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Abstract

A log symplectic manifold is a complex manifold equipped with a complex symplectic

form that has simple poles on a hypersurface. The possible singularities of such a

hypersurface are heavily constrained. We introduce the notion of an elliptic point of

a log symplectic structure, which is a singular point at which a natural transversality

condition involving the modular vector field is satisfied, and we prove a local normal

form for such points that involves the simple elliptic surface singularities Ẽ6, Ẽ7 and Ẽ8.

Our main application is to the classification of Poisson brackets on Fano fourfolds. For

example, we show that Feigin and Odesskii’s Poisson structures of type q5,1 are the only

log symplectic structures on projective four-space whose singular points are all elliptic.

1. Introduction

This paper is concerned with a new class of hypersurface singularities that arises naturally in

Poisson geometry: the singularities associated with log symplectic forms. These singularities are

at first glance quite bad, as they occur along high-dimensional subspaces of the hypersurface.

But a closer look reveals rigidity properties that are reminiscent of more classical situations, such

as isolated singularities and free divisors. In particular, we will show that many aspects of these

singularities can be described cohomologically, and we will give local and global classification

results for the ‘generic’ singularities in this class, which turn out to be intimately connected with

the geometry of elliptic curves.

This work is motivated by the problem of describing the local and global structure of

complex Poisson manifolds, and the noncommutative rings that are obtained by quantizing

such Poisson brackets. During the past twenty years, the classification of projective Poisson

varieties of low dimension has seen considerable progress; we note, in particular, the works on

surfaces [BM05, Ing98], threefolds with finitely many zero-dimensional symplectic leaves [Dru99],

and Fano threefolds with Picard rank one [CLN96, LPT13, Pol97].

However, in higher dimensions, even for simple manifolds such as the projective space P4,

rather less is known. One of the main difficulties is the increase in the complexity of the symplectic

foliation: in dimension four, one encounters for the first time the possibility that the foliation

could have leaves of three different dimensions (zero, two or four). It is therefore useful to impose

constraints that simplify the local structure of the foliation, which we do in this paper by focusing

on the class of ‘log symplectic’ manifolds.
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A log symplectic manifold is simply a real or complex manifold X, equipped with a symplectic
form ω that has simple poles along a hypersurface D ⊂ X. Put differently, we require that the
Poisson bracket on X\D defined by ω extend to a Poisson bracket on all of X whose Pfaffian
is a reduced defining equation for D. Thus, log symplectic manifolds are the Poisson manifolds
that are, in some sense, as close as possible to being symplectic. As a result, they often arise
when one attempts to compactify symplectic manifolds; in particular, many interesting moduli
spaces in algebraic geometry and gauge theory come equipped with natural log symplectic
structures. Examples include compactified moduli spaces of SU(2) monopoles [AH88, Got02],
Hilbert schemes of various commutative surfaces [Bot98, Ran17] and their noncommutative
analogues [NS07], and certain moduli spaces of vector bundle maps over elliptic curves [FO98,
Pol98].

Recently, there has been considerable interest in the general properties of log symplectic
manifolds, particularly in the real C∞ category, where they are also known as b-symplectic
or topologically stable Poisson manifolds. Results include: descriptions of local normal forms
and cohomological invariants [Don12, GMP14]; obstructions to global existence [Cav13,
MOT14b]; unobstructedness of deformations [MOT14a, Ran17]; constructions of symplectic
groupoids [GL14], deformation quantizations [NT96] and Rozansky–Witten invariants [Got02];
classifications up to diffeomorphism [Rad02] and Morita equivalence [BR03] in the two-
dimensional case; and Delzant-type classifications of the corresponding toric integrable
systems [GLPR16, GMPS15]. Generalized complex analogues of log symplectic structures have
also been studied [CG15, Got16].

Since most of these works consider the C∞ category, they assume that the hypersurface D is
smooth or, occasionally, that it is a union of smooth components with normal crossings. In this
paper, however, we are interested in the holomorphic case, where it seems to be rather difficult
to find compelling examples for which these assumptions on the hypersurface are satisfied. In
particular, for the moduli spaces mentioned above, the singularities of the hypersurface D are
rather more complicated. Nevertheless, the unobstructedness of deformations for Hilbert schemes
has been established using a resolution of singularities [Ran17].

It is also difficult to find examples on simple varieties of interest, such as projective space.
Since D is always an anticanonical divisor, it is reasonable to look for log symplectic structures
on complex manifolds for which the anticanonical bundle has many holomorphic sections, such
as Fano manifolds. In so doing, we immediately find hypersurfaces that are highly singular.

Theorem 1.1 [GP13]. Let (X,D, ω) be a holomorphic log symplectic manifold, and denote by
Dsing ⊂ D the singular locus of the degeneracy hypersurface. Suppose that X is Fano, or that the
polynomial c1c2−c3 ∈ H6(X,Z) in the Chern classes of X is nonzero. Then Dsing is nonempty, and
all of its irreducible components have codimension at most three in X. When the codimension of
Dsing is exactly three and X is compact, the formula

[Dsing] = (c1c3 − c3) ∩ [X] ∈ HdimX−6(X,Z)

gives the fundamental class of the singular locus.

Meanwhile, toric varieties provide many examples for which D is a simple normal crossings
divisor. By an inductive argument that reduces the problem to dimension three by intersecting
components of D, Lima and Pereira showed that every normal crossings example that is Fano
with cyclic Picard group is toric.
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Theorem 1.2 [LP14]. Let (X,D, ω) be a log symplectic Fano manifold of dimension 2n where
n > 2, and suppose that Pic(X) ∼= Z. If the degeneracy hypersurface of ω is a union of smooth
components with normal crossings, then X ∼= P2n is a projective space, D is the union of the
coordinate hyperplanes, and ω restricts to an invariant form on the torus (C×)2n = P2n\D.

In light of these considerations, we are led to ask what other sorts of singular hypersurfaces
D ⊂ X can arise as the degeneracy hypersurface of a log symplectic structure, and to develop
techniques for dealing with the singularities when they arise. In this paper, we initiate a
systematic study of this class of hypersurface singularities, focusing on the case in which D
is normal, i.e. it has no singularities of codimension two in X. The central message of the paper
is that elliptic curves play a fundamental role in the geometry, both locally and globally, and that
despite the increased complexity of the singularities, rigidity results analogous to Theorem 1.2
still hold true.

After a review of some basic defininitions and examples in § 2, we lay the foundations for the
local structure theory of log symplectic manifolds with singular. This condition is a hypersurfaces
in § 3, using K. Saito’s theory of logarithmic forms. In Theorem 3.1 and Proposition 3.2, we
show that a normal hypersurface singularity germ D ⊂ X supports a nondegenerate logarithmic
two-form if and only if its singular locus is Gorenstein of pure codimension three in X. This
condition is a skew-symmetric analogue of the Jacobian condition [Ale88, Ter80] for the freeness
of a divisor. Meanwhile Theorem 3.7, based on a Moser lemma for the logarithmic de Rham
complex, gives an efficient mechanism for producing local normal forms.

In § 4, we introduce the notion of an elliptic point of a log symplectic structure: a point where
D has a normal singularity and where a natural transversality condition involving the Weinstein
modular vector field is satisfied; see Definition 4.2. Ellipticity is an open condition on the one-jet
of the Poisson tensor, giving a class of Poisson structures that is stable under deformation. For
this reason, we believe that elliptic points are, in some sense, the simplest normal singularities
one could hope for.

We justify the use of the word ‘elliptic’ by proving a local normal form (Theorem 4.5) which
shows that near an elliptic point, the hypersurface is isomorphic to a product of a smooth space
and a simple elliptic surface singularity of type Ẽ6, Ẽ7 or Ẽ8. The main examples are the Poisson
structures q2n+1,1 on P2n introduced by Feigin and Odesskii [FO89], for which the hypersurface
D is the union of the secant (n − 1)-planes of an elliptic normal curve. In these examples, the
generic singularities of D are of type Ẽ6.

The paper culminates in § 5, where we apply our techniques to the classification of Poisson
structures on Fano fourfolds.

Theorem 1.3. Every purely elliptic log symplectic structure on P4 is isomorphic to a member
of Feigin and Odesskii’s family q5,1. Moreover, the following Fano fourfolds do not support any
purely elliptic log symplectic structures:

– smooth quadric or cubic fourfolds X ⊂ P5;

– products of the form X = P1 ×W, where W ⊂ P4 is a Fano hypersurface.

