F), . . . , γN (F)}. In this case, we can define a holomorphic map BB: V → CN by

BB(F) = (BB(F , γ1(F)), . . . ,BB(F , γN (F))).

We will call the map BB the local Baum–Bott map. We observe that it is possible to extend
the domain of BB to U , if we symmetrize the coordinates in CN . More precisely, if we denote by
CN/SN the quotient of CN by the equivalence relation which identifies two points (z1, . . . , zN ) and
(zσ(1), . . . , zσ(N)), where σ ∈ SN (the symmetric group in N elements), then we define BB : U →
CN/SN by

BB(F) = [BB(F , p1), . . . ,BB(F , pN )],

where sing(F) = {p1, . . . , pN} and [λ1, . . . , λN ] denotes the class of (λ1, . . . , λN ) in CN/SN . Of
course, this map can be extended to a rational map

BB : Fol(L) ��� (P1)N/SN
∼= PN

which we will call the global Baum–Bott map.
The well-known Baum–Bott index theorem [BB70] (first proved by Chern [Che73] in the case

of foliations with only simple singularities) says that for a foliation F with isolated singularities of
compact surface S,

NF ·NF =
∑

p∈sing(F)

BB(F , p),

where NF is the normal bundle of F , i.e. NF = T ∗
F ⊗ KS∗ with KS being the canonical bundle

of S. In particular the maximal rank of BB on Fol(L) is always less than N(L) and the Baum–Bott
map is never dominant: the closure of its image has codimension at least one.

In this paper we are interested in the generic rank of the Baum–Bott map just defined for
foliations of the projective plane. Of course, the generic rank of the local and global Baum–Bott
maps coincide. Recall that the degree of a foliation F of P2, denoted by deg(F), is defined as the
number d of tangencies of a generic line with F and that F has N(d) := N(T ∗

F ) = d2 + d + 1
singularities counted with multiplicities.

For foliations of degree 0 of P2 we have just one singularity and its index is determined by Baum–
Bott’s theorem. For foliations of degree 1 we have three singularities (counted with multiplicities)
and every foliation admits an invariant line. Camacho–Sad index theorem imposes an extra condition
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on the Baum–Bott indexes and thus the rank of the Baum–Bott map is one, see [GL97]. A natural
problem, proposed by Gomez-Mont and Luengo in [GL97], is the following.

Question 1. When d � 2, are there other hidden relations between the Baum–Bott indexes of a
degree d foliation of the projective plane? In other terms, what is the generic rank of the Baum–Bott
map for foliations of projective plane?

Our first result says that the only universal relation among the Baum–Bott indexes is Baum–
Bott’s formula.

Theorem 1. If d � 2, then the maximal rank of the Baum–Bott map for degree d foliations of P2

is N(d) − 1 = d2 + d.

An immediate consequence of Theorem 1 is the following.

Corollary 1. If d � 2, then the dimension of the generic fiber of the map BB : Fol(d) ��� PN is
3d+ 2.

In fact, one has just to remark that dim Fol(d) = (d + 1)(d + 3) − 1. We do not know whether
the generic fiber of the Baum–Bott map is irreducible or not.

1.2 The rank at Jouanolou’s foliations
In general, it does not seem to be an easy problem to compute the rank of the Baum–Bott map at
a specific foliation. For Jd, the degree d Jouanolou foliation (cf. § 3 for the definition), we are able
to determine the rank.

Theorem 2. For any d � 2, the rank of the local Baum–Bott map at Jd is

d2 + 7d− 6
2

.

In particular, if d = 2, 3, then rk(BB,Jd) = d2 + d, and if d � 4, then rk(BB,Jd) < d2 + d.

Note that at these points the rank of the global Baum–Bott map is strictly less then the rank
of the local Baum–Bott map: since all of the singularities of Jd have the same Baum–Bott indexes,
then BB(Jd) ∈ (P1)N(d) is on the critical set of the symmetrization

(P1)N(d) → PN(d).

1.3 The Camacho–Sad field
Another local index often considered in the theory of holomorphic foliations is the so-called
Camacho–Sad index of a foliation F with respect to a separatrix C through a singular point p.
Suppose that the germ of F at p ∈ C is represented by a germ of holomorphic 1-form ω and that
(f = 0) is a reduced equation of the germ of C at p. Then there exist germs g, h ∈ Op and a germ
of holomorphic 1-form η at p such that gω = h · df + f · η and g, h|C �≡ 0 (cf. [Suw95] or [Bru04]).
The Camacho–Sad index of F at p with respect to C, is defined as

CS(F , C, p) = Resp

(
−η
h

)
=

1
2πi

∫
γ
−η
h
,

where γ is a union of small circles positively oriented around p, one for each local irreducible branch
of the germ of C at p.

If p is a reduced and simple singularity of F , i.e. we have two distinct non-zero eigenvalues at p,
say λ1 and λ2 �= 0, such that λ1/λ2 /∈ Q+, then it is known that F has exactly two local separatrices,
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say Σj, j = 1, 2, tangent to the eigenspace associated to λj. In this case, we have

CS(F ,Σ1, p) = λ2/λ1,

CS(F ,Σ2, p) = λ1/λ2,

BB(F , p) = CS(F ,Σ1, p) + CS(F ,Σ2, p) + 2.
(1)

If p is reduced and non-simple singularity, i.e. p is a saddle-node singularity, then, in general, one
has just one analytic local separatrix, which is tangent to the eigenspace of the non-zero eigenvalue.
The Camacho–Sad index with respect to this separatrix is zero (cf. [Bru04] or [CS82]). In the
direction of the zero eigenvalue there is always a unique formal separatrix (which sometimes is
convergent). This follows from the formal normal form of the saddle-node (cf. [MR82]): the foliation
is formally equivalent to that induced by

ω = xk+1 dy − y(1 + λ · xk) dx,

where k ∈ N and λ ∈ C. When there exists an analytic separatrix tangent to the eigendirection of
the eigenvalue zero, then its Camacho–Sad index is λ. Even if this separatrix is formal, it can be
proved that the number λ is invariant by formal diffeomorphisms (cf. [MR82]). Therefore, we can
define its Camacho–Sad index as λ.

On the other hand, Seidenberg’s resolution theorem asserts that for any foliation F on a surface
S there exists finite composition of punctual blow-ups, say π : M → S, such that the foliation
F̃ := Π∗(F) (the strict transform) on M has only reduced singularities. The foliation F̃ is usually
called a resolution of F .

Definition 1. Let F be a foliation on a compact surface S. We define its Camacho–Sad field,
denoted by K(F), as follows.

• Reduced case. All singularities of F are either reduced or saddle-nodes. Let sing(F) = {p1, . . . ,
pk} and let Σi

j , i = 1, 2, be the two separatrices of F through pj (formal or not), j = 1, . . . , k.
Then we define

K(F) = Q(CS(F ,Σ1
1, p1),CS(F ,Σ2

1, p1), . . . ,CS(F ,Σ2
k, pk)).

• General case. We take any resolution F̃ of F and define K(F) = K(F̃).

We invite the reader to verify that the definition above does not depend on the chosen resolution
using the following facts.

(i) There exists a minimal resolution, that is, a resolution with the minimal number of blowing-ups.
(ii) When we blow-up in a reduced and simple singularity with Camacho–Sad indexes with respect

to the separatrixes λ and λ−1, then two new simple and reduced singularities appear and their
Camacho–Sad indexes are λ− 1, 1/(λ− 1), λ−1 − 1 and λ/(1 − λ).

(iii) When we blow-up at a saddle node with Camacho–Sad indexes 0 and λ, then two new singulari-
ties appear, one saddle-node with Camacho–Sad indexes 0 and λ− 1 and a simple singularity
with both Camacho–Sad indexes equal to −1.

We will say that a subset of Fol(d) is generic if its complement has zero Lebesgue measure.
The next corollary is in fact a reformulation of Theorem 1 in terms of the concept just defined.

Corollary 2. If d � 2, then there exists a generic subset G(d) ⊂ Fol(d) such that for any F ∈ G(d)
the transcendence degree of K(F) over Q is d2 + d.

Our main result concerning the Camacho–Sad field is the following.

Theorem 3. Let M and S be two complex compact and connected surfaces, F a foliation on S and
φ : M ��� S a meromorphic map. Suppose that φ has generic rank two. Then K(φ∗(F)) = K(F).
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One of our motivations to introduce the Camacho–Sad field was to prove the following corollary.

Corollary 3. The generic foliation of degree d � 2 is not the pull-back by a rational map of a
foliation of smaller degree.

1.4 Monodromy

In Appendix A we prove that the monodromy of the singular set of a generic family of holomorphic
foliations is the full symmetric group. An immediate corollary is that the functions γ1, . . . , γN : V ⊂
Fol(d) → P2 used to parametrize the singularities in the proof of Theorem 1 although algebraic
are not solvable by radicals when d � 2, i.e. they cannot be expressed in terms of combinations of
radicals of rational functions on Fol(d).

2. The generic rank of Baum–Bott’s map

2.1 Some words about the notation

Let Fol(d) be the space of foliations of degree d on P2, d � 0. A foliation of degree d on P2, can be
expressed in an affine coordinate system (x, y) ∈ C2 ⊂ P2, by a polynomial vector field on C2 of the
form X = P (x, y)∂x +Q(x, y)∂y, where{

P (x, y) = p(x, y) + x · g(x, y)
Q(x, y) = q(x, y) + y · g(x, y) (2)

with max(deg(p),deg(q)) � d and g is a homogeneous polynomial of degree d.

We will denote by R(d) ⊂ Fol(d) the Zariski dense subset of foliations F of degree d with all
singularities simple. If F ∈ Fol(d), then NF = O(d+ 2). Thus, the Baum–Bott theorem mentioned
in the introduction says that ∑

p∈singF
BB(F , p) = (d+ 2)2,

for every F ∈ Fol(d) with isolated singularities. We recall that R(d) is open and dense in Fol(d),
cf., for instance, [Lin88]. Recall that for any F0 ∈ R(d), #(sing(F0)) = d2 + d+ 1.

2.2 Idea of the proof of Theorem 1 and the key lemma

The proof of Theorem 1 will be by induction on d � 2. The result for d = 2 is due to Guillot
(cf. [Gui06]). Note that Theorem 2 contains, in particular, a new proof of Guillot’s result.

Before entering into the details of the proof, let us give a rough idea of it. We start with
F ∈ Fol(d − 1), a degree d − 1 foliation on P2, such that F has (d − 1)2 + (d − 1) + 1 distinct
singularities and the Baum–Bott map at F has rank (d − 1)2 + (d − 1). After multiplying F by a
sufficiently general line 	 ⊂ P2 we obtain an element of Fol(d) with codimension one singular set.
Let G ∈ Fol(d) be such that the tangency of F and G is a reduced curve intersecting 	 transversely.
If we consider the pencil of foliations generated by 	F and G, then we can assume that the elements
of this pencil that are sufficiently close to 	F have (d−1)2 +(d−1)+1 singularities close to sing(F)
and 2d singularities close to 	. Noting the elements of such a pencil by {Ft}t∈P1 , F0 = 	F , simple
computations shows that

lim
t→0

BB(Ft, p(t)) = ∞,

for every holomorphic map p : ∆(0, ε) → P2 such that p(0) ∈ 	 and p(t) ∈ sing(Ft). We point that
such maps are completely determined by the initial condition p(0) and that p(0) must belong to
	 ∩ tang(F ,G). Moreover, there exists a logarithmic 1-form η = η(F ,G) on 	 ∼= P1 with polar set
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equal to 	 ∩ tang(F ,G) such that

lim
t→0

t · BB(Ft, p(t)) = Res(η, p(0)).

With some extra work one can prove that with a suitable choice of G we can prescribe the residues
of η(F ,G), i.e. for every set S of 2d complex numbers subjected to the only condition that their
sum is equal to zero there exists G such that the residues of η(F ,G) are S. A moment of thought
shows that

rank(BB(Fε)) � (d− 1)2 + (d− 1)︸ ︷︷ ︸
rank(BB(F))

+ 2d− 1︸ ︷︷ ︸
residues of η

= d2 + d− 1

for ε > 0 sufficiently small. This is almost what we want to prove except that on the right-hand side
we need d2 + d instead of d2 + d−1. Anyway, the argument sketched above gives a good first-order
approximation of our proof.

In the actual proof, the induction step will be reduced to the following lemma.

Lemma 2.1. Let F = (G,H) : D∗ × Dk−1 × D� → Ck × C� be a holomorphic map. Denote the
variables in D × Dk−1 × D� by (s, Z, T ) = (s, z1, . . . , zk−1, t1, . . . , t�). Suppose that:

(a) H extends to a holomorphic function on D × Dk−1 × D� and

∂H

∂zj
(0, Z, T ) = 0, ∀j = 1, . . . , k − 1;

(b) G is of the form

G(s, Z, T ) =
1
s
[A(Z, T ) + s ·R(s,X, T )],

where A = (A1, . . . , Ak) : Dk−1 × D� → Ck and R : Dk × D� → Ck are holomorphic;

(c) there exists Z0 ∈ Dk−1 satisfying det(M(Z0, 0)) �= 0, where M(Z, T ) is the k × k matrix




A(Z, T )
∂A

∂z1
(Z, T )
...

∂A

∂zk−1
(Z, T )




:=




A1(Z, T ) A2(Z, T ) · · · Ak(Z, T )
∂A1

∂z1
(Z, T )

∂A2

∂z1
(Z, T ) · · · ∂Ak

∂z1
(Z, T )

...
... · · · ...

∂A1

∂zk−1
(Z, T )

∂A2

∂zk−1
(Z, T ) · · · ∂Ak

∂zk−1
(Z, T )




;

(d) for Z0 ∈ Dk−1 we have that rk(HZ0, 0) = 	, where HZ0(T ) = H(0, Z0, T ).

Then there exists r > 0 such that rk(F, (s0, Z0, 0)) = k + 	 for every s0 with 0 < |s0| < r.
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Proof. Let ∆(s, Z, T ) be given by

∆(s, Z, T ) = det




∂G

∂s

∂H

∂s

∂G

∂z1

∂H

∂z1

...
...

∂G

∂zk−1

∂H

∂zk−1

∂G

∂t1

∂H

∂t1

...
...