Remark 1.4. One can show that a smooth hypersurface X ⊂ Pn of degree d with d, n > 4 does
not admit any Poisson structures. This is why we focus on quadric and cubic fourfolds, which
do possess nontrivial Poisson structures.

The method of proof, which can easily be applied to other compact fourfolds, is as follows.
In four dimensions, if all singular points are elliptic, then the singular locus is necessarily a
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disjoint union of elliptic curves. Using Theorem 1.1 and the local normal form, we can compute

the possible degrees of these elliptic curves and immediately rule out most of the manifolds in

question. But for P4 and the cubic fourfolds, more refined information is required; the hard part

of the proof is a detailed analysis of the algebraic geometry in those cases.

The reader familiar with Feigin and Odesskii’s Poisson structures may be wondering why

some other examples do not appear. Indeed, Feigin and Odesskii defined a second family of

Poisson structures on P4, called q5,2. Those Poisson structures are log symplectic and are also

associated with elliptic curves, being related to q5,1 by a birational automorphism of P4. However,

their degeneracy hypersurfaces are not normal, so they are not elliptic in our sense.

Meanwhile, for the Poisson structures q6,1 on P5, the closures of the four-dimensional

symplectic leaves give a pencil of cubic fourfolds whose base locus is the secant variety of an

elliptic normal sextic. One might therefore expect these cubics to give elliptic log symplectic

manifolds. However, these cubics are singular, and so there is no contradiction with Theorem 1.3.

2. Basic definitions and examples

2.1 Logarithmic differential forms

The notion of a differential form with logarithmic singularities along a hypersurface was

introduced by Deligne [Del70] in the normal crossings case, and extended to general hypersurfaces

by Saito [Sai80]. In this section, we briefly recall the notions and results from Saito’s paper that

will be relevant in our study of log symplectic structures.

Here and throughout, X is a complex manifold and D ⊂ X is a reduced hypersurface; thus,

D may have several irreducible components, but each component is taken with multiplicity one.

We denote by Dsing the singular locus of D, i.e. the closed analytic subspace defined by the

vanishing of the one-jet of a local defining equation for D. We recall that D is normal if and only

if dim Dsing 6 dim D − 2 = dim X − 3. This condition should not be confused with the normal

crossings condition, which means that D is locally isomorphic to the union of a collection of

coordinate hyperplanes in Cn, and therefore has a singular locus of dimension dim X− 2.

We denote by Ω•X(D) the sheaf of meromorphic differential forms that are holomorphic on

X\D and have, at worst, poles of order one on every irreducible component of D.

Definition 2.1 [Sai80]. A meromorphic k-form ω ∈ Ωk
X(D) has logarithmic singularities along

D if dω ∈ Ωk+1
X (D). The sheaf of k-forms with logarithmic singularities is denoted by Ωk

X(log D).

Just as the holomorphic forms Ω•X are dual to the exterior powers X •
X = Λ•TX of the tangent

sheaf, the dual of Ω•X(log D) is the sheaf X •
X (−log D) ⊂ X •

X of logarithmic multiderivations,

i.e. the multiderivations that are tangent to D in the sense that their action preserves the defining

ideal OX(−D) ⊂ OX.

By definition, the de Rham differential maps logarithmic forms to logarithmic forms. Hence

we have a complex of sheaves (Ω•X(log D), d), called the logarithmic de Rham complex. The

cohomology of this complex is, in general, quite sensitive to the singularities of D. In [Sai80], Saito

explains that every logarithmic form ω ∈ Ωk
X(log D) has a residue Resω, which is a meromorphic

form on D that is holomorphic on the smooth locus. In this way, we obtain an exact sequence of

complexes

0 // Ω•X
// Ω•X(log D)

Res //// Ω•,regD
// 0,
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where Ω•,regD is the image of the residue map. We recall that Ω•,regD may be identified [Ale90] with
the ‘regular’ differential forms on D in the sense of [Bar78]. In particular, when D is normal, we
have that Ω•,regD = (Ω•D)∨∨ is the double dual of the usual differential forms on D.

The sheaf Ω•X(log D) is a coherent OX-module, but in general it will not be locally free,
i.e. there will be no holomorphic vector bundle on X whose sheaf of sections is Ω•X(log D). However,
Ω•X(log D) is a reflexive OX-module, meaning that the canonical map Ω•X(log D) → Ω•X(log D)∨∨

to the double dual is an isomorphism. As a result, elements of Ω•X(log D) exhibit the Hartogs
phenomenon [Har80]: sections defined away from an analytic subspace of codimension at least
two extend uniquely to all of X.

Amongst all the singular hypersurfaces D ⊂ X, the ones for which the sheaf Ω1
X(log D) is

locally free are rather special. They are called free divisors. For example, if D is smooth or
has only normal crossings singularities, then D is a free divisor. In this case, we simply have
Ωk
X(log D) ∼= ΛkΩ1

X(log D). In general, the freeness of a divisor is determined by the structure of
its singular locus.

Theorem 2.2 [Ale88, Ter80]. A singular reduced hypersurface D ⊂ X is a free divisor if and
only if the singular locus Dsing ⊂ D is a Cohen–Macaulay space of pure codimension two in X.

This theorem implies, in particular, that any plane curve is a free divisor, but isolated
hypersurface singularities in Cn for n > 3 are not free.

2.2 Log symplectic manifolds
Let X be a complex manifold of dimension 2n with n > 1, and let D ⊂ X be a reduced divisor. We
say that a global logarithmic two-form ω ∈ H0(X,Ω2

X(log D)) is nondegenerate if its top power
ωn is a nonvanishing section of the line bundle KX(D), where KX = Ω2n

X is the canonical bundle
of X. Equivalently, a logarithmic two-form is nondegenerate if and only if the induced map

ω[ : X 1
X (−log D) → Ω1

X(log D)

Z 7→ iZω
(1)

is an isomorphism of OX-modules.
The existence of a nonvanishing section of Ω2n

X (D) is a logarithmic analogue of the usual
Calabi–Yau condition (triviality of the canonical class). It is equivalent to the divisor D being
an anticanonical divisor, so we make the following definition.

Definition 2.3. A log Calabi–Yau manifold is a pair (X,D) consisting of a complex manifold
and a reduced effective anticanonical divisor D ⊂ X.

A log symplectic form on a log Calabi–Yau manifold (X,D) is a nondegenerate global
logarithmic two-form ω ∈ H0(X,Ω2

X(log D)) that is closed, i.e. dω = 0. We remark that the
hypersurface D is completely determined by the meromorphic two-form ω, since it is the polar
divisor of ωn. For this reason, we will often refer to the pair (X, ω) as a log symplectic manifold,
the hypersurface D being implicit. We will always assume that D is nonempty, so symplectic
manifolds do not count as log symplectic manifolds in our terminology.

Example 2.4 (Log symplectic surfaces). Let (X,D) be a log Calabi–Yau surface (e.g. a Del Pezzo
surface containing an elliptic curve). Since Ω3

X(log D) = 0, every logarithmic two-form is closed,
so that a log symplectic structure on (X,D) is determined by an arbitrary nonvanishing section
of the line bundle KX(D).
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When X = C2 with coordinates (x, y), every log symplectic structure can be written as

ω =
dx ∧ dy

f

where f ∈ OC2 is square-free and D is its zero locus. Hence D can be an arbitrary plane curve,
with no constraints on the singularities.

When (X,D) is compact, the log symplectic form ω is unique up to rescaling by a constant.
The birational classification of projective log symplectic surfaces can be extracted from the full
birational classification of projective surfaces containing an effective anticanonical divisor [BM05,
Ing98]; it turns out that the only possible singularities for D are of type A1, A2, A3 or D4.

Example 2.5 (Toric examples). Let X = C2n with coordinates (x1, . . . , x2n), and let D ⊂ X be the
union of the coordinate axes, so that X\D is the complex torus T = (C×)2n. Let λ = (λij)16i,j62n

be a skew-symmetric matrix of complex numbers. Then the two-form

ω =
∑

16i<j62n

λij
dxi
xi
∧ dxj
xj

is closed and logarithmic, and is invariant under the action of T. It will be nondegenerate, defining
a log symplectic form on (C2n,D), if and only if the matrix λ is nonsingular. If we compactify C2n

to a projective space by adding a hyperplane at infinity, we obtain the log symplectic structures
characterized in Theorem 1.2. Similar structures can also be obtained by choosing other toric
compactifications of T.

If (X, ω) is a log symplectic manifold and p ∈ D is a smooth point of the polar divisor, then a
version of the Darboux theorem holds in a neighbourhood of p. Namely, there exist coordinates
(x1, . . . , xn, y1, . . . , yn) centred at p in which D is the zero locus of x1 and

ω =
dx1
x1
∧ dy1 +

n∑
i=2

dxi ∧ dyi. (2)

For a discussion of the proof, see [Got02, Lemma 1.2] or [GMP14, Proposition 19].
Every log symplectic form ω has an inverse, which is a global logarithmic biderivation

σ ∈ H0(X,X 2
X (−log D)) ⊂ H0(X,X 2

X )

with Schouten bracket [σ, σ] = 0. Thus σ defines a Poisson bracket on OX by the usual formula

{f, g} = 〈df ∧ dg, σ〉
for f, g ∈ OX. Moreover, the Pfaffian σn ∈ H0(X,X 2n

X ), which is a section of the anticanonical
line bundle, gives a reduced defining equation for D. From this point of view, D is the degeneracy
divisor of σ, the locus where its rank drops. We will say that a Poisson structure σ is log
symplectic if it is induced by a log symplectic form in this way.

Conversely, given a generically nondegenerate Poisson structure σ with a reduced degeneracy
divisor D, it is always the case that σ ∈ H0(X,X 2

X (−log D)). Indeed, D ⊂ X is a Poisson subspace
(see [Pol97, Corollary 2.3] or [GP13, Proposition 6]), which implies that σ is tangent to D. The
anchor map

σ] : Ω1
X → X 1

X

α 7→ iασ

then extends to an isomorphism Ω1
X(log D) → X 1

X (−log D), so that σ] may be inverted to obtain
a log symplectic form ω. Notice that this argument works no matter how singular D is, thanks
to the reflexivity of the sheaves involved. We therefore have the following basic result.
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Lemma 2.6. Let (X,D) be a log Calabi–Yau manifold. Then generically symplectic Poisson
structures on X with degeneracy divisor D are in canonical bijection with log symplectic forms
on (X,D).

Recall that for any Poisson bivector field σ, the image of the anchor map σ] : Ω1
X → X 1

X is
an involutive subsheaf of X 1

X and gives rise to a foliation of X by even-dimensional symplectic
leaves. For a log symplectic structure on a connected complex manifold X of dimension 2n, the
open complement X\D is a symplectic leaf of dimension 2n. Meanwhile, the smooth locus of D
is foliated by leaves of dimension 2n − 2; this foliation is defined by the kernel of the residue
one-form Resω, which is closed. Then, the singular locus Dsing is foliated by leaves of dimension
2n− 2 or less. Notice that having an open symplectic leaf is not enough to guarantee that σ is
log symplectic, since the latter is possible even when the Pfaffian is not reduced.

We close this section with a description of the symplectic leaves of one of the elliptic log
symplectic structures that will be the focus of § 4.

Example 2.7 (An elliptic log symplectic form). Let (w, x, y, z) be coordinates on C4 and let
η, ν ∈ C be constants. Then the Poisson brackets

{w, x} = x, {y, z} = η x2 + ν yz,

{w, y} = y, {z, x} = η y2 + ν zx,

{w, z} = z, {x, y} = η z2 + ν xy

define a log symplectic structure whose degeneracy divisor D ⊂ C4 is given by the zeros of the
cubic function

f = 1
3η(x3 + y3 + z3) + ν xyz.

Thus, for generic values of η and ν, the hypersurface is a product D = C×D0, where D0 ⊂ C3
x,y,z is

the cone over an elliptic curve E ⊂ P2. The singular locus Dsing ⊂ D is a subscheme of multiplicity
8 supported on the line x = y = z = 0.

The complement C4\D is a symplectic leaf of dimension four, and the individual points of
Dsing are zero-dimensional leaves. The two-dimensional symplectic leaves give a regular foliation
of the smooth locus Dreg = D\Dsing, which has the following description. Since D0 is the cone
over E and D = C × D0, we have a natural projection π : Dreg → C × E whose fibres are copies
of C×. There is then a unique nonvanishing one-form α ∈ H0(E,Ω1

E) such that

Resω = π∗(p∗1 dw − p∗2α) ∈ Ω1
Dreg

,

where w is the coordinate on C as above, and the maps p1 : C× E → C and p2 : C× E → E are
the projections.

Let Z = α−1 ∈ H0(E,X 1
E ) be the vector field dual to α. Then Z generates an action of the

additive group (C,+) on E by translations in the group law of the elliptic curve. Combining this
action with the standard translation action on C, we obtain the diagonal action of (C,+) on the
product C × E. The symplectic leaves of Dreg are precisely the preimages of the orbits of this
action under the projection π : Dreg → C× E.

2.3 Stability under deformations
For a compact complex manifold X, we denote by Pois(X) ⊂ H0(X,X 2

X ) the space of Poisson
structures on X. It is the algebraic subvariety consisting of those sections σ that satisfy
the integrability condition [σ, σ] = 0 ∈ H0(X,X 3

X ). This condition amounts to a system

723

https://doi.org/10.1112/S0010437X16008174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008174


B. Pym

of homogeneous quadratic equations on the finite-dimensional vector space H0(X,X 2
X ). The

description of the irreducible components of Pois(X) is a difficult problem and has important
implications for noncommutative geometry. We observe that some components of this variety
are defined by log symplectic structures.

Lemma 2.8. If X is a compact complex manifold of dimension 2n, then the set of log symplectic
structures on X forms a (possibly empty) C×-invariant Zariski open subset of Pois(X). Hence its
closure is a union of irreducible components of Pois(X).

Proof. Let E ⊂ H0(X,X 2
X ) be the closed subset consisting of those sections σ such that σn = 0.

There is a natural map φ : H0(X,X 2
X )\E → P(H0(X,X 2n

X )) given by σ 7→ [σn]. The projective
space P(H0(X,X 2n

X )) parametrizes effective anticanonical divisors on X, and the reduced divisors
form a Zariski open subset U. Then the intersection of Pois(X) with the open set φ−1(U) gives
the set of log symplectic structures on X.

3. Local structure of log symplectic manifolds

With the examples of the previous section in mind, we now develop some methods for studying the
local and global structure of a log symplectic manifold with a singular degeneracy hypersurface.

3.1 Gorenstein singular loci
The first step is to understand the simpler question of which hypersurfaces D ⊂ X admit a
nondegenerate logarithmic two-form ω ∈ Ω2

X(log D) or, equivalently, a nondegenerate logarithmic
biderivation σ ∈ X 2

X (−log D)), without worrying about the integrability condition dω = 0.
Clearly, if D is a free divisor and dim X = 2n is even, then such a logarithmic two-form
exists locally. Indeed, in a sufficiently small open set, we may simply take an OX-module basis
α1, . . . , αn, β1, . . . , βn ∈ Ω1

X(log D) and set

ω = α1 ∧ β1 + · · ·+ αn ∧ βn.

Of course, such a form will not, in general, be closed, and may not extend to a global logarithmic
two-form.

Meanwhile, the log symplectic structure in Example 2.7 has a degeneracy hypersurface whose
singular locus has codimension three in the ambient space. In light of the Jacobian criterion for
freeness (Theorem 2.2), such a hypersurface cannot be a free divisor. Nevertheless, this criterion
has an analogue in the skew-symmetric setting, which we now explain.

Let (X,D) be a connected log Calabi–Yau manifold of dimension 2n, and consider the
anticanonical line bundle K∨X = X 2n

X
∼= OX(D). Let A be its Atiyah algebroid, i.e. the sheaf

of first-order differential operators on K∨X. Thus A fits into an exact sequence

0 // OX
// A //X 1

X
// 0, (3)

and splittings of this sequence of Lie algebroids are in bijective correspondence with flat
connections on K∨X. Sections of Λ2A can then be interpreted as skew-symmetric bidifferential
operators K∨X × K∨X → (K∨X)⊗2, and the second exterior power of (3) gives a symbol map
Λ2A→ X 2

X .
Given a nondegenerate logarithmic biderivation σ ∈ H0(X,X 2

X (−log D)), there is a canonical
section

σA ∈ H0(X,Λ2A)
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whose symbol is σ. This section can be described as follows: choose a local trivialization µ ∈ K∨X
and write σn = hµ for a function h ∈ OX(−D). Consider the vector field

Z = h−1idhσ ∈X 1
X (−log D). (4)

Then the bidifferential operator σA may be defined by the formula

σA(fµ, gµ) = (〈df ∧ dg, σ〉+ gZ(f)− fZ(g))µ2 ∈ (K∨X)2

for f, g ∈ OX. One can check that this definition is independent of the choice of local trivialization.