∂G

∂t�

∂H

∂t�




.

Using part (b), we get the following relations:

∂G

∂s
(s, Z, T ) = − 1

s2
A(Z, T ) + C(s, Z, T ),

∂G

∂zj
(s, Z, T ) =

1
s

∂A

∂zj
(Z, T ) +Dj(s,X, T ),

∂G

∂ti
(s,X, T ) =

1
s

∂A

∂ti
(Z, T ) + Ei(s, Z, T ),

where C = ∂R/∂s, Dj = ∂R/∂zj and Ei = ∂R/∂ti.

These relations imply that

∆(s, Z, T ) = det




− 1
s2
A(Z, T ) + C(s, Z, T )

∂H

∂s

1
s

∂A

∂z1
(Z, T ) +D1(s, Z, T )

∂H

∂z1
(s, Z, T )

...
...

1
s

∂A

∂zk−1
(Z, T ) +Dk−1(s,X, T )

∂H

∂zk−1
(s, Z, T )

1
s

∂A

∂t1
(Z, T ) + E1(s, Z, T )

∂H

∂t1
(s, Z, T )

...
...

1
s

∂A

∂t�
(Z, T ) + E�(s, Z, T )

∂H

∂t�
(s, Z, T )
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=
1
sk

det




−1
s
A(Z, T ) + s · C(s, Z, T )

∂H

∂s

∂A

∂z1
(Z, T ) + s ·D1(s, Z, T )

∂H

∂z1
(s, Z, T )

...
...

∂A

∂zk−1
(Z, T ) + s ·Dk−1(s,X, T )

∂H

∂zk−1
(s, Z, T )

∂A

∂t1
(Z, T ) + s · E1(s, Z, T )

∂H

∂t1
(s, Z, T )

...
...

∂A

∂t�
(Z, T ) + s · E�(s, Z, T )

∂H

∂t�
(s, Z, T )




=
1

sk+1
det




−A(Z, T ) + s2 · C(s, Z, T ) s · ∂H
∂s

∂A

∂z1
(Z, T ) + s ·D1(s, Z, T )

∂H

∂z1
(s, Z, T )

...
...

∂A

∂zk−1
(Z, T ) + s ·Dk−1(s,X, T )

∂H

∂zk−1
(s, Z, T )

∂A

∂t1
(Z, T ) + s · E1(s, Z, T )

∂H

∂t1
(s, Z, T )

...
...

∂A

∂t�
(Z, T ) + s ·E�(s, Z, T )

∂H

∂t�
(s, Z, T )




.

Hence, using part (a), we deduce that lims→0 s
k+1 · ∆(s, Z, T ) is equal to

det




−A(Z, T ) 0
∂A

∂z1
(Z, T ) 0

...
...

∂A

∂zk−1
(Z, T ) 0

∂A

∂t1
(Z, T )

∂H

∂t1
(0, Z, T )

...
...

∂A

∂t�
(Z, T )

∂H

∂t�
(0, Z, T )




= −det(M(Z, T )) · det
(
∂Hi

∂tj
(0, Z, T )

)
.
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In other words, if we set φ(s, Z, T ) = −sk+1 · ∆(s, Z, T ), then φ extends continuously to s = 0
as

φ(0, Z, T ) = det(M(Z, T )) · det
(
∂Hi

∂tj
(0, Z, T )

)
1�i,j��

.

It follows from parts (c) and (d) that φ(0, Z0, 0) �= 0. Thus, there exists r > 0 such that, if 0 < |s| � r,
then ∆(s, Z0, 0) �= 0.

Now we will work to construct a family of foliations with Baum–Bott map fitting in the above
setup.

2.3 Construction of the family

Let us consider the following situation: let F0 ∈ R(d − 1) be a foliation of degree d − 1 � 2, let L
be a line on P2 and let E = (C2, (x, y)) be an affine coordinate system in P2, such that we have the
following.

(I) rk(BB,F0) = (d− 1)2 + d− 1 = d2 − d := 	.

(II) sing(F0) ∩ L = ∅ and sing(F0) = {q01, . . . , q0�+1} ⊂ C2 ⊂ P2.

(III) F0 is defined on E by the polynomial vector field

X0 := P0(x, y)∂x +Q0(x, y)∂y,

where P0(x, y) = P 0(x, y) + x · g(x, y), Q0(x, y) = Q0(x, y) + y · g(x, y), deg(P 0) = deg(Q0) =
d−1 and g(x, y) is a homogeneous polynomial of degree d−1. We will assume that g(x, 0) �≡ 0,
i.e. the line at infinite of this affine coordinate system is not invariant for F0.

(IV) L = (y = 0). In particular the polynomials P (x) := P0(x, 0) and Q(x) := Q0(x, 0) are
relatively prime, that is gcd(P (x), Q(x)) = 1.

(V) deg(P (x)) = d and deg(Q(x)) = d − 1. This condition is generic and it implies that all
tangencies of F0 with the line L are contained in C2 ∩ L, because these tangencies are given
by (y = P (x) = 0).

Let V be a neighborhood of F0 in R(d − 1) such that there exist holomorphic maps q01, . . . ,
q0�+1 : V → C2 with q0j (F0) = q0j , j = 1, . . . , 	+ 1, and sing(F) = {q01(F), . . . , q0�+1(F)}. We can take
V sufficiently small in order to assure that q0j (F)∩ (y = 0) = ∅ for all j = 1, . . . , 	+1 and all F ∈ V .

Since, by hypothesis, rk(BB,F0) = d2−d = 	, there exist polynomial vector fields of the form (2),
X1, . . . ,X�, Xi = Pi∂x +Qi∂y, with the following additional properties.

(VI) For any T = (t1, . . . , t�) ∈ D�, XT := X0 +
∑�

i=1 ti ·Xi ∈ V .
In this situation, we can define H1 : D� → C�, by

H1(T ) = (BB(XT , q
0
1(XT )), . . . ,BB(XT , q

0
� (XT ))).

It follows from property (I) that we can assume the following.

(VII) rk(H1, 0) = d2 − d = 	.
Next, we will see how to obtain foliations F ∈ R(d) such that rk(BB,F) = d2 + d. We will
consider the vector field y ·X0 as a foliation, say F̃0, of degree d with a line of singularities.
Let p(x), q(x) ∈ C[x] be polynomials with the following properties.

(VIII) p(x) in monic of degree d+ 1 and q(x) has degree at most d.

We will set Z(x, y) = p(x)∂x + (q(x) + y · xd)∂y. Note that this vector field defines an ele-
ment in Fol(d). Moreover, the space of such vector fields has dimension 2d. Consider the family of
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foliations (F(s, Z, T ))s,Z,T of degree d on P2, which are defined on E by the polynomial vector field

X(s, Z, T ) = y ·
(
X0 +

�∑
i=1

ti ·Xi

)
+ s · Z.

Note that the components of X(s, Z, T ) are{
W1 := y(P0(x, y) +

∑
i ti · Pi(x, y)) + s · p(x)

W2 := y(Q0(x, y) +
∑

i ti ·Qi(x, y) + s · (q(x) + y · xd)).

For s �= 0 with sufficiently small modulus and Z, T fixed, the singularities of F(s, Z, T ) are
contained in the affine curve {F(Z,T )(x, y) = 0} ⊂ C2, where F(Z,T )(x, y) is equal to

p(x) ·
[
Q0(x, y) +

∑
i

ti ·Qi(x, y)
]
− (q(x) + y · xd) ·

[
P0(x, y) +

∑
i

ti · Pi(x, y)
]
.

Since P and Q are relatively prime we have the following.

Lemma 2.2. Given a polynomial f(x) ∈ C[x] of degree 2d there exist unique polynomials p(x), q(x) ∈
C[x] such that

deg(p) = d+ 1, deg(q) � d− 2 and f(x) = p(x)Q(x) − q(x)P (x).

Proof. In fact, since gcd(P (x), Q(x)) = 1, there exist a(x), b(x) ∈ C[x] such that

a(x) ·Q(x) − b(x) · P (x) = 1 =⇒ (f · a)(x) ·Q(x) − (f · b)(x) · P (x) = f(x).

Dividing f · b(x) by Q(x) we get f · b = g ·Q+ q, where deg(q) � d− 2. Thus,

f = (f · a− g · P )Q− qP =: pQ− qP =⇒ p ·Q = f + q · P.
Since deg(q · P ) = deg(q) + deg(P ) � 2d − 1, we have deg(f + q · P ) = 2d. This implies that
2d = deg(p ·Q) = deg(p)+d−1, and so deg(p) = d+1. If we have another solution p1 ·Q−q1 ·P = f ,
with deg(p1) = d+ 1 and deg(q1) � d− 2, then

(p− p1)Q = (q − q1)P =⇒ Q|q − q1 and deg(Q) > deg(q − q1),

which implies that q = q1 and p = p1.

Similar arguments also prove the following lemma.

Lemma 2.3. Let Pk = {g ∈ C[x] | deg(g) � k} and consider the linear map Φ: Pd+1 × Pd−2 → P2d

given by Φ(p, q) = p ·Q− q · P . Then Φ is an isomorphism.

After setting f(Z,T )(x) = F(Z,T )(x, 0) we can take Z0 in such a way that we have the following
property.

(IX) The polynomial f(Z0,0)(x) has simple roots and has degree 2d.

Let (p(x), q(x)) ∈ Pd+1 × Pd−2 be such that p(x) is monic and Z = p(x)∂x + (q(x) + y · xd)∂y.
Then, we can write p(x) = xd+1 +

∑d
j=0 zj+1 · xj and q(x) =

∑d−2
j=0 zd+2+j · xj . Consider the space

of vector fields Z as above, parametrized by (z1, . . . , z2d) ∈ C2d. In what follows, we will use this
parametrization and the notation Z = (z1, . . . , z2d).

2.4 Applying the key lemma I: first properties
Next we will describe how to apply Lemma 2.1 to the family (s, Z, T ) �→ X(s, Z, T ). The first step
is the following.

1558

https://doi.org/10.1112/S0010437X06002326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002326


The generic rank of the Baum–Bott map

Lemma 2.4. Let Z0 = p0(x)∂x + (q0(x) + y · xd)∂y be such that property (IX) is satisfied and let
{x0

1, . . . , x
0
2d} be the roots of f(Z0,0)(x) = 0. Then there exist neighborhoods D = D(0, r) of 0 ∈ C,

U of Z0, D
� of 0 ∈ C� and holomorphic functions

qi : D × U ×D� → C2, i = 1, . . . , d2 − d+ 1 = 	+ 1

pj : D × U ×D� → C2, j = 1, . . . , 2d,

with the following properties.

(a) For any (Z, T ) ∈ U × D� the equation f(Z,T )(x) = 0 has 2d simple roots, say x1(Z, T ), . . . ,
x2d(Z, T ), such that xi : U ×D� → C is holomorphic and xi(Z0, 0) = x0

i for all i = 1, . . . , 2d.

(b) pj(0, Z, T ) = (xj(Z, T ), 0) for every j = 1, . . . , 2d and for every (Z, T ) ∈ U ×D�.

(c) qi(0, 0, T ) = q0i (T ) for all T ∈ D� and all i = 1, . . . , 	 + 1. In particular, qi(0, 0, 0) = q0i for all
i = 1, . . . , 	+ 1 and

sing(XT ) = {q1(0, 0, T ), . . . , q�+1(0, 0, T )},
for all T ∈ U .

(d) For (s, Z, T ) ∈ D × U × D�, s �= 0, we have that sing(F(s, Z, T )) is equal to {p1(s, Z, T ), . . . ,
p2d(s, Z, T ), q1(s, Z, T ), . . . , q�+1(s, Z, T )}.

(e) IfHi(s, Z, T ) denotes the Baum–Bott index of F(s, Z, T ) at the point qi(s, Z, T ), i = 1, . . . , 	+1,
then

∂Hi

∂zr
(0, Z, T ) ≡ 0, ∀1 � i � 	+ 1 and 1 � r � 2d.

(f) For every (s, T ) ∈ D × D�, with s �= 0, then pj(s, Z, T ) is a simple singularity of F(s, Z, T ).
Furthermore, if Gj(s, Z, T ) denotes the Baum–Bott index of F(s, Z, T ) at the singularity
pj(s, Z0, T ), then

lim s ·Gj(s, Z, T ) =
Q2

T (xj(Z, T ), 0)
f ′(Z,T )(xj(Z, T ))

:= Aj(Z, T ). (3)

Proof. The lemma is a consequence of the implicit function theorem (IFT) applied in several cases.
In part (a) we apply the IFT to the function

(x,Z, T ) ∈ C × Pd+1 × Pd−2 × Cd �→ f(Z,T )(x) ∈ C

at the points (xi0, Z0, 0), i = 1, . . . , 2d, where xi0, i = 1, . . . , 2d, are the roots of f(Z0,0)(x) = 0.
We leave the details for the reader.

For the existence of the functions q1, . . . , q�+1, defined in a neighborhood of (0, Z0, 0) in C×Pd+1×
Pd−2×C�+1, we apply the IFT at the points (x0

i , y
0
i , 0, Z0, 0), where q0i := (x0

i , y
0
i ) ∈ C2, 1 � i � 	+1,

are the singularities of F0, to the function W (x, y, s, Z, T ) = (W1(x, y, s, Z, T ),W2(x, y, s, Z, T ))
defined as(

y

(
P0(x, y) +

∑
i

tiPi(x, y)
)

+ sp(x), y
(
Q0(x, y) +

∑
i

tiQi(x, y)
)

+ s(q(x) + yxd)
)
.

In order to prove that det(∂W/∂x, ∂W/∂y)(x0
i , y

0
i , 0, Z0, 0) �= 0 just observe that W (x, y, 0, Z0, 0) =

(y ·P0(x, y), y ·Q0(x, y)), q0i is a non-degenerate singularity of F0 and that y0
i �= 0 (see property (II)).

We leave the details for the reader. Note that we can choose the neighborhood V := D×U ×D� of
(0, Z0, 0) in such a way that qi(s, Z, T ) /∈ (y = 0) for all (s, Z, T ) ∈ V .