Theorem 3.1 [GP13]. With the notation above, the singular locus Dsing ⊂ D is identified, as
an analytic subspace of X, with the vanishing locus of the top Pfaffian σnA ∈ H0(X,Λ2nA). As a
result, the following statements hold.

(i) Every irreducible component of Dsing has dimension at least 2n− 3.

(ii) The polynomial c1c2 − c3 ∈ H6(X,Z) in the Chern classes of X is supported on Dsing.

(iii) If dim Dsing = 2n−3, then Dsing is Gorenstein with dualizing sheaf K∨X|Dsing
. Moreover, there

is a canonical locally free resolution of ODsing
having the form

0 // K2
X

σnA // KX ⊗A∨
σ]A // KX ⊗A

σnA // OX
// ODsing

// 0.

If, in addition, X is compact, then the fundamental class of the singular locus is given by
[Dsing] = c1c2 − c3.

Proof. This theorem was proved in [GP13] under the assumption that σ is a Poisson structure,
but the integrability condition was not actually used in the proof. Therefore, we shall omit most
of the proof here, and simply recall why the Pfaffians define the singular locus.

A local trivialization µ ∈ K∨X gives a splitting A ∼= X 1
X ⊕OX of (3) and hence a decomposition

Λ2nA ∼= X 2n
X ⊕X 2n−1

X . With respect to this decomposition, we may write σnA = (σn, nZ ∧σn−1)
with Z as defined in (4). However,

Z ∧ σn−1 = (h−1idhσ) ∧ σn−1

=
1

n
h−1idhσ

n

=
1

n
idhµ

and hence σnA = (hµ, idhµ). Since µ is nonvanishing, the zero locus of σnA coincides with
the simultaneous vanishing locus of h and dh, which is precisely the singular locus of D, as
claimed. 2

Locally, this theorem has a partial converse.

Proposition 3.2. Let D ⊂ (C2n, 0) be a reduced hypersurface germ. Suppose that the singular
locus of D is Gorenstein of pure dimension 2n−3. Then there exists a nondegenerate logarithmic
biderivation σ ∈X 2

C2n,0(−log D).

Proof. Let O = OC2n,0 be the ring of germs of analytic functions and denote by X 1 = X 1
C2n,0

the O-module of vector fields. Let h ∈ O be a defining equation for D, and let ODsing
be the

ring of functions on the singular locus. Setting A = O ⊕ X 1, the map (h, dh) : A → O has
cokernel ODsing

, giving the beginning of a free resolution of ODsing
. Its kernel is identified with

X 1(−log D) by the projection A→ X 1.
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On the other hand, by the Buchsbaum–Eisenbud structure theorem [BE77] for codimension-
three Gorenstein ideals, there exist an integer k > 0, a free module E of rank 2k + 1 and a
skew-symmetric form ρ ∈ Λ2E such that the minimal free resolution of ODsing

has the form

0 // (det E∨)2
ρk // E∨ ⊗ det E∨ //ρ⊗1 // E ⊗ det E∨ ρk // O,

where the outer maps are the Pfaffians ρk ∈ Λ2kE ∼= E∨ ⊗ det E . Therefore, by minimality, there
exists a free module F equipped with an isomorphism A ∼= (E ⊗ det E∨)⊕ F that identifies the
submodule X 1(−log D) ⊂ A with img(ρ)⊕F .

Since the ranks of A and E are odd, the rank of F must be even. Hence we may choose a
nondegenerate skew form ρ′ ∈ Λ2F . Under the isomorphism A ∼= E ⊕ F , the sum σA = ρ + ρ′

defines an element of Λ2A, and we obtain a free resolution

0 // O
(h,dh)t// A∨ σA // A

(h,dh) // O

of ODsing
. Let σ be the image of σA under the projection Λ2A→ X 2. The fact that the sequence

above is a complex implies that σ lies in X 2
X (−log D). Moreover, the map (h, dh) is identified

with the Pfaffian σnA under the isomorphism Λ2nA ∼= X 2n ⊕ X 2n−1 ∼= O ⊕ Ω1 given by an
appropriate choice of volume form. Hence h−1σn trivializes X 2n, so σ is nondegenerate. 2

Example 3.3 (Quasi-homogeneous surfaces). Let f ∈ C[x, y, z] be a quasi-homogeneous polyno-
mial with weights (a, b, c) ∈ Z3

>0, and suppose that 0 is the only critical point of f . Let D0 ⊂ C3

be the zero locus of f . Because of the quasi-homogeneity, the singular locus of the product
D = C × D0 ⊂ C4 is the complete intersection defined by the equations ∂xf = ∂yf = ∂zf = 0,
and hence it is Gorenstein.

Correspondingly, D supports a nondegenerate logarithmic biderivation, an example of which
may be constructed as follows. Let E = ax∂x + by∂y + cz∂z be the weighted Euler vector field,
and extend the coordinates (x, y, z) on C3 to a coordinate system (w, x, y, z) on C4. Then one
can readily check that

σ = E ∧ ∂w + idf (∂x ∧ ∂y ∧ ∂z) ∈X 2
C4(−log D)

is a nondegenerate logarithmic biderivation. However, it will not in general be integrable. In fact,
we will see in § 4 that D supports a log symplectic form if and only if the degree of f is equal to
a+ b+ c. 2

3.2 The local Moser trick
We now return to the integrable case, in which the nondegenerate logarithmic form is closed.
Clearly, if (X, ω) and (X′, ω′) are log symplectic structures that are isomorphic in neighbourhoods
of points p ∈ X and p′ ∈ X′, then their degeneracy hypersurfaces D and D′ are also isomorphic
in the same neighbourhoods. In other words, the singularity type of D at p is a local invariant
of the log symplectic structure. In this section, we study log symplectic structures for which the
underlying singularity type is fixed, and find local analogues of several standard cohomological
properties of compact symplectic manifolds and log symplectic manifolds with smooth degeneracy
hypersurfaces [GMP14].

For a reduced hypersurface germ D ⊂ (X, p), let D = D1 ∪ · · · ∪ Dk be a decomposition
into irreducible components, and let h1, . . . , hk be defining equations for the components. If
the OX,p-module Ω1

X(log D)p is generated by the meromorphic forms h−11 dh1, . . . , h
−1
k hk and the
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holomorphic forms Ω1
X, we will say that Ω1

X(log D)p is generated by logarithmic differentials.
Saito has shown that Ω1

X(log D)p is generated by logarithmic differentials if and only if each
component Di is normal and the intersections of the components are sufficiently transverse; see
[Sai80, Theorem 2.9] for the exact formulation. These conditions are satisfied, in particular, if D
is smooth, normal, or has normal crossings singularities.

Our results pertain to the local logarithmic de Rham cohomology at a point p ∈ Dsing, which
is the stalk cohomology H•dR,p(X, log D) of the complex of sheaves (Ω•X(log D), d) at p.

Proposition 3.4. Let (X,D, ω) be a log symplectic manifold of dimension 2n, and let p ∈ Dsing

be a singular point at which D is normal. (Hence dim Dsing = 2n− 3 at p by Theorem 3.1.) Then
the local logarithmic cohomology class

[ω] ∈ H2
dR,p(X, log D)

is nonzero.

Proof. Suppose, to the contrary, that [ω] = 0. Then

ω = dα

for some α ∈ Ω1
X(log D)p. Let f be a reduced defining equation for D near p. Since D is normal,

it is irreducible, so that Ω1
X(log D)p is generated by the logarithmic differential f−1df . We may

therefore write
α = gf−1df + β

with g ∈ OX,p and β ∈ Ω1
X,p, so that

ω = f−1dg ∧ df + dβ.

Therefore
ωn = nf−1 dg ∧ df ∧ dβn−1 + (dβ)n.

Viewed as a section of Ω2n
X (D), the 2n-form (dβ)n vanishes at p. Nondegeneracy of ω then implies

that the section
f−1 dg ∧ df ∧ dβn−1

is a local trivialization of Ω2n
X (D) near p, which in turn implies that df(p) 6= 0. But p is a singular

point of D, and hence df(p) = 0, a contradiction. 2

Remark 3.5. The proposition fails, in general, if D is not normal. Indeed, the logarithmic
cotangent bundle of any free divisor carries an exact log symplectic form, defined in the same
way as for usual cotangent bundles.

Lemma 3.6 (Local Moser trick). Let D ⊂ X be a reduced hypersurface and let p ∈ Dsing

be a point such that Ω1
X(log D)p is generated by logarithmic differentials. Suppose that

ωt ∈ Ω2
X(log D)p, t ∈ [0, 1], is a smooth family of germs of log symplectic forms such that the

local logarithmic cohomology class

[ωt] ∈ H2
dR,p(X, log D)

is independent of t. Then there exists a family of germs of automorphisms φt ∈ Aut(X,D)p such
that φ∗tωt = ω0.
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Proof. By assumption, the logarithmic two-form

ω̇t =
dωt
dt

is exact. We may therefore choose a smooth family αt ∈ Ω1
X(D)p of logarithmic one-forms such

that dαt = ω̇t. Let f1, . . . , fk be defining equations for the irreducible components of D. Because
Ω1
X(log D)p is generated by logarithmic differentials, we may write

αt =

k∑
i=1

gi,tf
−1
i dfi + βt

where gi,t ∈ OX,p and βt ∈ Ω1
X,p. Replacing gi,t with gi,t − gi,t(p) and changing βt by an exact

form depending on t, we may assume that gi,t(p) = 0 and βi,t(p) = 0 for all t. Hence αt vanishes
at p when viewed as a section of Ω1

X(log D).
By nondegeneracy, there is a unique time-dependent vector field Zt ∈X 1

X (−log D)p such that

iZtωt = αt,

and since αt vanishes at p, the holomorphic vector field Zt also vanishes at p for all t. Therefore
Zt integrates to a family of germs of automorphisms φt ∈ Aut(X, p), and since Zt is logarithmic,
these automorphism preserve the subgerm (D, p) ⊂ (X, p).

We now apply the standard calculation

dφ∗tωt
dt

= LZtωt = iZtdωt + diZtωt = dαt = ω̇t,

which implies that φ∗1ω1 = ω0, as required. 2

This result implies that the local logarithmic cohomology class determines the germ of the
log symplectic form up to isomorphism.

Theorem 3.7. Let D ⊂ X be a reduced hypersurface and let p ∈ D be a point such that
Ω1
X(log D)p is generated by logarithmic differentials. Suppose that ω0, ω1 ∈ Ω2

X(log D)p are two
germs of log symplectic structures with the same local logarithmic cohomology classes

[ω0] = [ω1] ∈ H2
dR,p(X, log D).

Then ω0 and ω1 are isotopic.

Proof. For λ ∈ C, we define the logarithmic two-form

ωλ = (1− λ)ω0 + λω1.

Clearly the class [ωλ] ∈ H2
p(X, log D) is independent of λ.

Let L = Ω2n
X (D)|p be the fibre of the logarithmic canonical line bundle at p, and consider the

map
Pf : C → L

λ 7→ (ωλ)n(p).

Then ωλ is nondegenerate in a neighbourhood of p if and only if Pf(λ) 6= 0. In particular, Pf(0)
and Pf(1) are both nonzero. Since Pf(λ) depends polynomially on λ, we may choose a smooth
path γ : [0, 1] → C such that γ(0) = 0, γ(1) = 1 and Pf(γ(t)) 6= 0 for all t. But then ωγ(t) for
t ∈ [0, 1] gives a smoothly varying family of log symplectic forms whose local cohomology classes
are all the same. We are therefore in the situation of Lemma 3.6 and conclude that the germs of
ω and ω′ are isomorphic. 2
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The main application of this result is to give streamlined proofs of local normal forms for
log symplectic structures. We give now two examples; the approach will be used again when we
discuss elliptic structures in § 4.

Example 3.8 (Smooth points). Let p ∈ D be a smooth point. Then Ω1
X(log D)p is generated by

logarithmic differentials and H2
dR,p(X, log D) = 0. Thus, in the neighbourhood of a smooth point

p ∈ D, all log symplectic forms are isomorphic, as we know from the log Darboux normal form (2).

Example 3.9 (Normal crossings). Let p ∈ D be a point at which D may be decomposed locally
into k components with normal crossings. Choose coordinates (x1, . . . , xk, y1, . . . , ym) so that
x1x2 · · ·xk is a local defining equation for D. Then the first logarithmic cohomology is a
k-dimensional vector space

V = H1
dR,p(X, log D) = C · 〈[x−11 dx], . . . , [x−1k dxk]〉,

and the wedge product identifies H•dR,p(X, log D) ∼= Λ•V as rings.
In particular, for k > 2, every logarithmic two-form is cohomologous to one of the form

ω0 =
∑

16i<j6k
aij

dxi
xi
∧ dxj
xj

where A = (aij) is a skew-symmetric matrix of constants. The (i, j) entry can be interpreted as a
period: it is the integral of ω over a small real torus Tij ∼= S1× S1 that encircles the intersection
Di ∩ Dj in a neighbourhood of p.

If k = dim X, then the above calculation of the cohomology shows that any nonvanishing
logarithmic volume form is nontrivial in cohomology. Now ωn0 = Pf(A)(dx1/x1)∧ · · · ∧ (dxn/xn),
and hence a form cohomologous to ωn0 can only be log symplectic if the Pfaffian Pf(A) is nonzero,
i.e. the matrix A is nonsingular. In this case ωn0 is already log symplectic. Hence every log
symplectic structure on D is locally isomorphic to one of this form, where the nonsingular matrix
A is determined by the periods of the log symplectic form.

On the other hand, if k < dim X, then ω0 is degenerate. In order to obtain a log symplectic
form, we must extend ω0 by adding terms involving the y coordinates, to obtain a cohomologous
form

ω =
∑

16i<j6k
aij

dxi
xi
∧ dxj
xj

+
k∑
i=1

m∑
j=1

bij
dxi
xi
∧ dyj +

∑
16i<j6m

cijdyi ∧ dyj

for a k×m matrix of constants B = (bij) and an m×m skew-symmetric matrix C = (cij). Then
ω will be log symplectic if and only if the block matrix(

A B
−B C

)
of coefficients is invertible. Two such log symplectic forms will be isotopic near p if and only if
they share the same matrix A of periods. The matrices B and C do not affect the isomorphism
class and so can be further simplified, but the optimal simplification depends on k and A.

4. Elliptic log symplectic manifolds

4.1 The elliptic normal form theorem
Let (X,D, ω) be a log symplectic manifold and let σ be the corresponding Poisson bivector. Given
a volume form µ ∈ KX, we have σn = fµ−1, where f ∈ OX(−D) is a local defining equation
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for D. We may then consider the log Hamiltonian vector field

Zµ = f−1idfσ ∈X 1
X (−log D).

This vector field is nothing but the modular vector field of σ with respect to the volume form
µ, as introduced by Weinstein [Wei97] for general Poisson manifolds. One can easily verify that
Zµ is µ-divergence free, i.e. LZµµ = 0.

If we change the volume form, then Zµ changes by a Hamiltonian vector field. Hence, if
p ∈ X is a point where the Poisson structure vanishes, the value of Zµ at p is independent of the
equation f . We therefore have a natural section

Z ∈ H0(Y,X 1
X |Y)

where Y ⊂ X is the vanishing locus of σ. According to [GP13, Theorem 19], this section may
alternatively be computed as follows: by restricting the one-jet of σ to Y, we obtain a natural
section j1σ|Y ∈ Ω1

X ⊗X 2
X |Y, and Z is the image of this section under the interior contraction

Ω1
X ⊗X 2

X → X 1
X . Hence, Z is a linear combination of first derivatives of the Poisson structure

along its zero locus.

Remark 4.1. Since Zf is log Hamiltonian, it is a symmetry of σ, and hence it is tangent to Y,
defining a vector field on Y. More generally, one can show [GP13] that on the locus Dgn2k(σ) ⊂ X
where a Poisson structure σ has rank at most 2k, there is a natural residue of σ, which is a global
section of X 2k+1

Dgn2k(σ)
.