Let us prove part (e). Since W1(x, y, s, Z, T ) and W2(x, y, s, Z, T ) are the components of
X(s, Z, T ), we have to compute Hi(0, Z, T ) = BB(X(0, Z, T ), qi(0, Z, T )). Note that W1(x, y, 0,
Z, T ) = y · PT (x, y) and W2(x, y, 0, Z, T ) = y · QT (x, y). This implies that qi(0, Z, T ) = qi(0, 0, T )
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and, since qi(0, Z, T ) /∈ (y = 0), then

Hi(0, Z, T ) = BB(y(PT ∂x +QT∂y), qi(0, 0, T )) = BB(PT ∂x +QT∂y, qi(0, 0, T )).

This proves part (e).
Let us prove the existence of the functions p1, . . . , p2d. As we have observed before, if s �= 0, then

sing(F(s, Z, T )) ∩ C2 ⊂ (F(Z,T ) = 0). Let W = (W1,W2) be as above. If we set PT = P0 +
∑

i ti · Pi

and QT = Q0 +
∑

i ti ·Qi, then we can write

W = (W1,W2) = (y · PT + s · p(x), y ·QT + s · (q(x) + y · xd)).

As the reader can check

(W = 0) = (W1 = F(Z,T ) = 0) = (W2 = F(Z,T ) = 0).

Therefore, we have to apply the IFT at the points (xi0, 0, 0, Z0, 0) to one of the functions

(x, y, s, Z, T ) �→ (Wj(x, y, s, Z, T ), F(Z,T )(x, y)) = Φj(x, y, s, Z, T ), j = 1 or j = 2.

Note that
Φ1(x, y, 0, Z, T ) = (y · PT (x, y), F(Z,T )(x, y)).

Therefore, det(∂Φ1/∂x, ∂Φ1/∂y)(x, 0, 0, Z0 , 0) is equal to

det
(

0 P0(x, 0)
f ′(Z0,0)(x) ∗

)
= −P (x) · f ′(Z0,0)(x).

Similarly,
det(∂Φ2/∂x, ∂Φ2/∂y)(x, 0, 0, Z0 , 0) = −Q(x) · f ′(Z0,0)(x).

It follows from property (IV) that either P (x0
i ) �= 0 or Q(x0

i ) �= 0. Since f(Z0,0) has simple roots, we
can apply the IFT to obtain the function pi.

Set pi(s, Z, T ) = (xi(s, Z, T ), yi(s, Z, T )).

Assertion 2.1. For every i ∈ {1, . . . , 2d} we have yi(s, Z, T ) = s · ui(s, Z, T ), where ui is holomor-
phic and FZ,T (xi(0, Z, T ), 0) = f(Z,T )(xi(0, Z, T )) = 0. In particular, xi(0, Z, T ) = xi(Z, T ) (in the
notation of part (a)). Moreover, if P0(x0

i , 0) = P (x0
i ) �= 0 and we take the neighborhood V to be

small, then

ui(0, Z, T ) = − p(xi(Z, T ))
PT (xi(Z, T ), 0)

. (4)

Similarly, if Q0(xi0, 0) �= 0 and we take V to be small, then

ui(0, Z, T ) = − q(xi(Z, T ))
QT (xi(Z, T ), 0)

. (5)

In any case, we have that{
ui(0, Z, T ) ·QT (xi(Z, T )) + q(xi(Z, T )) = 0
ui(0, Z, T ) · PT (xi(Z, T ), 0) + p(xi(Z, T )) = 0

(6)

for all (0, Z, T ) ∈ V .

Proof of the assertion. Let us suppose that P (x0
i ) �= 0. If we take V to be small, then PT (xi(s, Z, T ),

yi(s, Z, T )) �= 0 for all (s, Z, T ) ∈ V . It follows that

yi · PT (xi, yi) + s · p(xi) ≡ 0 =⇒ yi(0, Z, T ) = 0

and
∂yi

∂s
(0, Z, T ) · PT (xi(Z, T ), 0) + p(xi(Z, T )) ≡ 0.
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Since ui(0, Z, T ) = (∂yi/∂s)(0, Z, T ), this implies (4). The proofs of (5) and (6) are left for the
reader.

Let us continue the proof of Lemma 2.4 by proving part (f). We will prove first that the singu-
larities pi(s, Z, T ) are non-degenerate for s �= 0. Denote by J the Jacobian matrix

J =



∂W1

∂x

∂W1

∂y

∂W2

∂x

∂W2

∂y


 .

First we prove, for all i = 1, . . . , 2d, that det(J(pi(s, Z, T ), s, Z, T )) �= 0 whenever s �= 0 and
(s, Z − Z0, T ) has a small norm. Since W1 = y · PT + s · p and W2 = y · QT + s · (q + y · xd), by a
direct computation, we get that det(J(pi, s, Z, T )) is equal to

W1x ·W2y −W1y ·W2x

= [(yPTx + sp′)(QT + yQTy + sx d) − (PT + y · PTy)(yQTx + sq ′ + dsyxd−1)](pi(s, Z, T ))

= s[(uiPTx + p′)(QT + suiQTy + sxd) − (PT + suiPTy)(uiQTx + q′ + dsuix
d−1)](xi, yi).

Therefore if we define ∆(Z, T ) := lim s−1 det(J(pi(s, Z, T ), s, Z, T )), then

∆(Z, T ) = [(ui · PTx + p′) ·QT − PT · (ui ·QTx + q′)](pi(0, Z, T )).

On the other hand, (6) implies that ∆(Z, T ) is equal to

[(p′ ·QT − ui · PT ·QTx ) − (PT · q′ − ui · PTx ·QT )](pi(0, Z, T ))
= [(p′ ·QT + p ·QTx ) − (PT · q′ + PTx · q)](pi(0, Z, T ))

=
∂

∂x
[p ·QT − q · PT ](pi(0, Z, T ))

= f ′(Z,T )(xi(Z, T )).

If we take the neighborhood V of (0, Z0, 0) to be small, then the polynomial f(Z,T ) has simple
roots, for every (0, Z, T ) ∈ V . Since xi(0, Z, T ) = xi(Z, T ) is a root of f(Z,T ), we get that ∆(Z, T ) =
f ′(Z,T )(xi(Z, T )) �= 0. Hence, det(J(pi(s, Z, T ), s, Z, T )) �= 0 for small |s| > 0. It remains to prove (3)
in part (f). Since

Gi(s, Z, T ) =
tr2(J(pi(s, Z, T ), s, Z, T ))
det(J(pi(s, Z, T ), s, Z, T ))

and

tr(J(pi(s, Z, T ), s, Z, T )) = [s · ui · PTx + s · p′ +QT + s · ui ·QTy + s · xd](pi(s, Z, T ))

we get
lim tr2(J(pi(s, Z, T ), s, Z, T )) = Q2

T (xi(Z, T ))
and

lim
1
s
Gi(s, Z, T ) = lim

tr2(J(pi(s, Z, T ), s, Z, T ))
s · det(J(pi(s, Z, T ), s, Z, T ))

=
Q2

T (xi(Z, T ), 0)
f ′(Z,T )(xi(Z, T ))

.

This finishes the proof of the lemma.

To apply Lemma 2.1 we set BB(s, Z, T ) equal to (G(s, Z, T ),H(s, Z, T )), i.e.

BB(s, Z, T ) = (G1(s, Z, T ), . . . , G2d(s, Z, T ),H1(s, Z, T ), . . . ,Hd2−d(s, Z, T )).
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We are going to prove that we can choose Z0 in such a way that, for |s| > 0 small, rk(BB, (s, Z0, 0)) =
d2 + d.

It follows from property (VII) and from Lemma 2.4(e) that H satisfies the hypotheses (a) and (d)
of Lemma 2.1. We have also seen that

G(s, Z, T ) =
1
s
[A(Z, T ) + s · R(s, Z, T )],

where R is holomorphic,

A(Z, T ) = lim s ·G(s, Z, T ) = (A1(Z, T ), . . . , A2d(Z, T ))

and

Aj(Z, T ) =
Q2

T (xj(Z, T ), 0)
f ′(Z,T )(xj(Z, T ))

.

In order to finish the proof, it is sufficient to prove that there exists Z0 and j ∈ {1, . . . , 2d} such
that det(Mj(Z0)) �= 0, where

Mj(Z) =
[
AT(Z, 0),

∂AT

∂z1
(Z, 0), . . . ,

∂AT

∂zj−1
(Z, 0),

∂AT

∂zj+1
(Z, 0), . . . ,

∂AT

∂z2d
(Z, 0)
]
.

In the above expression, for C ∈ C2d, we are denoting by CT the transpose of C, that is, we are
considering the transpose of the matrix given in Lemma 2.1(c).

2.5 Applying the key lemma II: fine tuning

According to Lemma 2.3, the map Φ: Pd+1×Pd−2 → P2d defined by Φ(Z) = Φ(p, q) = p·Q−q·P := f
is an isomorphism. On the other hand, observe that

Aj(Z, 0) =
Q2

0(xj(Z), 0)
f ′Z(xj(Z))

=
Q2(xj(Z))
f ′Z(xj(Z))

,

where x1(Z) := x1(Z, 0), . . . , x2d(Z) := x2d(Z, 0) are the roots of fZ := f(Z,0).

The idea is to use Lemma 2.3 to parametrize the space P2d by the roots of fZ instead of the
coefficients (z1, . . . , z2d) of Z = (p, q). We have seen before that deg(p ·Q− q ·P ) = deg(p ·Q) = 2d.
Since we are free to choose one of the coefficients of Q, we will suppose that it is monic of degree
d− 1. This implies that fZ = p ·Q− q · P is monic (see property (VIII)). Therefore, we can write

fZ(x) = (x− x1(Z)) · · · (x− x2d(Z))

and the map ρ(Z) = (x1(Z), . . . , x2d(Z)) is a biholomorphism in a neighborhood of Z0. Let ζ be the
local inverse of ρ, defined in a neighborhood W of (x1(Z0), . . . , x2d(Z0)). Set C = A ◦ ζ : W → C2d.
If X = (x1, . . . , x2d), then

fζ(X)(x) := fX(x) = (x− x1) · · · (x− x2d).

Therefore, C(X) = (C1(X), . . . , C2d(X)), where

Cj(X) = Aj(ζ(X)) =
Q2(xj)
f ′X(xj)

.

Let N(X) be the 2d× 2d matrix defined by

N(X) =
[
CT(X),

∂CT

∂x2
(X), . . . ,

∂CT

∂x2d
(X)
]
.
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We assert that it is enough to prove that det(N(X)) �≡ 0. In fact, since C(X) = A ◦ ζ(X) we get

∂C

∂xj
=

2d∑
i=1

∂A

∂zi
◦ ζ ∂ζi

∂xj
=

2d∑
i=1

∂A

∂zi

∂ζi
∂xj

,

where in the third expression we have omitted the composition with ζ. This implies that

det(N) = det
[
A,

2d∑
i2=1

∂A

∂zi2

∂ζi2
∂x2

, . . . ,

2d∑
i2d=1

∂A

∂zi2d

∂ζi2d

∂x2d

]

=
∑

i2,...,i2d

∂ζi2
∂x2

· · · ∂ζi2d

∂x2d
det
[
A,

∂A

∂zi2
, . . . ,

∂A

∂zi2d

]

=
2d∑

j=1

Φj · det(Mj ◦ ζ),

where

Φj =± det
(
∂ζi
∂xk

)
1�i�2d,i�=j,2�k�2d

.

In particular, if det(N(X)) �≡ 0, then det(Mj(Z)) �≡ 0, for some j ∈ {1, . . . , 2d}.
To conclude the proof of the theorem it remains to show that det(N(X)) �≡ 0. Recall that Q(x)

is a monic polynomial of degree d− 1 and C(X) = (C1(X), . . . , C2d(X)), where

Cj(X) = Cj(x1, . . . , x2d) =
Q2(xj)
f ′X(xj)

=
Q2(xj)∏

i�=j(xj − xi)
(7)

because fX(x) =
∏2d

i=1(x − xi). Fix x0 ∈ C which is not a root of Q(x) = 0 and a neighborhood
D := D(x0, r) such that Q(x) �= 0 for all x ∈ D. We will work in the open set U ⊂ C2d defined by

U = {(x1, . . . , x2d) | xi �= xj if i �= j}.
If X ∈ U , then Cj(X) �= 0 and

det(N(X)) = C1(X) · · ·C2d(X) · det(K(X)),

where K is the matrix

K =




1 . . . 1

∂C1

∂x2

/
C1 . . .

∂C2d

∂x2

/
C2d

... . . .
...

∂C1

∂x2d

/
C1 . . .

∂C2d

∂x2d

/
C2d



.

It follows from (7) that

∂Cj/∂xi

Cj
(X) =




1
xi − xj

, if i �= j.

2Q′(xj)
Q(xj)

+
∑
i�=j

1
xi − xj

, if i = j.
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In particular, if we denote φj = 2Q′(xj)/Q(xj), j = 2, . . . , 2d, then, for any X ∈ U , we have the
following expression for K(X)




1 1 . . . 1 1

1
x2 − x1

φ2 +
∑
i�=2

1
xi − x2

. . .
1

x2 − x2d−1

1
x2 − x2d

...
... . . .

...
...

1
x2d−1 − x1

1
x2d−1 − x2

. . . φ2d−1 +
∑

i�=2d−1

1
xi − x2d−1

1
x2d−1 − x2d

1
x2d − x1

1
x2d − x2

. . .
1

x2d − x2d−1
φ2d +
∑
i�=2d

1
xi − x2d




.

Now, define

∆1(x1, . . . , x2d−1) := lim
x2d→x1

(x1 − x2d) · det(K(X))

and, inductively,

∆j(x1, . . . , x2d−j) := lim
x2d−j+1→x1

(x1 − x2d−j+1) · ∆j−1(x1, . . . , x2d−j+1).

We will prove that ∆2d−1(x1) = (2d)! �= 0 and this fact will imply that det(N(X)) �≡ 0. As the
reader can check, ∆1(x1, . . . , x2d−1) is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

1
x2 − x1

φ2 +
2d−1∑
i=3

1
xi − x2

+
2

x1 − x2
. . .

1
x2 − x2d−1

1
x2 − x1

...
... . . .

...
...