Suppose now that p ∈ Dsing is a singular point at which D is normal. By Theorem 3.1,
the codimension of Dsing in X is equal to three. Since Dsing is a Poisson subspace (see [Pol97,
Corollary 2.4] or [GP13, Lemma 2.3]), Dsing contains the symplectic leaf L ⊂ X through p, and
hence L, being even-dimensional, must have codimension at least four. The rest of the paper is
concerned with singularities for which the following transversality condition is satisfied.

Definition 4.2. Let (X,D, ω) be a log symplectic manifold, let p ∈ Dsing be a singular point,
and let L ⊂ X be the symplectic leaf through p. We say that p is an elliptic point of ω if the
following conditions hold:

(i) D is normal at p;

(ii) L has codimension four in X; and

(iii) the modular vector field Z is transverse to L at p.

We say that (X, ω) is purely elliptic if every singular point of its degeneracy divisor is an
elliptic point.

Remark 4.3. Equivalently, p ∈ Dsing is elliptic if D is normal at p and the rank of σA(p) is equal
to dim X− 2, where σA is the tensor defined in § 3.1.

Remark 4.4. When dim X = 4, the second condition in the definition is redundant, and the third
is simply the requirement that Z be nonzero at p.

Using Weinstein’s splitting theorem [Wei83], we see that in a sufficiently small neighbourhood
of an elliptic point, the log symplectic structure decomposes as a product of a symplectic manifold
of dimension dim X − 4 and a four-dimensional purely elliptic structure. As a result, the local
structure near an elliptic point is completely determined by the following.
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Table 1. The simple elliptic surface singularities, parametrized by τ ∈ C×.

Type (a, b, c) Quasi-homogeneous polynomial f Milnor number

Ẽ6,τ (1, 1, 1) x3 + y3 + z3 + τxyz 8

Ẽ7,τ (1, 1, 2) x4 + y4 + z2 + τxyz 9

Ẽ8,τ (1, 2, 3) x6 + y3 + z2 + τxyz 10

Theorem 4.5. Let (X,D, ω) be a log symplectic manifold of dimension four, and let p ∈ Dsing be
an elliptic point. Then there exist coordinates (w, x, y, z) on X centred at p in which the Poisson
brackets have the form

{w, x} = ax, {x, y} = λ∂zf,

{w, y} = by, {y, z} = λ∂xf,

{w, z} = cz, {z, x} = λ∂yf

(5)

for some positive integers (a, b, c) ∈ Z3
>0 and polynomial f appearing in Table 1, together with

a constant λ ∈ C×.
In particular, the zero locus of the Poisson structure, defined by the equations x = y = z = 0,

is smooth at p; also, the degeneracy hypersurface, defined by the equation f = 0, is locally the
product of a smooth curve and a simple elliptic surface singularity.

The rest of this section is devoted to the proof of Theorem 4.5. The first step is given by the
following lemma.

Lemma 4.6. There exist coordinates (w, x, y, z) on X centred at p and a quasi-homogeneous
polynomial f ∈ C[x, y, z] with an isolated critical point at 0 such that f gives a reduced defining
equation for D.

Proof. Let Z be the modular vector field with respect to some volume form µ ∈ Ω4
X defined near

p. Since Z(p) 6= 0 and LZµ = 0, we may choose a coordinate system (w, x, y, z) near p such that
Z = ∂w and µ = dw ∧ dx∧ dy ∧ dz. Since LZσ = 0, one can easily compute that the germ of the
Poisson tensor σ has the form

σ = E ∧ ∂w + σ0,

where σ0 is the germ of a Poisson structure on C3, with coordinates (x, y, z), and E is the germ
of a vector field on C3 satisfying LEσ0 = 0. In particular,

σ ∧ σ = fµ−1,

where f is a function depending only on (x, y, z), so that the degeneracy hypersurface D is a
product of a smooth curve and the surface D0 = f−1(0) ⊂ C3

x,y,z. Since we are assuming that
dimp Dsing = 1, the surface D0 must have an isolated singularity at the origin.

Using the decomposition, we compute the modular vector field

Z = f−1idfσ = f−1(LEf)∂w + f−1idfσ0.

Since Z = ∂w and σ0 has no components involving ∂w, this equation implies that LEf = f . The
lemma now follows from a theorem of Saito [Sai71]. 2
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Using the previous lemma and the cohomological parametrization of local normal forms
(Theorem 3.7), the proof of Theorem 4.5 reduces to the following.

Proposition 4.7. Let (w, x, y, z) be coordinates on C4, let (a, b, c) ∈ Z3
>0 be positive weights,

and let f ∈ C[x, y, z] be a polynomial that is quasi-homogeneous of degree k with respect to
these weights. Let D ⊂ C4 be the hypersurface defined by the vanishing of f . Then the following
statements hold.

(i) If D supports a log symplectic structure, then k = a+b+c. Hence f is equal, after a change
of coordinates, to one of the polynomials in Table 1.

(ii) When k = a + b + c, the log symplectic forms associated with the Poisson brackets (5)
represent all nonzero cohomology classes in H2

dR,p(C4, log D).

Proof. Let D0 ⊂ C3 be the intersection of D with the hyperplane w = 0, so that D = C × D0.
By the Künneth theorem for logarithmic de Rham cohomology [CJNMM96, Lemma 2.2], the
pullback along the projection (C4,D) → (C3,D0) provides an isomorphism

H2
dR,0(C4, log D) ∼= H2

dR,0(C3, log D0).

Because of the holomorphic Poincaré lemma, the complex Ω•C3 is exact in positive degrees. Hence
the residue exact sequence (1) gives an isomorphism

H2
dR,0(C3, log D0) ∼= H1

0(Ω
•,reg
D0

)

with the cohomology of the regular differential forms on D0. But since D0 is normal and Ω•,regD0

is reflexive, we have Ω•,regD0

∼= (Ω•D0
)∨∨ = Hom(X •

D0
,OD0). The cohomology of this complex was

computed in [EG09, Theorem 5.2]. From that result, we see that every cohomology class in
H2
0(C3, log D0) is represented by a unique element of the form

ωh = f−1h iE(dx ∧ dy ∧ dz)

where h ∈ C[x, y, z] is quasi-homogeneous of degree k − a− b− c.
Hence every closed logarithmic form ω ∈ Ω2

C4(log D) may be written as

ω = f−1h iE(dx ∧ dy ∧ dz) + dα

where α ∈ Ω1
C4(log D). Since D is normal, Ω1

C4(log D) is generated by logarithmic differentials, so
α = gf−1df + β with g ∈ OC4 and β ∈ Ω1

C4 holomorphic.
We must determine when such an ω is nondegenerate. Using the identity LEf = kf and the

fact that f and df vanish at the origin, one easily computes that

ω2 = 2khf−1 dx ∧ dy ∧ dz ∧ dg mod (x, y, z) · Ω4
C4(D).

Hence ω can only be nondegenerate if the top degree form h dx∧dy∧dz∧dg is nonvanishing near
the origin. This condition forces the quasi-homogeneous polynomial h to be a nonzero constant.
Since its degree is equal to k − a − b − c, we must have k = a + b + c. The first statement now
follows from Saito’s classification of such quasi-homogeneous polynomials [Sai71]; see also the
formulae in [EG10, Proposition 2.3.2].

For the second statement, we note that since the choices of g and β do not affect the
cohomology class of ω, we may as well take g = k−1w and β = 0. Thus every log symplectic form
on (C4,D) is cohomologous at 0 to the form

ω = (kλf)−1 iE(dx ∧ dy ∧ dz) + k−1f−1 df ∧ dw

for a unique constant λ ∈ C×. Inverting ω, we obtain the Poisson brackets of (5), as required. 2
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4.2 Basic properties of purely elliptic structures
4.2.1 Irreducible components of Pois(X). Recall from § 2.3 that the class of log symplectic

structures on a compact complex manifold X is stable under deformations, giving irreducible
components in the space Pois(X) of Poisson structures on X. The same is true for the more
restricted class of elliptic structures.

Proposition 4.8. Let X be a compact complex of dimension 2n. Then the set of purely elliptic
log symplectic structures on X gives a Zariski open subset of Pois(X), and hence its closure is a
union of irreducible components.