1
x2d−1 − x1

1
x2d−1 − x2

. . . φ2d−1 +
2d−2∑
i=2

1
xi − x2d−1

+
2

x1 − x2d−1

1
x2d−1 − x1

−1 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where |·| denotes the determinant. If we sum the first column with the last in the above determinant,
we get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 . . . 1

2
x2 − x1

φ2 +
2d−1∑
i=3

1
xi − x2

+
2

x1 − x2
. . .

1
x2 − x2d−1

...
... . . .

...

2
x2d−1 − x1

1
x2d−1 − x2

. . . φ2d−1 +
2d−2∑
i=2

1
xi − x2d−1

+
2

x1 − x2d−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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By a similar argument, we have that ∆2(x1, . . . , x2d−2) is equal to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 . . . 1 1

2
x2 − x1

φ2 +
2d−2∑
i=3

1
xi − x2

+
3

x1 − x2
. . .

1
x2 − x2d−2

1
x2 − x1

...
... . . .

...
...

2
x2d−2 − x1

1
x2d−2 − x2

. . . φ2d−2 +
2d−3∑
i=2

1
xi − x2d−2

+
3

x1 − x2d−2

1
x2d−2 − x1

−2 0 . . . 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

or, more succinctly,

2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 . . . 1

3
x2 − x1

φ2 +
2d−2∑
i=3

1
xi − x2

+
3

x1 − x2
. . .

1
x2 − x2d−2

...
... . . .

...

3
x2d−2 − x1

1
x2d−2 − x2

. . . φ2d−2 +
2d−3∑
i=2

1
xi − x2d−2

+
3

x1 − x2d−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Similarly, ∆3(x1, . . . , x2d−3) is equal to

6 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 1 . . . 1

4
x2 − x1

φ2 +
2d−3∑
i=3

1
xi − x2

+
4

x1 − x2
. . .

1
x2 − x2d−3

...
... . . .

...

4
x2d−3 − x1

1
x2d−3 − x2

. . . φ2d−3 +
2d−4∑
i=2

1
xi − x2d−3

+
4

x1 − x2d−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proceeding in this way we see that ∆j(x1, . . . , x2d−j) is given by

j! ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

j + 1 1 . . . 1

j + 1
x2 − x1

φ2 +
2d−j∑
i=3

1
xi − x2

+
j + 1
x1 − x2

. . .
1

x2 − x2d−j

...
... . . .

...

j + 1
x2d−j − x1

1
x2d−j − x2

. . . φ2d−j +
2d−j−1∑

i=2

1
xi − x2d−j

+
j + 1

x1 − x2d−j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular,

∆2d−2(x1, x2) = (2d− 2)! ·
∣∣∣∣∣∣

2d− 1 1

2d− 1
x2 − x1

φ2 +
2d− 1
x1 − x2

∣∣∣∣∣∣ .
Hence,

∆2d−1(x1) = lim
x2→x1

(x1 − x2) · ∆2d−2(x1, x2) = (2d− 2)!
∣∣∣∣2d− 1 1
1 − 2d 2d− 1

∣∣∣∣ = (2d)!.

This finishes the proof of Theorem 1.
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3. The rank at Jouanolou’s foliations

Jouanolou’s foliations are the first examples of foliations of P2 without invariant algebraic curves,
(cf. [Jou79]). They can be defined as follows: for every integer d, d � 2, the degree d Jouanolou
foliation, Jd, is induced in affine coordinates (x, y) ∈ C2 ⊂ P2 by the vector field

Xd(x, y) = (1 − x · yd)∂x + (xd − yd+1)∂y = ∂x + xd∂y − yd · R,
where R = x∂x + y∂y is the radial vector field on C2.

Most of arguments proving that Jd has no invariant algebraic curves take advantage of the highly
symmetrical character of Jd: Aut(Jd), the automorphism group of Jd, is a semi-direct product of a
cyclic group of order 3 and a cyclic group of order d2 + d+ 1. If β is a primitive (d2 + d+ 1)th root
of the unity, then generators of Aut(Jd), in the affine coordinates (x, y) ∈ C2 ⊂ P2, are

A : (x, y) �→ (β−dx, βy),

B : (x, y) �→ (y−1, xy−1).

The singular set of Jd is equal to

sing(Jd) = {pj | pj = Aj−1(1, 1), 1 � j � d2 + d+ 1},
i.e. it is the orbit of the point p1 = (1, 1) under the action on P2 of the subgroup of Aut(Jd)
generated by A. It follows that all of the singularities of Jd are isomorphic simple singularities with
Baum–Bott index

(d+ 2)2

d2 + d+ 1
.

We will also take advantage of Aut(Jd) to determine the rank of the Baum–Bott map at Jd.
Instead of considering the Baum–Bott map as defined from Fol(d) to Pd2+d+1 we will consider it
defined from Vd = H0(P2, TP2(d − 1)) to the same target. Our problem translates to compute the
rank at Xd.

It will be convenient to consider Vd as the C-vector space generated by the set

Pd = {xi · yj∂x, x
k · y�∂y, x

m · yn · R | 0 � i+ j, k + 	 � d and m+ n = d}.
Note that all of the elements in Pd are eigenvectors of A∗ : Vd → Vd, where A∗(X) = DA−1 ·X◦A.

Explicitly, we have

A∗(xi · yj∂x) = βj−d(i−1) · xi · yj∂x,

A∗(xk · y�∂y) = β�−1−dk · xk · y�∂y,

A∗(xm · yn · R) = βn−dm · xm · yn ·R.
The invariance of Jd under A is expressed in the formula

A∗(Xd) = βd ·Xd.

Since β is a primitive (d2 + d+ 1)th root of unity, A∗ has at most d2 + d+ 1 maximal eigenspaces.
If we denote by Ej , 1 � j � d2 + d + 1, the maximal eigenspace associated to the eigenvalue βj,
then

Vd =
d2+d+1⊕

j=1

Ej.

Now, let U be a neighborhood of Xd in Vd and γj : U → P2, j = 1 . . . d2 + d+ 1, be holomorphic
maps such that γj(Xd) = pj and

sing(F(X)) = {γ1(X), . . . , γd2+d+1(X)},
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for every X ∈ U . Compute the rank of the Baum–Bott map which is equivalent to computing the
rank of B = (B1, . . . , Bd2+d+1) : U → Cd2+d+1 given by

Bj(X) = BB(X, γj(X)) =
tr2

det
(DX (γj(X))).

3.1 The rank of B at Xd

By definition the rank of B at Xd is the rank of the liner map T := DB(Xd) : Vd → Cd2+d+1, the
derivative of B at Xd. If we denote by Tj := DB j(Xd), 1 � j � d2 + d + 1, then the next lemma
describes some useful relations between A∗ and Tj .

Lemma 3.1. For any Y ∈ Vd

Tj(A∗(Y )) = βd · Tj+1(Y ), (8)

where 1 � j � d2 + d+ 1, and Td2+d+1 = T0. In particular:

(a) A∗(ker(T )) = ker(T );

(b) if we set Kj := Ej ∩ ker(T ), j = 1, . . . , d2 + d+ 1, then

ker(T ) =
d2+d+1⊕

j=1

Kj ;

(c) Ej ∩ ker(T1) = Kj , for all j = 1, . . . , d2 + d+ 1;

(d) let k = #{j | T1|Ej �≡ 0}, then rk(T ) = rk(BB,Jd) = k.

Proof. Observe first that for any Y ∈ V , we have that the foliations induced by A∗(Xd + Y ) and
Xd + β−d ·A∗Y are equal, i.e.

F(A∗(Xd + Y )) = F(Xd + β−d · A∗(Y )).

Moreover, since A∗(X) = DA−1 ·X ◦ A,

p ∈ sing(F(A∗(Xd + Y ))) ⇐⇒ A(p) ∈ sing(Xd + Y ).

If we set Pj(Y ) = A−1(γj(Xd + Y )), then Pj(0) = A−1(pj) = pj−1 and Pj(Y ) = γj−1(Xd + β−d ·
A∗(Y )). Thus,

γj(Xd + Y ) = A(γj−1(Xd + β−d · A∗(Y ))),

for all Y ∈ Vd sufficiently small where, by convention, we set γ0 = γd2+d+1. Now we can easily verify
that

Bj(Xd + Y ) = BB(Xd + Y, γj(Xd + Y ))

= BB(Xd + β−d · A∗(Y )), γj−1(Xd + β−d ·A∗(Y ))

= Bj−1(Xd + β−d · A∗(Y )).

Hence,

Tj(Y ) = DBj(Xd) · Y = DB j−1(Xd) · (β−d · A∗(Y )) = β−d · Tj−1(A∗(Y )).

This proves (8). Observe that (8) implies parts (a) and (b).

Relation (8) also implies that T1((A∗)k(Y )) = βkd ·T1+k(Y ). Thus, Y ∈ Ej ∩ ker(T1) if and only
if

A∗(Y ) = βj · Y and 0 = T1(βkj · Y ) = T1((A∗)k(Y )) = βkd · T1+k(Y ),
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or, equivalently, Tn(Y ) = 0 for all n ∈ {1, . . . , d2 +d+1} and A∗(Y ) = βj ·Y . Thus, we can conclude
that

Ej ∩ ker(T1) = Ej ∩K,
proving in this way part (c).

Let us prove part (d). Note that rk(B(Xd)) = dim(Im(T )). Let k = #{j | T1|Ej �≡ 0} and
{j | T1|Ej �≡ 0} = {j1, . . . , jk}, where j1 < · · · < jk. Choose Y1, . . . , Yk ∈ Vd such that Yi ∈ Eji and
T1(Yi) �= 0 for all i = 1, . . . , k. It follows from (8) that

Tj(Yi) = β−d · Tj−1(A∗(Yi)) = βji−d · Tj−1(Yi)

and, by induction, that

Tj(Yi) = β(ji−d)(j−1) · T1(Yi) =⇒ T (Yi) = T1(Yi) · (1, β(ji−d), . . . , β(N−1)(ji−d)).

We want to prove that the vectors T (Y1), . . . , T (Yk) ∈ CN are linearly independent. Since
T1(Yi) �= 0 for all i = 1, . . . , k, this is equivalent to proving that the vectors (1, β(ji−d),
β2(ji−d), . . . , β(N−1)(ji−d)) ∈ CN are linearly independent. Observe that

det

∣∣∣∣∣∣∣∣∣
1 β(j1−d) β2(j1−d) . . . β(k−1)(j1−d)

1 β(j2−d) β2(j2−d) . . . β(k−1)(j2−d)

...
...

... . . .
...

1 β(jk−d) β2(jk−d) . . . β(k−1)(jk−d)

∣∣∣∣∣∣∣∣∣
=
∏
r<s

(βjs−d − βjr−d) �= 0,

because βjs−d �= βjr−d for r < s. This finishes the proof of the lemma.

3.2 Maximal eigenspaces of A∗

Recall that Pd is a basis for Vd. We will denote by Pd(Y ) the subset of Pd of the form

Pd(Y ) = {xi · yj · Y | xi · yj · Y ∈ Vd, 0 � i+ j � d}.
In this notation we have that Pd is the disjoint union of Pd(∂x), Pd(∂y) and Pd(x∂x + y∂y).

Lemma 3.2. Let i, j � 0 be such that 0 � i + j � d and A∗(xi · yj) = xi · yj. Then i = j = 0. In
particular, given Y ∈ Vd, then the eigenvalues of Y1, Y2 ∈ Pd(Y ) are distinct for Y1 �= Y2.

Proof. Note that A∗(xi · yj) = βj−i·d · xi · yj . In particular, A∗(xi · yj) = xi · yj if and only if

j − i · d = 0 mod N ⇐⇒ (d+ 1) · j + i = 0 mod N ⇐⇒ i = j = 0.

In the first equivalence we have used that −d(d+ 1) = 1 mod N and in the second that

0 � (d+ 1) · j + i = d · j + i+ j � d(j + 1) � d(d+ 1) = N − 1 < N.

We leave the proof of the second part for the reader.

In the next result we describe the dimensions of the maximal eigenspaces of A∗.

Lemma 3.3. For any j = 1, . . . , d2 + d+ 1 we have

0 � dim(Ej) � 3.

Moreover:

(a) dim(Ed) = 3 and Ed ⊂ ker(T );

(b) dim(Ej) = 3 if and only if j = d;

(c) #{j | Ej �= {0}} = (d2 + 7d− 4)/2.
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Proof. Note that Pd(∂x)∪Pd(∂y)∪Pd(R), (R = x∂x + y∂y), is a basis of Vd formed by eigenvectors
of A∗. From Lemma 3.2, it follows that the vectors in Pd(∂x) have distinct eigenvalues. Analogously,
the vectors in Pd(∂y) (respectively in Pd(R)) have different eingenvalues. This implies that 0 �
dim(Ej) � 3.

If dim(Ej) = 3, then Ej must contain one vector in each part of the basis: Pd(∂x), Pd(∂y) and
Pd(R).

Note that Ed = 〈∂x, x
d · ∂y, y

d ·R〉. Let us prove that Ed ⊂ ker(T ). Let C(s,t)(x, y) = (s · x, t · y)
and consider the family X(r, s, t) ∈ Vd given by

X(r, s, t) = r · C∗
(s,t)(Xd) = r · s−1∂x + r · sd · t−1 · xd · ∂y + r · td · yd ·R.

Of course, for r, s, t �= 0 we have
B(X(r, s, t)) = B(Xd).

This implies that the vectors ∂/∂x, xd(∂/∂y) and yd ·R belong to ker(T ). This proves part (a).
Let us prove part (b). Suppose that dim(Er) = 3 for some r ∈ {1, . . . , d2 + d + 1}. Then, we

must have Er = 〈xi · yj · ∂x, x
k · y� · ∂y, x

m · yn · R〉, where 0 � i + j, k + 	 � d and m + n = d.
This implies that

−d(i− 1) + j = −d · k + 	− 1 = −d ·m+ n = r mod N. (9)

Since −d(d+ 1) = 1 mod N , this implies that

i− 1 + (d+ 1)j = m+ (d+ 1)n = d · n+m+ n = d(n+ 1) mod N
=⇒ d · j + i+ j − 1 = d(n+ 1) mod N.

Let us suppose by contradiction that r �= d. In the case i = j = 0 we have r = d, and so we must
have 1 � i+ j � d. This implies that

0 � d · j + i+ j − 1 � d · j + d− 1 = d(j + 1) − 1 � d(d+ 1) − 1 < N

=⇒ d · j + i+ j − 1 = d(n + 1),

because 0 < d(n+ 1) � d(d+ 1) < N . Therefore, d divides i+ j − 1. Since 0 � i+ j − 1 � d− 1, we
get i+ j = 1 and j = n+ 1 > 0. Hence, i = 0, j = n+ 1 and r = n− d ·m = n+ 1 + d mod N . It
follows that d(m+1)+1 = 0 mod N , which implies that i = 0, j = 1, m = d, n = 0 and r = d+1.

On the other hand this, together with (9), implies that

r = d+ 1 = −d · k + 	− 1 mod N =⇒ d(k + 1) + 2 = 	 mod N.

We assert that this is impossible, if 0 � k + 	 � d. In fact, if 0 � k � d− 1, then we would get

0 < d(k + 1) + 2 � d2 + 2 < N =⇒ 	 = d(k + 1) + 2 =⇒ 	 > d,

which is impossible. If k = d, then 	 = 0 and we would get d(d + 1) + 2 = 0 mod N , which is a
contradiction. Therefore, r = d, which proves part (b).

It remains to prove part (c). Set M = #{j | Ej �= {0}}. It is clear that M is the number of
different eigenvalues of A∗. Lemma 3.2 implies that all vectors in P (∂x) have different eigenvalues.
Since #(P (∂x)) = (d+ 1)(d+ 2)/2, we get this number of eigenvalues, such that the corresponding
eigenvectors are in P (∂x). Consider the function φ : Pd(x · ∂x) → Pd(y · ∂y) defined by

φ(xi · yj · ∂x) = xi−1 · yj+1 · ∂y.

A straightforward computation shows that, if Y ∈ P (x · ∂x) is such that A∗(Y ) = λ · Y , then
A∗(φ(Y )) = λ · φ(Y ). This proves that the eingenvectors of A∗ in Pd(∂y) which correspond to new
eigenvalues (not found in the previous set) must be in Pd(∂y)\Pd(y ·∂y). Therefore, they are of the
form xk · ∂y, where 0 � k � d. We assert that there are d− 1 new eigenvalues in this set.
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In fact, if xi ·yj ·∂x and xk ·∂y have the same eigenvalue, then −d(i−1)+ j = −k ·d−1 mod N .
Thus,

i− 1 + (d+ 1)j = k − (d+ 1) mod N,

which implies that

k = d(j + 1) + i+ j mod N.

Of course, we have the known solution, k = d, i = j = 0, which corresponds to vectors in Ed.
Another solution is k = d − 1, i = 0 and j = d, as the reader can check. On the other hand, if
0 � j � d− 1, then

0 < d(j + 1) + i+ j � d2 + d < N =⇒ d(j + 1) + i+ j = k,

implying that

i = j = 0 and k = d.

Therefore, there are only two repeated eigenvalues and d − 1 new in this set. The repeated eigen-
values correspond to Ed and E2d.

It remains to find how many new eigenvalues we can find in the set Pd(R). Suppose first that
we have a vector xm · yn ·R in Pd(R) with the same eigenvalue of a vector xi · yj · ∂x ∈ Pd(∂x). This
case was already considered in the proof of part (b). We have found two possibilities: (i, j) = (0, 0),
(m,n) = (0, d) (which corresponds to vectors in Ed) and (i, j) = (0, 1), (m,n) = (d, 0) (which
corresponds to Ed+1). Suppose now that we have a vector xm · yn ·R in Pd(R) and a vector xk · ∂y

in Pd(∂y) with the same eigenvalue. Then

−k · d− 1 = −d ·m+ n mod N =⇒ k − (d+ 1) = m+ n(d+ 1) = d(n+ 1) mod N

which implies that

k = d · n+ 2d+ 1 mod N.

We have the following two solutions of the above relation: k = d, (m,n) = (0, d) (which corresponds
to Ed) and k = 0, (m,n) = (1, d − 1). On the other hand, if 0 � n � d− 2, then

2d+ 1 � d · n+ 2d+ 1 � d2 + 1 < N =⇒ k = d · n+ 2d+ 1 > d,

which contradicts 0 � k � d. Therefore, there are two repeated solutions, which correspond to
Ed and Ed2+d. This implies that there is a total of three eigenvalues in Pd(R) which were already
found in the previous sets. Since #(Pd(R)) = d+ 1, we find d− 2 new eigenvalues corresponding to
eigenvectors in the set Pd(R). Hence, the total number of eigenvalues of A∗ is

M =
(d+ 1)(d + 2)

2
+ d− 1 + d− 2 =

d2 + 7d− 4
2

,

which proves the lemma.

In order to finish the proof of Theorem 2, it is sufficient to verify the following fact: for any
j ∈ {0, . . . , N − 1} such that j �= d and Ej �= {0}, T1|Ej �≡ 0. To do this will need first to carry on
a study of the local variation of the Baum–Bott index.

3.3 Local variation of the Baum–Bott index
We will consider the following situation: let X be a polynomial vector field in Vd and p0 ∈ C2

be a non-degenerate singularity of X. Denote by X1 the 1-jet of X at p0, that is, X1 = DX(p0).
Let U ⊂ Vd be a neighborhood of X such that there exists a holomorphic map p : U → C2 with
p(X) = p0 and for any Y ∈ U , then p(Y ) is a non-degenerate singularity of Y . Let B : U → C be
defined by B(Y ) = BB(Y, p(Y )). We will prove the following result.
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Lemma 3.4. Suppose that the eigenvalues of X1 are in the Poincaré domain and have no resonances.
Let Z ∈ Vd∩ker(DB(X)), that is, dB(X)·Z = 0. Then there exists λ ∈ C and a germ of holomorphic
vector field Y at p0, such that

Zp0 = λ ·Xp0 + [Xp0, Y ],
where in the above relation, Xp0 and Zp0 denote the germs of the respective vector fields at p0.
In particular, if Z(p0) = 0, then Y (p0) = 0 and

Z1 = λ ·X1 + [X1, Y1],

where Z1 = DZ (p0) and Y1 = DY (p0).

Proof. Let B : U → C be as before. Set B(X) = b0 and let S := B−1(b0). We will prove first that
DB(X) �≡ 0. This will imply that we can suppose (by taking a smaller U) that S is a smooth
codimension one sub-variety of U .

To simplify the notation, we will suppose that p0 = 0 ∈ C2. In this case, we have X = X1+
higher-order terms, where in a suitable affine coordinate system,

X1 = λ1 · x∂x + λ2 · y∂y, λ1, λ2 /∈ R− and λ2/λ1, λ1/λ2 /∈ N (Poincaré conditions).

Consider the curve X(t) in Vd defined by

X(t) = X + t · x∂x.

Then X(0) = X, X(t)(0) ≡ 0 ∈ C2 and X(t)1 = X1 + t · x∂x, which implies that

B(X(t)) =
(λ1 + λ2 + t)2

(λ1 + t)λ2

and, consequently,

DB(X) · (x∂x) =
d

dt
B(X(t))|t=0 =

1 − (λ2/λ1)2

λ2
�= 0,

because λ2/λ1 �= ±1. Therefore, we will suppose that S is smooth of codimension one.
Now, let Z ∈ ker(DB(X)). Since S is smooth, there exists a real analytic curve Y (t) ⊂ S,

t ∈ (−ε, ε), such that Y (0) = X and (d/dt)Y (t)|t=0 = Z. Therefore, we can write

Y (t) = X + t · Z +
∞∑

n=2

tn · Yn, Yn ∈ Vd, ∀n � 2.

Set p(t) := p(Y (t)), so that p(0) = p0 and p(t) is a non-degenerate singularity of Y (t). Let λ1(t)
and λ2(t) be eigenvalues of DY (t)(p(t)), where we can suppose that t �→ λj(t) is real analytic and
λj(0) = λj for j = 1, 2. Since B(Y (t)) = bo for all t ∈ (−ε, ε), we get

bo ≡ (λ1(t) + λ2(t))2

λ1(t) · λ2(t)
≡ (λ1 + λ2)2

λ1 · λ2
=⇒ λ2(t)/λ1(t) ≡ λ2/λ1, ∀t ∈ (−ε, ε),

as the reader can check, by using the condition λj(0) = λj, j = 1, 2. This implies that,

λ2(t)/λ2 ≡ λ1(t)/λ1 := φ(t),

where φ is real analytic and φ(0) = 1. Now, we use the Poincaré conditions. It follows from Poincaré’s
linearization theorem that there exist 0 < δ � ε, a neighborhood V of 0 ∈ C2 and a real analytic
map Ψ: (−δ, δ) × V → C2 with the following properties:

(i) Ψ(t, 0) = p(t) for all t ∈ (−δ, δ);
(ii) for all t ∈ (−δ, δ), Ψt(x, y) := Ψ(t, x, y) is a biholomorphism from V to V (t) := Ψt(V ) and

Ψ0 = idV (the identity map);
(iii) for all t ∈ (−δ, δ) we have Ψ∗

t (Y (t)) = φ(t) · Y (0) = φ(t) ·X.

1571

https://doi.org/10.1112/S0010437X06002326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002326


A. Lins Neto and J. V. Pereira

Writing explicitly the last relation, we have

DΨ−1
t · Y (t) ◦ Ψt = φ(t) ·X =⇒ Y (t) ◦ Ψt = φ(t) ·DΨt ·X. (10)

Let Ψt(x, y) = (Ψ1
t (x, y),Ψ2

t (x, y)) and consider the vector field W = P1(∂/∂x) + P2(∂/∂y), where

Pj(x, y) =
∂Ψj

∂t
(0, x, y), j = 1, 2.

Note that the components of W and (∂/∂t)Ψ|t=0 coincide. Taking the partial derivative of both
members of (10) with respect to t at t = 0, we get

Z + DX ·W = Z + DY (0) ·W

= Y ′(0) ◦ Ψ0 + DY (0) ◦ Ψ0 · ∂Ψt

∂t

∣∣∣∣
t=0

= φ′(0) ·DΨ0 ·X + φ(0) ·D
(
∂

∂t
Ψ|t=0

)
·X

= φ′(0) ·X + DW ·X.
If we set λ = φ′(0), then we get

Z = λ ·X + DW ·X − DX ·W = λ ·X + [W,X].

This proves the first part of the lemma. We leave the proof of the second part for the reader.

3.4 Conclusion of the proof of Theorem 2
Back to our original problem it remains to show that for any j ∈ {0, . . . , N − 1} such that j �= d
and Ej �= {0}, then T1|Ej �≡ 0. This will be achieved in the next result.

Lemma 3.5. Let W ∈ Pd be such that W ∈ ker(T1). Then W ∈ Ed.

Proof. Let W be in Pd ∩ ker(T1). We have three possible cases.

First case: W = xi · yj∂x, where 0 � i+ j � d. Recall that ∂x ∈ ker(T1). We assert that, if 1 �
i+ j � d, then W /∈ ker(T1).

In fact, set Z = W − ∂x = (xi · yj − 1)∂x. Since T1(∂x) = 0, we have

T1(W ) = 0 ⇐⇒ T1(Z) = 0.

Recall that T1 = DB1(Xd), B1(X) = BB(F(X), γ1(X)) and γ1(Xd) = (1, 1) = p1. Since Z(1, 1) = 0,
it follows from Lemma 3.4 that it is enough to verify whether or not Z1 = DZ (1, 1) belongs to the
image of the linear map Ψ: C × L1 → L1 defined by

Ψ(λ, Y1) = λ ·X1 + [X1, Y1],

where L1 is the set of 1-jets of germs of holomorphic vector fields Y at (1, 1) such that Y (1, 1) = 0.
Note that L1 is isomorphic to the set M2, of 2×2 matrices, via the linear map Φ: L1 →M2 defined
by

Y = P∂x +Q∂y
Φ�→ DY (1, 1) =



∂P

∂x
(1, 1)

∂P

∂y
(1, 1)

∂Q

∂x
(1, 1)

∂Q

∂x
(1, 1)


 .

The map Φ is an isomorphism of Lie algebras. We will call Φ(Y1) the matrix form of Y1 and, to
simplify, we will keep the notation Y1 instead of Φ(Y1). Note that,

X1 =
[−1 −d
d −(d+ 1)

]
and Z1 =

[
i j
0 0

]
.
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Let Y1 =
[ α β

γ δ

]
. Then, Ψ(λ, Y1) = λ ·X1 + [X1, Y1] and

[X1, Y1] = Y1X1 −X1Y1 =
[

d(β + γ) d(δ − α− β)
d(γ + δ − α) −d(β + γ)

]
:=
[
x y
z −x
]
,

as the reader can check. In particular, we get tr([X1, Y1]) = 0 and the following relation between
the entries of [X1, Y1]

x = z − y. (11)
Let us suppose that Z1 = Ψ(λ, Y1). Since tr([X1, Y1]) = 0, we get

i = tr(Z1) = λ · tr(X1) = −λ · (d+ 2) =⇒ λ = − i

d+ 2
.

This implies that the matrix Z1 + (i/(d + 2))X1 must satisfy (11). On the other hand, we have,

Z1 +
i

d+ 2
X1 =




(d+ 1)i
d+ 2

(d+ 2)j − d · i
d+ 2

d · i
d+ 2

−(d+ 1)i
d+ 2


 .

Hence, Z ∈ ker(T1) if and only if

(d+ 1)i
d+ 2

=
d · i
d+ 2

− (d+ 2)j − d · i
d+ 2

if and only if
(d− 1)i = (d+ 2)j.

The last relation implies that d + 2|i, which implies that i = 0 and j = 0, which contradicts the
assumption i+ j � 1.

Second case: W = xk · y�∂y, where 0 � k + 	 � d. Recall that xd∂y ∈ ker(T1). We assert that, if
0 � k � d− 1 and 0 � k + 	 � d, then W /∈ ker(T1).

The idea is the same as in the first case. Let Z = W−xd∂y = (xk ·y�−xd)∂y. Since xd∂y ∈ ker(T1),
then W ∈ ker(T1) ⇐⇒ Z ∈ ker(T1). In this case, we have Z(1, 1) = 0 and

Z1 =
[

0 0
k − d 	

]
=⇒ λ = − 	

d+ 2
=⇒ Z1 − λX1 =




− 	

d+ 2
− d · 	
d+ 2

d · 	+ (k − d)(d + 2)
d+ 2

	

d+ 2


 .