Proof. According to Remark 4.3, ellipticity is equivalent to requiring that D be normal and the
Pfaffian σn−1A be nonvanishing, where σA is defined as in § 3.1. Both of these conditions are open
in the Zariski topology on H0(X,X 2

X ), as required. 2

4.2.2 The canonical bundle of the singular locus. Let (X,D, ω) be a purely elliptic log
symplectic manifold of dimension 2n, and let σ be the corresponding Poisson structure. According
to Theorem 4.5, the locus where σ has rank 2n − 4 is a manifold, and is equal to the reduced
space Y = (Dsing)red ⊂ X underlying the singular locus of D. It therefore carries a regular Poisson
structure whose symplectic leaves have codimension one in Y. As mentioned in Remark 4.1, Y
also carries a natural top-degree polyvector field, which is locally given by the formula σn−2∧Z|Y
where Z is the modular vector field in a local trivialization of KX. The ellipticity condition ensures
that this tensor is nonvanishing. We therefore have the following result.

Lemma 4.9. The canonical bundle of Y is trivial.

If X is projective, this puts strong constraints on Y: when dim X = 4, each connected
component of Y is an elliptic curve. Meanwhile, when dim X = 6, the manifolds Y give part
of the classification [Dru99].

4.2.3 Topological constraints. According to the local normal form, we may decompose Y as
a disjoint union

Y = Y6 t Y7 t Y8

of open submanifolds, where Yi denotes the set of points at which D has singularities of type Ẽi.
Considering the Milnor numbers of the elliptic singularities in Table 1, we see that the length

of Dsing along Yi is equal to i+ 2. Hence we have the following formula for the fundamental class
in singular homology:

[Dsing] = 8[Y6] + 9[Y7] + 10[Y8] ∈ HdimX−6(X,Z).

Combining this result with Theorem 1.1, we obtain the proposition below.

Proposition 4.10. For a purely elliptic log symplectic manifold (X,D, ω), we have the equality

8[Y6] + 9[Y7] + 10[Y8] = (c1c2 − c3) ∩ [X] ∈ HdimX−6(X,Z),

where Yi ⊂ X is the locus where D has singularities of type Ẽi.

5. Feigin–Odesskii structures and Fano fourfolds

In [FO89], Feigin and Odesskii introduced a remarkable collection of Poisson structures on
projective space that are associated to a given elliptic curve E. In these examples, the projective
space is interpreted [FO98, Pol98] as a moduli space parametrizing certain configurations of
vector bundle maps over E.
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Among this collection are the families qd,1 of Poisson structures on Pd−1, parametrized up to
rescaling by the choice of an elliptic normal curve E⊂ Pd−1. When d= 2n+1 is odd, these Poisson
structures on P2n are log symplectic; the degeneracy hypersurface D ⊂ P2n is the (n− 1)-secant
variety Secn−1(E) of the elliptic curve E, i.e. the closure of the union of all the (n− 1)-planes in
P2n that intersect E in exactly n points. It follows from the results in [GP13, § 8] that the generic
singular points are elliptic of type Ẽ6.

The rest of the paper is devoted to the proof of the following theorem (stated in the
introduction), which characterizes these Poisson structures in the four-dimensional case.

Theorem 1.3. Every purely elliptic log symplectic structure on P4 is isomorphic to a member
of Feigin and Odesskii’s family q5,1. Moreover, the following Fano fourfolds do not support any
purely elliptic log symplectic structures:

– smooth quadric or cubic fourfolds X ⊂ P5;

– products of the form X = P1 ×W, where W ⊂ P4 is a Fano hypersurface.

The proof is organized as follows. In § 5.1, we apply the topological constraint of
Proposition 4.10 to the manifolds X in question. In so doing, we immediately rule out the
existence of purely elliptic log symplectic structures on the smooth quadric or on a product
P1×W. The remaining cases, P4 and cubic fourfolds, are dealt with in §§ 5.2 and 5.3, respectively.

For the rest of the paper, (X,D, ω) is a purely elliptic log symplectic fourfold, and Y6,Y7 and
Y8 are the loci of Ẽ6, Ẽ7 and Ẽ8 singularities, respectively.

5.1 Numerical constraints
Consider a given integral cohomology class H ∈ H2(X,Z). We define integers

ai = degH Yi =

∫
Yi

H

for i = 6, 7, 8. Thus each ai is the total degree of a collection of elliptic curves in X, and from
Proposition 4.10 we obtain the equation

8a6 + 9a7 + 10a8 = H(c1c2 − c3) ∩ [X] ∈ Z. (6)

If H is a nef class, then each of the integers a6, a7 and a8 is nonnegative. We now specialize to
the manifolds in Theorem 1.3.

Hypersurface case. Let X ⊂ P5 be a smooth hypersurface of degree d 6 3, and denote by
H ∈ H2(X,Z) the hyperplane class. Using the exact sequence for the normal bundle, we have the
total Chern class c(X) = (1 +H)6(1 + dH)−1, from which one readily computes that

c1c2 − c3 = (6d2 − 36d+ 70)H3.

Meanwhile H4 ∩ [X] = d, and hence (6) reads

8a6 + 9a7 + 10a8 = 6d3 − 36d2 + 70d. (7)

The nonnegative integer solutions of this equation are displayed in Table 2. Since an elliptic curve
in projective space has degree at least three, the solutions for (a6, a7, a8) with d = 2 cannot be
degrees of collections of elliptic curves. Therefore a smooth quadric fourfold admits no purely
elliptic structures.
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Table 2. Nonnegative integer solutions of (7) with d 6 3.

d (a6, a7, a8)

1 (5, 0, 0) or (0, 0, 4)

2 (1, 4, 0), (2, 2, 1) or (3, 0, 2)

3 (6, 0, 0)

Table 3. Nonnegative integer solutions of (8).

d (a6, a7, a8) (b6, b7, b8)

1 (0, 0, 2) (4, 0, 0)

2 (0, 4, 0), (1, 2, 1) or (2, 0, 2) (0, 0, 2)

3 (3, 0, 0) (0, 0, 3)

4 (1, 0, 0) Many

Product case. Now suppose that X = P1 ×W, where W ⊂ P4 is a smooth hypersurface of
degree d < 5, i.e. a hypersurface that is Fano. Let A,B ∈ H2(X,Z) be the pullbacks of the
hyperplane classes on P1 and P4, respectively. Thus A2 = 0, B4 = 0 and AB3∩ [X] = d. The total
Chern class of X is given by the formula c(X) = (1 +A)2(1 +B)5(1 + dB)−1. We conclude that

c1c2 − c3 = 2(d− 5)2AB2 + (5d2 − 25d+ 40)B3.

Considering (6) with the nef classes A and B, we obtain the equations

8a6 + 9a7 + 10a8 = 2d(d− 5)2,

8b6 + 9b7 + 10b8 = d(5d2 − 25d+ 40)
(8)

for the bidegrees (ai, bi) of the hypothetical collections Y6,Y7 and Y8 of elliptic curves. The
solutions of these equations for which ai and bi are nonnegative integers are shown in Table 3.

We claim that none of these solutions can represent the bidegrees of collections of elliptic
curves, and hence there can be no purely elliptic log symplectic structures on X.

Indeed, if d = 1, 2 or 3, then at least one of the loci Yi has degree zero with respect to B
but positive degree with respect to A. Such a curve is necessarily a (nonempty) union of fibres
of the projection X → W, which are copies of P1. Hence they are not elliptic curves.

Likewise, if d = 4, then Y6 has degree one with respect to A. Since A is nonnegative on every
connected component of Y6, there must be a connected component C ⊂ Y6 that has degree one
with respect to A. But then C would map isomorphically onto P1 under the projection X → P1,
and hence it is not elliptic.

5.2 Projective space
We now consider purely elliptic log symplectic structures on P4. Let D be the degeneracy
hypersurface and Y the locus where the Poisson structure vanishes. Consulting Table 2, we
see that Y has degree at most five. Since each connected component is an elliptic curve, it must
have degree at least three. Hence Y must be connected, and there are two possibilities: either Y
has degree five, in which case D has Ẽ6 singularities, or Y has degree four, in which case D has
Ẽ8 singularities. We now prove that the case of a curve of degree four is impossible, while in the
degree-five case the only possibilities are the Feigin–Odesskii Poisson structures of type q5,1.
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5.2.1 Curve of degree five. We first assume that the degree of Y is equal to five, so that D

has Ẽ6 singularities. In this case we have the following lemma.

Lemma 5.1. The hypersurface D ⊂ P4 must contain the secant variety Sec(Y).