Hence, Z ∈ ker(T1) if and only if

− 	

d+ 2
=
d · 	+ (k − d)(d+ 2)

d+ 2
+

d · 	
d+ 2

⇐⇒ (d− k)(d + 2) = (2d + 1)	.

As the reader can check, if 0 � k+ 	 � d, then the last relation is possible only for k = d and 	 = 0,
which proves the assertion.

Third case: W = xmynR, where m+ n = d. Recall that yd ·R ∈ ker(T1). We assert that, if 0 � n �
d− 1, then W /∈ ker(T1).

In this case, if Z = W − yd · R = (xm · yn − yd) ·R, then Z(1, 1) = 0 and

Z1 =
[
m n− d
m n− d

]
=⇒ tr(Z1) = 0

and
λ = 0 =⇒ m = m− (n − d) =⇒ n = d and m = 0.

This finishes the proof of the lemma and of Theorem 2.
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4. The Camacho–Sad field

4.1 Preliminaries
Let M and S be two complex compact surfaces, φ : M ��� S a meromorphic map and F a foliation
on S. We want to prove that K(φ∗(F)) = K(F). We will use the notation G := φ∗(F). As was
sketched in the introduction, the theorem is true when φ consists of a sequence of blowing-ups. This
fact allows us to reduce the problem to the case where F and G are reduced and φ is holomorphic.
Thus, from now on, we will suppose that the foliations F and G = φ∗(F) are reduced and that
φ : M → S is holomorphic. Before going on, let us fix some notation.

Let H be a reduced foliation on a compact surface V . Given p ∈ V we will associate a field,
K(H, p), as follows: let X be a holomorphic vector field which represents H in a neighborhood of p.
When p ∈ sing(H), we will denote by λ1, λ2 the eigenvalues of DX(p). We have the following three
possibilities.

• p ∈ sing(F), λ1, λ2 �= 0 and λ2/λ1 /∈ Q+. In this case, H has two local separatrixes Σ1

and Σ2 through p and CS(H,Σ1, p) = λ2/λ1, CS(H,Σ2, p) = λ1/λ2. In this case, we set:
K(H, p) = Q(λ2/λ1) = Q(λ1/λ2).

• λ1 = 0 and λ2 �= 0. We will suppose that λ2 = 1. In this case, H has one local analytic separatrix
Σ2 through p, tangent to the eigenspace of λ2 = 1 and CS(H,Σ2, p) = 0. The separatrix Σ1,
tangent to the eigenspace of λ1 = 0 is formal, in general, but X is formally equivalent to the
vector field Y := xk+1∂x + y(1 + λxk)∂y. We have CS(H,Σ1, p) = λ (by definition) and we set
K(H, p) = Q(λ).

• p /∈ sing(F). In this case, we set K(F , p) = Q.

In general, if ∅ �= A ⊂ V and A ∩ sing(H) = {p1, . . . , pk}, we set

K(H, A) = Q(K(H, p1), . . . ,K(H, pk)).

When A ∩ sing(H) = ∅ we set K(H, A) = Q. In this notation, we also have that:

• K(H) = K(H, V );

• if A,B ⊂ V , then K(H, A ∪B) = Q(K(H, A),K(H, B)).

The next result implies Theorem 3.

Lemma 4.1. For any p ∈ S, we have

K(φ∗(F), φ−1(p)) = K(F , p).

We first note that φ−1(p) �= ∅, because the generic rank of φ is two, which implies that φ is
surjective. Moreover, φ−1(p) is an analytic subset whose connected components have dimension zero
(points) or one (curves). In fact, we will prove that for any connected component C of φ−1(p) we
have

K(φ∗(F), C) = K(F , p).
Clearly this fact implies the lemma. Before going on, we will state some remarks and preliminary
results.

Remark 4.1. Let Z be vector field representing F in a sufficiently small neighborhood U of a point
p ∈ S. Locally, and up to an analytic change of coordinates, we have three possibilities.

(1) p is not a singularity of F . In this case, K(F , p) = Q. We can suppose that Z = ∂y. In particular,
F has a local holomorphic first integral (y) and has just one local separatrix through p: the
curve y = 0.

1574

https://doi.org/10.1112/S0010437X06002326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002326


The generic rank of the Baum–Bott map

(2) p is a reduced and simple singularity of F and the eigenvalues of DZ(p) are λ1, λ2 �= 0. In this
case, λ2/λ1 /∈ Q+ and K(F , p) = Q(λ2/λ1). The foliation F has two local separatrices through
p, which are smooth and transversal at p. We can suppose that they are (x = 0) and (y = 0)
and that

Z = λ1 · x∂x + λ2 · y(1 +R(x, y))∂y , (12)

where R(0, 0) = 0.

(3) p is a saddle-node of F and we can suppose that the eigenvalues of DZ(p) are 0 and 1. In this
case, Z is formally equivalent at p to the vector field Ẑ = xk+1∂x + ŷ(1+λ ·xk)∂ŷ, where k � 1,
and K(F , p) = Q(λ). Here, we will use Dulac’s normal form (cf. [MR82]). For every m � k+ 1
there exists a holomorphic coordinate system (U, (x, y)) such that x(p) = y(p) = 0 and F is
defined by

Z = xk+1∂x + [y(1 + λ · xk) +R(x, y)]∂y . (13)

where the m-jet of R is zero at 0 ∈ C2. When F has two local analytic separatrices through p,
we can suppose that y divides R. When it has just one analytic separatrix, then it also has a
formal one, given by ŷ = 0, where ŷ is a divergent series of the form (cf. [MR82]):

ŷ = y −
∞∑

j=r+1

ajx
j. (14)

We break down the proof of Lemma 4.1 in three cases.

Proof of Lemma 4.1 (First case: p is not a singularity of F). Here F admits a holomorphic first
integral in a neighborhood of p. If g ∈ Op is such holomorphic first integrals then φ∗g is an holo-
morphic first integral for G = φ∗F in a neighborhood of φ−1(p). Thus, K(G, φ−1(p)) = Q.

From now on, we will suppose that p ∈ sing(F). In the next results, we will consider the following
situation: let q ∈ φ−1(p)∩ sing(G). Suppose that G has a local analytic separatrix Σ̃ through q such
that φ(Σ̃) �= {p}. In this case, φ(Σ̃) := Σ is a local analytic separatrix of F through p.

Lemma 4.2. In the above situation, we have:

(a) CS(G, Σ̃, q) ∈ Q(CS(F ,Σ, p));
(b) if K(F , p) = Q(CS(F ,Σ, p)), then K(F , p) = Q(CS(G, Σ̃, q)).

Proof. Let (f = 0) be a reduced equation Σ and write

g · ω = h · df + f · µ, (15)

where g, h|Σ �= 0. From the definition, we have

CS(F ,Σ, p) =
1

2πi

∫
γ
−µ
h
,

where γ is a small circle in Σ around p, positively oriented. Note that φ∗(ω) = k̃·θq, where k̃ ∈ Oq and
θq represents the germ of G at q. Let f̃ = 0 be a reduced equation of Σ̃. Since φ(Σ̃) = Σ = (f = 0),
we get

φ∗(f) = f ◦ φ = g̃ · f̃m,
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where m � 1 and g̃|Σ̃ �= 0. It follows from (15) that

φ∗(g) · k̃ · θq = φ∗(h) · d(g̃ · f̃m) + g̃ · f̃m · φ∗(µ)

=⇒ φ∗(g) · k̃
m · φ∗(h) · g̃ · f̃m

· θq =
df̃

f̃
+

1
m

[
dg̃

g̃
+ φ∗
(
µ

h

)]

=⇒ CS(G, Σ̃, q) = − 1
2πi

∫
γ̃

1
m

[
dg̃

g̃
+ φ∗
(
µ

h

)]
,

where γ̃ is a small circle in Σ̃ around q. Note that φ(γ̃) = γn, where n � 1. Observe also that
(1/2πi)

∫
γ̃(dg̃/g̃) = 	 ∈ Z. Hence,

CS(G, Σ̃, q) = − 	

m
+

1
m

1
2πi

∫
γn

−µ
h

=
1
m

(−	+ n · CS(F ,Σ, p)) ∈ Q(CS(F ,Σ, p)).

Since n �= 0, we get also that

Q(CS(G, Σ̃, q)) = Q(CS(F ,Σ, p)),
which implies part (b).

Remark 4.2. The above result is true in the general case, that is, even if the map φ is meromorphic
and the separatrices Σ̃ and Σ are singular.

Remark 4.3. If the connected component C of φ−1(p) is a curve, then all irreducible components
of C are invariant for the foliation G, otherwise p would be a diacritical singularity of F . Moreover,
all of the singular points of C are nodes.

Proof of Lemma 4.1 (Second case: p is a singularity with two analytic separatrices). We will prove
that every connected component C of φ−1(p) is such that

K(G, C) = K(F , p).
First of all, observe that for one of the two separatrices, say Σ, we have

K(F , p) = Q(CS(F ,Σ, p)).
Let W be a neighborhood of C. Note that φ−1(Σ) ∩W is a germ of analytic set around φ−1(p),
different from φ−1(p). Each component of φ−1(Σ) \ φ−1(p) is a curve biholomorphic to D∗, whose
closure contains a unique point in φ−1(p). Let Σ̃ be a closure of some of these components and set
Σ̃ ∩ φ−1(p) = {q}. It follows from Lemma 4.2(b) that

K(G, q) = K(F , p).
This implies that

K(G, C) ⊃ K(G, q) = K(F , p).
It remains to prove that, for any q ∈ sing(G) ∩C, then K(G, q) ⊂ K(F , p). If C has dimension zero,
that is, C = q, the above argument shows that K(G, C) = K(F , p).

From now on, we will suppose that C is a curve. The next result implies the second case of
Lemma 4.1.

Lemma 4.3. Let q ∈ C ∩ sing(G) and Σ̃1 be a separatrix of G through q. Then Σ̃1 is analytic and

CS(G, Σ̃1, q) ∈ K(F , p).
Proof. Suppose first that q is a smooth point of C and that Σ̃1 �⊂ C. If Σ̃1 is a formal separatrix of
G which is non-convergent, then F would have a formal non-convergent separatrix at p contrary to
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our assumptions. This Σ̃1 is analytic. Thus, Lemma 4.2 implies that

CS(G, Σ̃1, q) = CS(F , φ(Σ̃1), p) ∈ K(F , p)
and we are done in this case.

Let us suppose now that Σ̃1 ⊂ C. In this case, Σ̃1 is analytic and smooth, but φ(Σ̃1) = {p} and
we cannot use Lemma 4.2 directly. The result will follow from the lemma below.

Lemma 4.4. In the above situation, there is a bimeromorphism ψ : Ŝ → S (a sequence of blowing-
ups) such that, if we set φ̂ := ψ−1 ◦ φ : M ��� Ŝ, F̂ = ψ∗(F) and D = ψ−1(p), then:

(a) there exists p̂ ∈ D ∩ sing(F̂) and a separatrix Σ1 ⊂ D of F̂ through p̂ such that φ̂(Σ̃1) = Σ1;

(b) CS(G, Σ̃1, q) ∈ K(F̂ , p̂) ⊂ K(F , p).
Proof. Let Σ̃2 be the other separatrix of G through q ∈ M and let (V, (u, v)) be a local coordinate
system around q such that u(q) = v(q) = 0, sing(G) ∩ V = {q}, Σ̃1 = (u = 0), Σ̃2 = (v = 0),
V = {(u, v) | |u|, |v| < ε} and φ(V ) ⊂ U .

Write the germ of φ at q as φq = (Xq, Yq). Since φ(Σ̃1) = {p} it follows thatXq(u, v) = um·f(u, v)
and Yq(u, v) = un · g(u, v), where m,n � 1, f, g ∈ Oq and f(0, v), g(0, v) �≡ 0. For |c| < ε, let γc be
the germ at p of the curve u �→ φ(u, c). Note that γ0 might be a point (if φ(Σ̃2) = {p}), however if
we take a smaller ε > 0, then we can suppose that γc is a curve, for all 0 < |c| < ε. Moreover, there
is a sequence of blowing-ups ψ : Ŝ → S such that, if D = ψ−1(p) and ε is small enough, then:

(i) ψ : Ŝ \D → S \ {p} is a bimeromorphism;

(ii) there is a divisor D1 ⊂ D such that, for all 0 < |c| < ε, the strict transform γ̂c of γc meets D1

in a unique point, say p(c);

(iii) if c1 �= c2 and 0 �= c1, c2, then p(c1) �= p(c2); in particular, the map c ∈ {z | 0 < |z| < ε} �
D∗ �→ p(c) ∈ D1 is a holomorphic embedding.

The sequence of blowing-ups ψ is a simultaneous resolution of the germs γc, 0 < |c| < ε. We
leave the details for the reader. In this case, it follows from Picard’s theorem that there exist
limc→0 p(c) = p̂ ∈ D1. Moreover, if F̂ = ψ∗(F), then the germ Σ1 of D1 at p̂, is a separatrix of F̂
through p̂ and ψ−1 ◦ φ(Σ̃1) = Σ1. This proves part (a).

Let us prove part (b). Note first that

CS(F̂ ,Σ1, p̂) ∈ K(F , p) =⇒ Q(CS(F̂ ,Σ1, p̂)) ⊂ K(F , p),
because ψ is a sequence of blowing-ups (see the introduction). On the other hand, Lemma 4.2 implies
that

CS(G, Σ̃1, q) ∈ Q(CS(F̂ ,Σ1, p̂)).

This finishes the proof.

To finish the proof of Lemma 4.1 it remains to treat just one case.

Proof of Lemma 4.1 (Third case: p is singular with just one analytic separatrix). In this case, F
has a normal form like in (13) of Remark 4.1: for every r � k + 1 there exists a local coordi-
nate system (U, (x, y)) where F is represented by

ω = xk+1 dy − [y(1 + λ · xk) +R(x, y)] dx, (16)

where k � 1 and jr0(R) = 0. Let C be a connected component of φ−1(p) and consider a sufficiently
small neighborhood W of C. We denote by Σ1 the non-convergent separatrix and by Σ2 the con-
vergent separatrix. In the coordinate system (U, (x, y)) we have Σ2 = (x = 0) and Σ1 is given by
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the divergent series

y =
∞∑

j=r+1

ajx
j .

As before, the proof consists of proving that:

(I) for any q ∈ C ∩ sing(G) we have K(G, q) ⊂ K(F , p); and

(II) there exists q0 ∈ C ∩ sing(G) such that K(G, q0) = K(F , p).

Proof of part (I). Let us consider first the case where the two separatrices through q are analytic.
Let Σ̃ be one of these separatrices. It is sufficient to prove that CS(G, Σ̃, q) ∈ K(F , p).

In fact, if φ(Σ̃) �= {p}, then φ(Σ̃) is a curve and φ(Σ̃) ⊂ Σ2. Since CS(F ,Σ2, p) = 0, we get from
Lemma 4.2 that CS(G, Σ̃, q) ∈ Q, as asserted. On the other hand, if φ(Σ̃) = {p}, then the assertion
follows from Lemma 4.4(b).

Let us suppose now that there is a non-convergent separatrix, say Σ̃1, and a convergent separa-
trix, say Σ̃2, through q. We assert that there is a coordinate system (V, (u, v)) around q such that
u(q) = v(q) = 0, φ(V ) ⊂W and φ|V (u, v) = (X(u, v), Y (u, v)), where:

(i) X(u, v) = um, m � 1;

(ii) Y (u, v) = un · v, where n = 0 if C = {q} and n � 1 if C is a curve.

In fact, we can write φ|W = (X,Y ), where X,Y : W → C are holomorphic functions and
X(q) = Y (q) = 0. Let Xq and Yq be the germs of X and Y at q. Since Σ2 = (x = 0) is invariant
for F , the irreducible components of (Xq = 0) are local analytic separatrices of G through q.
This implies that (Xq = 0) = Σ̃2. Choose a local coordinate system (u, v) around q such that
Σ̃2 = (u = 0). In this case, we get Xq = um · g, where m � 1 and g ∈ O∗

q . If we consider the local
change of variables u1 = u ·g1/m, then Xq = um

1 , and so we can suppose Xq = um. In this coordinate
system we must have Yq = un · Y1, where Y1 ∈ Oq. If C is a curve, then Σ̃2 ⊂ C (by Remark 4.3)
and n � 1. If C = {q}, then n = 0 and Y (0, v) �≡ 0. We assert that Yv(0, 0) �= 0. Note that this
implies that, after a holomorphic change of variables, we can suppose that Y1(u, v) = v.

In fact, to say that the formal separatrix ŷ := y −∑j ajx
j is invariant for F is equivalent to

dŷ ∧ ω = f̂ · ŷ · dx ∧ dy, (17)

where f̂ ∈ Ôp and Ôp denotes the ring of formal power series at p. Consider the formal power series

un · Ŷ1 := Ŷ (u, v) := φ∗(ŷ) = un

(
Y1(u, v) −

∑
j�r+1

aju
mj−n

)
, (18)

where Ŷ1 ∈ Ôq if we take r large enough. Let Ŷ1 = gn1
1 , . . . , gns

s be the decomposition of Ŷ1 into
irreducible factors of Ôq. Write φ∗(ω) = h · θq, where θq represents the germ of G at q. It follows
from (17) that

h

[
n · g1 · · · gs du+ u

(∑
j

nj · g1 · · · gj−1 · gj+1 · · · gs · dgj

)]
∧ θq

= ∆ · f̃ ◦ φ · u · g1 · · · gs du ∧ dv,
where ∆ = Xu · Yv −Xv · Yu = um+n−1 · Y1v. We assert that h divides ∆ in the Oq.
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In fact, as the reader can check, we have φ∗(ω) = um+n−1(Adv −B du), where

A = ukm+1 · Y1v

B = m · Y1

(
1 +
(
λ− n

m

)
· ukm

)
+ ukm+1 · T (u, v)

and T ∈ Oq. This implies that h = um+n−1 · h1, where any factor of h1 is also a factor Y1v, because
u does not divides B. Therefore, h divides ∆.

It follows that[
n · g1 · · · gs du+ u

(∑
j

njg1 · · · gj−1 · gj+1 · · · gs dgj

)]
∧ θq = f̂ · u · g1 · · · gs du ∧ dv,

where f̂ ∈ Ôq. Hence, all factors g1, . . . , gs and (u = 0) are invariant for G. Since G has only two
separatrices through q, we get that s = 1 and g1 is the formal separatrix of G through q. Since G is
reduced, we get g1v(0) �= 0 and Ŷ1 = gs, where g = g1 and s = n1. It follows from (18) that

Y1v = Ŷ1v = sgs−1gv.

Therefore, Y1v(0) = 0 if and only if s > 1. Suppose, by contradiction, that s > 1. Since gv(0) �= 0,
by the formal Weierstrass’ theorem we can write g = f · (v − h(u)), where f ∈ Ôq, f(0) �= 0 and
h(u) is a power series. Therefore, if we set k = s · f s−1 · gv , then we have k ∈ Ôq, k(0) �= 0
and Y1v = k · (v − h(u))s−1. This implies that the germ of analytic set (Y1v = 0) (which is not
empty), is also given by (v−h(u) = 0), and so, h(u) is convergent. However, this is a contradiction,
because φ(v − h(u) = 0) = (ŷ = 0), which is divergent. Hence s = 1 and Y1v(0) �= 0.

Let us finish the proof of part (I). Since X(u, v) = um and Y (u, v) = un · v, we get from (16)
that φ∗(ω) = um+n−1 · θq, where, given 	 > mk + 1,

θq = ukm+1 dv −m

[
v

(
1 +
(
λ− n

m

)
· ukm

)
+ R̃(u, v)

]
du

and R̃(u, v) = u−n ·R(um, un · v) ∈ u� · Oq, if r is large enough. This implies that the formal normal
form of G at q is given by

ukm+1 dv −m

[
v

(
1 +
(
λ− n

m

)
ukm

)]
du =⇒ K(G, q) = Q(mλ− n) = Q(λ) = K(F , p).

Proof of part (II). We will suppose that C is a curve. The case where C is a point will be left for
the reader. It follows from the proof of part (I) that it is sufficient to find a point q ∈ C ∩ sing(G)
with a non-convergent separatrix. Let W be a sufficiently small neighborhood of C. Consider the
curve C1 := φ−1(y = 0) ∩W . Since φ(C1) = (y = 0) �= {p}, it follows that C1 \ C �= ∅. Moreover,
if δ is a component of C1 \ C, then δ is biholomorphic to D∗ and δ ∩ C is a point, say q. We will
denote by δq the germ of δ at q. We assert that G has a non-convergent separatrix through q.

We will see at the end that q is smooth point of C. Let us suppose this fact for a moment. Since
φ(C) = {p}, there exists a coordinate system (V, (u, v)) such that V ⊂ W , u(q) = v(q) = 0 and
C ∩ V = (u = 0). In this case, the germ of φ at q can be written as

φq(u, v) = (Xq(u, v), Yq(u, v)) = (umX1(u, v), unY1(u, v)),

where X1, Y1 ∈ Oq and X1(0, v), Y1(0, v) �≡ 0. Note that Y1(0, 0) = 0 and δq ⊂ (Y1 = 0). On the
other hand, since (x = 0) is an analytic separatrix of F through p, X1(0, 0) �= 0, because otherwise
q would be a node of C. This implies that, after a holomorphic change of variables, we can suppose
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that X(u, v) = um. It follows that the formal series

Ŷ1 =
1
un

(
Y −
∑

j�r+1

ajX
j

)
= Y1 −

∑
j

aju
jm−n

defines a formal separatrix of G through q (see the proof of part (I)).
It remains to prove that q is a smooth point of C. Suppose by contradiction that q is a node

of C. The idea is to prove that in this case G has more than two separatrices through q, which
is not possible for a reduced foliation. Let (V, (u, v)) be a coordinate system such that C ∩ V =
(u · v = 0). In this case, we can write Xq(u, v) = um · v� ·X1(u, v) and Yq(u, v) = un · vs · Y1(u, v),
where X1(0, v), Y1(0, v),X1(u, 0), Y1(u, 0) �≡ 0 and m,n, 	, s ∈ N. As before, we must have X1(0, 0) �=
0, because (x = 0) is an analytic separatrix through p. Hence, after a holomorphic change of
variables, we can suppose that X(u, v) = um · v�. If r � 1, then we get the formal power series

Ŷ1 =
1

un · vs

(
Y −
∑

j�r+1

aju
jm · vj�

)
= Y1 −

∑
j�r+1

aju
jm−n · vj�−s ∈ Ôq.

Note that Ŷ1(0, 0) = 0. This implies that all irreducible components of Ŷ1 in the ring Ôq are
invariant for G (see the proof of part (I)). Since u and v do not divide Ŷ1 in Ôq, G has more than
two separatrices through q: (u = 0), (v = 0) and the irreducible components of Ŷ1. This finishes the
proof of the third case of Lemma 4.1 and of Theorem 3.

4.2 Proof of Corollary 2
If BB : Fol(d) ��� Pd2+d+1 is the global Baum–Bott map, then by Theorem 1 it follows that the
closure of its image is a hypersurfaceH. Clearly this hypersurface is defined over Q. This is sufficient
to assure that there exists a generic set U ⊂ H, such that the field generated by the quotients of
the coordinates of p = [p0 : . . . : pd2+d+2] has transcendence degree d2 + d = dimH for every p ∈ U .

Since the Camacho–Sad index and the Baum–Bott index of a simple singularity are algebraically
dependent, if we take G(d) = BB−1(U)∩R(d), then, for every F ∈ G(d), the transcendence degree of
K(F) = d2 +d. Moreover, since U is dense in the image of BB we have that G(d) is also generic.

4.3 A basic property of the Camacho–Sad field and the Proof of Corollary 3
We will derive Corollary 3 from corollary 2 and the basic property of the Camacho–Sad field
described in the next proposition. Here we will use the terminology and notation of [Bru04, ch. 1].

Proposition 4.1. Let F be foliation of compact surface S with isolated singularities and cotangent
bundle isomorphic to L. The transcendence degree of K(F) over Q is at most c2(TS ⊗ L) − 1.

Proof. If all of the singularities are simple, i.e. they all have multiplicity one, then the result is an
immediate consequence of Baum–Bott’s formula.

Suppose now that there is a singularity p of F with multiplicity µ(p) � 2. We have three
possibilities:

(1) p is a saddle-node;

(2) p is a singularity without linear part;

(3) p is a nilpotent singularity.

In case (1) we have already seen that the transcendence degree of K(F , p) is at most 1.
In case (2) we can apply the Van den Essen formula (cf. [Bru04, p. 13]) to see that after blowing

up the sum of the Milnor numbers over the singularities on the exceptional divisor is strictly less
than µ(p).
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In case (3) the argument is more involved. After blowing-up a nilpotent singularity only one
singularity q appears at the exceptional divisor. We have two possibilities.

(3.1) q is a singularity without a linear part: after blowing up q, two or three singularities appear
at the exceptional divisor. The important fact is that the sum of its Milnor numbers is equal
to µ(p). Thus, here without further ado we have that the transcendence degree of K(F , p) is
at most µ(p).

(3.2) q is (again) a nilpotent singularity: blowing up q we obtain a singularity without a linear
part and after blowing up again we obtain three singularities with non-nilpotent linear part.
It follows from Camacho–Sad index theorem that in this case K(F , p) = Q.

An induction argument shows that the transcendence degree of K(F) is at most the sum of
Milnor numbers of singularities of F which is equal to c2(TS ⊗ L).

To conclude we analyze the two cases independently. In the first case, saddle-nodes do not appear
in F̃ , the resolution of F . So, at the end all of the singularities of F̃ are simple and from (1) and
Baum–Bott’s formula we have that the transcendence degree of K(F) is at most c2(TS ⊗ L) − 1.
In the second case, at least one saddle-node appears at the resolution. Since they have multiplicity
at least 2 and contribute to the transcendence degree with at most 1, the result also follows in this
case.

Proof of Corollary 3. Corollary 3 follows from Theorem 3 and Corollary 2 combined with the propo-
sition above.

5. An example

As already noted in the introduction the dimension of the generic fiber is given by dim Fol(d) −
(d2 + d) = 3d+ 2. It would be interesting to classify the exceptional fibers of the Baum–Bott map,
i.e. fibers with dimension at least 3d+ 3.

Example 5.1. Let F0 be a foliation on P2 with a meromorphic first integral of the type F/Ld+1,
where F and L are homogeneous, F of degree d + 1 and L of degree one. In an affine coordinate
system C2 where L is the line at infinity, the foliation is defined by dF = 0 and, so, it is of degree d.
If F is generic, then F0 has d2 simple singularities on C2, all of them with Baum–Bott index zero,
and d + 1 singularities at the line L, all of them with Baum–Bott index (d + 2)2/(d + 1). In fact,
we will see in the next result that the fiber of BB containing F0 has dimension greater than 3d+ 2.

Proposition 5.1. Let F be a degree d foliation of P2 with at least d2 simple singularities with
Baum–Bott index zero. Then F is a pencil generated by C and (d+ 1)L, where C has degree d+ 1
and L is a line. In particular, the fiber of the Baum–Bott map containing F has dimension(

d+ 3
2

)
+ 2.

Proof. We will start by proving that F has an invariant line. Consider an affine coordinate system
(x, y) ∈ C2 ⊂ P2, such that all singularities of F are contained in C2. In particular, the line at
infinity is not invariant for F . Recall that F is induced by a vector field X of the form

X = (a+ xg)∂x + (b+ yg)∂y,

where a, b are polynomials with deg(a),deg(b) � d and g is a non-identically zero degree d homo-
geneous polynomial.

Let I be the ideal generated by a+ xg and div(X), where

div(X) =
∂

∂x
(a+ xg) +

∂

∂y
(b+ yg) =

∂a

∂x
+
∂b

∂y
+ (d+ 2)g.
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Note that, for any singularity p of F with Baum–Bott index zero, we have div(X)(p) = 0.
By Bezout’s theorem we have that V (I) = {p ∈ P2 | f(p) = 0 ∀f ∈ I} has degree deg(div(X))
deg(a+ xg) = d(d+ 1), i.e. V (I) has d2 + d points (counted with multiplicity): d of these points are
at infinity and they correspond to the intersection of the curve {g = 0} (which is a union of lines)
with the line at infinity; the other d2 correspond to the singularities of X in C2 with vanishing trace,
i.e. with Baum–Bott index zero. In particular, the closure of the curves a+x.g = 0 and div(X) = 0
intersect transversely in P2.

Since b+y·g vanishes on all points of V (I) it must belong to I. Keeping in mind that deg(b+y·g) =
deg(a+x·g) = deg(div(X))+1 we can apply Noether’s lemma to see that there exists 	1, 	2 ∈ C[x, y]
such that deg(	1) = deg(	2) = 1 and

X(	1) = 	2 · div(X).

Note that the left-hand side of the equation above vanishes at all singularities of X. This implies
that all the singularities of F with Baum–Bott index distinct from zero have to be in 	2. Comparing
the homogeneous terms of degree d+ 1 of the equation, one obtains that

g

(
∂	1
∂x

x+
∂	1
∂y

y

)
= (d+ 2)g

(
∂	2
∂x

x+
∂	2
∂y

y

)
.

Thus, 	1 − (d+ 2)	2 ∈ C and, consequently,

X(	2) =
1

d+ 2
· div(X) · 	2,

proving that 	2 is invariant.
Let us choose an affine coordinate system where the line at infinity is invariant and

X = a∂x + b∂y,

with deg(a) = deg(b) = d. We claim that div(X) ≡ 0. Let I be the ideal generated by div(X) and a.
If div(X) �≡ 0, then div(X) has degree at most d − 1 and V (I) in this case has degree at most
d(d− 1). Since V (I) has to vanish at d2 points we get div(X) ≡ 0.

The condition div(X) = 0 is equivalent to the closedness of the polynomial 1-form ω = b dx−a dy.
So ω = dF for some polynomial F of degree d+1, i.e. F is a pencil generated by F and Ld+1, where
F has degree d+ 1 and L is the line at infinity.

We conclude that the fiber of the Baum–Bott map that contains F can be parametrized as

(F,L) ∈ Pd+1 × P1 �→ F(F/Ld+1),

where Pj denotes the set of homogeneous polynomials on C3 of degree j and F(G) the foliation
with first integral G. Note that F(F/Ld+1) is defined in homogeneous coordinates by the 1-form

ω(F,L) = L · dF − (d+ 1) · F · dL.
On the other hand, the reader can check that ω(F,L) = ω(F1, L1) if and only if (F1, L1) = λ ·(F,L),
where λ ∈ C∗. This implies that the dimension of the fiber of the Baum–Bott map that contains F
has dimension dim(P(Pd+1 ×P1)) =

(d+3
2

)
+ 2.

6. Some remarks and problems

6.1 The image of the Baum–Bott map
If F and L are generic, then the singularities of F(F/Ld+1) are all simple. Moreover, there are two
kinds of singularities: the d2 singularities with Baum–Bott index zero and the d+ 1 singularities in
the line L, all of them with Baum–Bott index (d+ 2)2/(d+ 1). In particular, we see that BB(R(d))
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is not the whole hyperplane given by the Baum–Bott theorem. In fact, any point of the form
(0, . . . , 0, λ1, . . . , λd+1), where

∑
j λj = (d+ 2)2 and λ1 �= (d+ 2)2/(d+ 1) is not in BB(R(d)).

It would be interesting to describe BB(R(d)) or, more specifically, give a criterion to decide
whether or not a point [b1, . . . , bN ] belongs to BB(R(d)).

6.2 Affine versions of Theorem 1
Let L ⊂ P2 be a line and FolL(d) be the space of foliations of degree d which leave L invariant.
If F ∈ FolL(d) has only simple singularities, it is known (cf. [Bru04]) that L contains (d + 1)
singularities and that ∑

p∈sing(F)∩L

CS(F , L, p) = C · C = 1.

This implies, in particular, that the maximal rank of BB|FolL(d) is less than d2 + d. When d � 2,
is the maximal rank of BB|FolL(d) equal to d2 + d − 1? If C is a smooth curve, what can be said
about the generic rank of BB|FolC(d) for d � 0? We believe that our strategy of proof should work
on these situations.

6.3 The fibers of the Baum–Bott map
Recall that the dimension of the generic fiber of the global Baum–Bott for degree d foliations of
P2 is 3d+ 2. How many irreducible components does it have and what is its degree as an algebraic
subset of Fol(d)?

6.4 Other surfaces
For an arbitrary compact complex surface S and an arbitrary non-negative integer k we have that
the number of singularities (counted with multiplicities) of a foliation in Fol(S,L) with isolated
singularities is given by

c2(TS ⊗ L⊗k) = k2 · c1(L)2 + k · c1(L) · c1(S) + c2(S).

On the other hand if L is an ample line bundle and k � 0, then, combining the Hirzebruch–
Riemann–Roch theorem with Serre’s vanishing theorem (see [BHPV04]), we have that dim
Fol(S,L⊗k) = h0(TS ⊗ L⊗k) − 1 is equal to

1
2(c21(TS ⊗L⊗k) − 2c2(TS ⊗ L⊗k)) + 1

2c1(TS ⊗ L⊗k) · c1(S) + 2χ(S) − 1.

Straightforward manipulations shows that the dimension Fol(S,L⊗k) is

k2c1(L)2 + 2kc1(L) · c1(S) + c21(S) − c2(S) + 2χ(S) − c2(S) − 1.

Thus, we have that dim Fol(S,L⊗k) − c2(TS ⊗ L⊗k) is equal to

kc1(L) · c1(S) + (c21(S) − c2(S) + 2χ(S) − 1).

If c1(L) · c1(S) < 0 (this happens, for example, when S is of general type), then

dim Fol(S,L⊗k) − c2(TS ⊗ L⊗k) < 0,

for k � 0, i.e. we have more singularities than foliations. In particular, we have other relations
between the Baum–Bott indexes besides the Baum–Bott formula. It would be really interesting to
understand the nature of these relations. For instance, one could ask how they change when S and
L are deformed. Another natural problem, motivated by the calculations above, is to know whether
the Baum–Bott map for foliations of surfaces of general type with very ample cotangent bundle is
generically finite.
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6.5 Endomorphisms and foliations on Pn

In [Gui04], Baum–Bott-like formulas are worked out for endomorphisms of projective spaces. There,
by dimension counting, the existence of extra unknown relations among such multipliers is shown.
An analogous phenomena also happens with one-dimensional foliations of Pn, n � 3. Are these extra
relations produced by some index formula? We refer to [Gui04] for a more complete discussion.

Appendix A. On the monodromy of the singular set

Let M be a projective manifold of dimension m, ΘM be the tangent sheaf of M and L be a line
bundle over M . The space of foliations by curves on M with cotangent bundle isomorphic to L,
denoted by Fol(M,L) = Fol(L), can be identified with the projectivization of the global sections of
the bundle ΘM ⊗ L, i.e.

Fol(L) = PH0(M,ΘM ⊗L).

Over the product of Fol(L) with M we consider the natural foliation F(L) characterized by
the property that the restriction of F(L) to the fiber over F under the natural projection π :
Fol(L) ×M → Fol(L) coincides with F , i.e.

F(L)|π−1(F) = F .
We denote by S(L) the singular set of F(L).

Suppose that all of the irreducible components of S(L) are of the same dimension and that
π = π|S(L) : S(L) → Fol(L) is generically finite. If we denote by ∆(L) the discriminant of the π,
then for every foliation F ∈ F(L) \ ∆(L) we can lift closed paths contained in F(L) \ ∆(L) and
with base point F to S(L) inducing a representation

Φ(F) : π1(F(L) \ ∆(L),F) → Perm(sing(F)).

Of course, if we choose another foliation F ′ ∈ F(L)\∆(L) as a base point for the lifting of paths
we obtain Φ(F ′) which is conjugated to Φ(F). Therefore, we will say that the monodromy of the
singular set of F(L) is a subgroup of the symmetric group on k elements, where k is the cardinality
of sing(F), given by the image of Φ(F) up to conjugacy.

The aim of this appendix is to prove the following.

Theorem A1. Let L be an ample line bundle over a projective manifold M of dimension m.
For k � 0, the monodromy of the singular set of Fol(L⊗k) is the full symmetric group in cm(ΘM ⊗L)
elements.

We remark that the strategy of the proof is very similar to those presented in [Cuk99] and [Har79].
The careful reader will note that over Pn the result is valid for foliations of degree at least 2.

Proof of Theorem A1. Let S ⊂M × Fol(L⊗k) be the singular set, i.e.

S = {(p,F) | p ∈ sing(F)}.
The set S can also be described as the projectivization of the kernel of the map of vector bundles

M × H0(M,ΘM ⊗ L⊗k) → TM ⊗ L⊗k

(p,X) �→ X(p).

Since k � 0 and L is ample it follows from Serre’s vanishing theorem that ΘM ⊗ L⊗k is generated
by global sections. In particular, the above map has constant rank and its kernel is a sub-bundle
of M × H0(M,ΘM ⊗ L⊗k) of codimension equal to dimM . It follows that S ⊂ M × Fol(L⊗k) is a
smooth irreducible subvariety and that the projection π : S → Fol(L⊗k) is surjective and generically
finite. The irreducibility of S implies that the monodromy of π is 1-transitive.
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First step: the monodromy group is 2-transitive. Let p be an arbitrary point inM and let Fol(L⊗k)p ⊂
Fol(L⊗k) be the set of foliations having p as a singularity. If

Sp = {(q,F) ∈M \ {p} × Fol(L⊗k)p | q ∈ sing(F)},
then, as before, Sp is the projectivization of the kernel of Φ,

Φ : U × V → TU ⊗ L⊗k

(z,X) �→ X(z)

where U = M \ {p}, V = H0(M,ΘM,p ⊗ L⊗k) and ΘM,p is the subsheaf of ΘM generated by
vector fields vanishing at p. Clearly ΘM,p is a coherent sheaf and, hence, we can again apply Serre’s
vanishing theorem to assure that Sp is a smooth irreducible subvariety of M \ {p} × Fol(L⊗k)p and
that πp : Sp → Fol(L⊗k)p is surjective and generically finite. As before the monodromy of πp is,
thus, transitive.

Let G be the monodromy group of π and (p1, q1) and (p2, q2) be two pairs of the points in
M × M . Then, from the 1-transivity of G, there exists α ∈ G such that α(p1) = p2. From the
discussion above on the monodromy of πp it follows that there exists β ∈ G such that β(p2) = p2

and β(q1) = q2.
We have just proved that G, the monodromy group of π, is 2-transitive.

Second step: the monodromy group contains a transposition. First consider the local situation. Let
X and Y be germs of holomorphic vector fields on a neighborhood of 0 ∈ C2. Suppose that 0 is a
singularity of multiplicity 2 of X and that Y (0) �= 0. Consider the equation

(X + tY )(s(t)) = 0

with boundary value s(0) = 0 where s ∈ C[[t]] is a formal power series. Deriving with respect to t,
we obtain that

DX (s(0)) · s′(0) + Y (0) = 0.
When Y (0) is not contained in the image of DX(0) then the above equation has no solutions and, in
particular, the local monodromy is generated by the transposition. As an example of this situation,
one can take X = x(∂/∂x) + y2(∂/∂y) and Y = ∂/∂y, where

sing(X + tY ) = (0,±√−t).
Returning to the global situation, suppose first that there exists F ∈ Fol(L⊗k) with one singu-

larity with the 2-jet equal to the 2-jet of X and all other singularities with multiplicity one. Since
ΘM ⊗ L⊗k is generated by global sections, there exists Y ∈ H0(M,ΘM ⊗ L⊗k) such that Y (p) is
not in the image of DX(p). The local discussion above shows that G, the monodromy group of π,
contains a transposition.

Let p be a point of M and mp its ideal sheaf. If we consider the inclusion of ΘM ⊗m3
p into ΘM ,

then we will define J2
p ΘM as the cokernel of this inclusion. More succinctly, the sequence

0 → ΘM ⊗m3
p → ΘM → J2

pΘM → 0

is exact. It is clear from the definition that J2
p ΘM is supported on p and its sections are 2-jets of

vector fields at p. Again from Serre’s vanishing Theorem, when k � 0, H1(M,ΘM ⊗m3
p ⊗L⊗k) = 0

and, consequently, the map

H0(M,ΘM ⊗ L⊗k) → H0(M,J2
p ΘM)

is surjective. Thus, there are foliations in Fol(L⊗k)p with arbitrary 2-jet. One can use the arguments
applied in the first step to assure that there exists F ∈ Fol(L⊗k) with one singularity with the 2-jet
equal at p to the 2-jet of X p and all other singularities with multiplicity one.
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Conclusion
To conclude, the argument is well known. Let (p1, q1) and (p2, q2) be pairs of singularities in sing(F).
Suppose that G contains the transposition τ = (p1 q1). Since G is 2-transitive, there exists α ∈ G
such that α(p1) = p2 and α(q1) = q2. Since ατα−1 = (p2 q2), we conclude that G contains all of the
transpositions in the full symmetric group. This is sufficient to prove Theorem A1.
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du premier ordre, Publ. Math. Inst. Hautes Études Sci. 55 (1982), 63–164.
Suw95 T. Suwa, Indices of holomorphic vector fields relative to invariant curves on surfaces, Proc. Amer.

Math. Soc. 123 (1995), 2989–2997.

A. Lins Neto alcides@impa.br
IMPA, Estrada Dona Castorina 110, 22460-320 Jardim Botânico, Rio de Janeiro, Brazil

J. V. Pereira jvp@impa.br
IMPA, Estrada Dona Castorina 110, 22460-320 Jardim Botânico, Rio de Janeiro, Brazil

1586

https://doi.org/10.1112/S0010437X06002326 Published online by Cambridge University Press

mailto:alcides@impa.br
mailto:jvp@impa.br
https://doi.org/10.1112/S0010437X06002326

	1 Introduction and statement of results
	2 The generic rank of Baum--Bott's map
	3 The rank at Jouanolou's foliations
	4 The Camacho--Sad field
	5 An example
	6 Some remarks and problems
	Appendix A. On the monodromy of the singular set
	References