Proof. In light of the local normal form for an Ẽ6 singularity (see Table 1), the section s = σ2 ∈
H0(P4,K∨P4) that cuts out D must vanish to order three at every point of Y. Suppose that p, q ∈ Y
are distinct points and L ⊂ P4 is the secant line that joins them. Then the restriction of s to L is
a section of K∨P4 |L(−3p− 3q) ∼= OL(−1), and hence it is identically zero, so that L ⊂ D. It follows
that every secant line of Y is contained in D, as required. 2

Corollary 5.2. The locus Y is an elliptic normal curve, and D = Sec(Y).

Proof. If Y is not contained in a hyperplane, it is an elliptic normal curve and its secant variety
Sec(Y) is an irreducible quintic hypersurface. Since D is a quintic containing Sec(Y), we must
have D = Sec(Y).

On the other hand, we claim that if Y is contained in a hyperplane H ⊂ P4, then
Sec(Y) = H, which, by the previous lemma, contradicts the fact that D is irreducible. To see
this we note that, according to [EL81, Hul83], the curve Y is the linear projection to H of an
elliptic normal curve Y′ ⊂ P4 from a point p ∈ P4\Sec(Y′). Under this projection, every secant
line of Y′ maps to a secant line of Y, and hence Sec(Y) is the projection of Sec(Y′), which is the
whole hyperplane H. 2

We have now seen that the degeneracy divisor must be the secant variety of an elliptic normal
curve. To complete the classification in the degree-five case, it remains to prove the following.

Proposition 5.3. Let Y ⊂ P4 be an elliptic normal curve and D = Sec(Y) its secant variety. Then
the only purely elliptic log symplectic structures on (P4,D) are the ones in the Feigin–Odesskii
family q5,1.

Proof. Since H0(P4,Ω2
P4) = 0, logarithmic two-forms on P4 are uniquely determined by their

residues. So it is enough to show that there is, up to rescaling, only one possibility for the
residue of a purely elliptic log symplectic form on (P4,D). To do so, we use the well-known
resolution of singularities of the secant variety, which we learned from [GvBH04].

Let Y[2] be the second symmetric power of Y. Then there is a natural rational map D → Y[2]

that sends a point x ∈ D contained in a secant line L to the degree-two divisor defined by the
intersection L ∩ Y. This map extends to a regular map from the blowup D̃ of D along Y, giving
a P1-bundle D̃ → Y[2].

From the elliptic normal form (5) and the discussion in Example 2.7, it is clear that the

residue of the log symplectic form must extend to a holomorphic one-form on D̃. But the map
that takes a degree-two divisor to its linear equivalence class makes Y[2] into a P1-bundle over
Pic2(Y) ∼= Y, and hence the composite map π : D̃ → Y[2]

→ Y is an iterated P1 bundle. It follows

that the only holomorphic forms on D̃ are sections of π∗Ω1
Y
∼= OD̃

. Since D̃ is connected and
projective, the space of such sections is one-dimensional, as claimed. 2

5.2.2 Curve of degree four. The possibility of any other purely elliptic log symplectic
structure on P4 is ruled out by the following result.

Theorem 5.4. There does not exist a purely elliptic log symplectic structure on P4 whose
singular locus Y is a curve of degree four.
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Proof. Suppose to the contrary that such a structure exists, and let D be its degeneracy divisor.

Since D is normal, it must be irreducible.

Notice that the elliptic curve Y is necessarily the complete intersection of a hyperplane H⊂ P4

and two quadrics Q1,Q2 ⊂ P4. Let h be a defining equation for the hyperplane, and extend h to a

system (h, x0, x1, x2, x3) of homogeneous coordinates for P4. Without loss of generality, we may

assume that the quadratic forms q1 and q2 defining Q1 and Q2 depend only on the coordinates

x0, . . . , x3. Then, as is well known, every quadric in the pencil spanned by q1 and q2 has rank

equal to three or four.

A theorem of Bondal [Bon93] asserts that the Poisson bracket on P4 has a canonical

lift to a Poisson bracket on the homogeneous coordinate ring C[h, x0, . . . , x3], such that the

elementary brackets {h, xi} and {xi, xj} are given by homogeneous quadratic forms. To derive

a contradiction, we will show by direct calculation that all Poisson brackets of the form {h, xi}
must be multiples of h, i.e. that the ideal (h) is a Poisson ideal. This implies that the hyperplane

H ⊂ P4 is a Poisson subspace. Since dim H = 3, the Poisson tensor must have rank at most three

on H, so that H ⊂ D, which contradicts the irreducibility of D.

In our calculation, we will require the following two basic properties of the bracket.

(i) The ideal I = (h, q1, q2) cutting out Y is a Poisson ideal, i.e. {I,OC5} ⊂ I.

(ii) The homogeneous quintic polynomial f defining D is a Casimir function, i.e. {f,OC5} = 0.

These properties can easily be established using the definition of the quadratic Poisson

bracket via the canonical Poisson module structure on K∨P4
∼= OP4(5) in [Pol97, § 12]; the first

property follows from the fact that Y ⊂ P4 is a strong Poisson subspace in the sense of [GP13],

and the second follows from the fact that the anticanonical section cutting out D ⊂ P4 is a

Poisson flat section [Pol97, Proposition 7.4].

Since I is a Poisson ideal, the elementary brackets must have the form

{h, xi} = siq1 + tiq2 mod h (9)

for constants si, ti ∈ C. We therefore need to show that si = ti = 0 for all i. It will be useful to

define linear forms A,B,C and D by the formulae

{h, q1} = Aq1 +Bq2 mod h,

{h, q2} = Cq1 +Dq2 mod h.
(10)

Now we observe that, since D is singular along the complete intersection Y, the defining

equation for D may be written as

f = 1
2a11q

2
1 + a12q1q2 + 1

2a22q
2
2 + (b1q1 + b2q2)h mod h2

for quadratic forms b1, b2 and linear forms a11, a12, a22 in the variables x0, . . . , x3. Since D has

Ẽ8 singularities along Y, the Hessian of f must have rank one on the cone over Y in C5. Hence

the two-by-two minors of the Hessian must lie in I. In particular, the expressions

M = a11a22 − a212, N = b1a12 − b2a11

must lie in I. Therefore M is a quadratic form in the pencil spanned by q1 and q2. Evidently,

M has rank at most three, so there are exactly two possibilities: either M is identically zero, or

it has rank equal to three. We now consider these two cases separately.
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Case 1 : M = 0. In this case, the linear forms a11, a12 and a22 must all be constant multiples of
a single form a. Using the equation M = 0, we may factor the first three terms of f and write

f = 1
2aq

2
1 + (b1q1 + b2q2)h mod h2

without loss of generality. Since D is irreducible, f is not divisible by h, and hence a 6= 0.
The minor N ∈ I defined above is now given by N = ab2. Since a is not a zero divisor modulo

I, this forces b2 to be a linear combination of q1 and q2. If b2 were a multiple of q1, we would
have f ∈ (h, q1)

2, which would imply that D is singular along the quadric surface defined by h
and q1, contradicting the normality of D. Therefore b2 is linearly independent of q1, and so we
may assume without loss of generality that

f = 1
2aq

2
1 + bq1h+ 1

2q
2
2h mod h2 (11)

for some quadratic form b.
We now compute the Poisson bracket {h, f} = 0 modulo h, giving the equation

1
2{h, a}q

2
1 = −a(Aq1 +Bq2)q1 mod h.

Since I is a Poisson ideal, the left-hand side of this equation lies in I3. Since I is a complete
intersection and a is not a zero divisor modulo I, this forces A = B = 0. Therefore the brackets
{h, q1} and {h, a} are multiples of h. In particular, we may write

{h, q1} = hQ mod h2

for some Q depending only on x0, . . . , x3.
If the quadratic form q1 has rank four, we may choose the coordinates in which it takes the

form q1 = 1
2(x20 + x21 + x22 + x23). Using (9), we compute the bracket

{h, q1} =

( 3∑
i=0

sixi

)
q1 +

( 3∑
i=0

tixi

)
q2 mod h.

Since I is a complete intersection and {h, q1} is divisible by h, we must have si = ti = 0 for all
i, and hence the ideal (h) is Poisson.

If, on the other hand, the form q1 has rank three, we may choose the coordinates in such a
way that q1 = 1

2(x20 +x21 +x22) and q2 = 1
2x

2
2 mod (x0, x1, x2)

2. Calculating as above, we find that
si = ti = 0 for 0 6 i 6 2. Hence the Hamiltonian vector field of h is given by

{h, ·} = (sq1 + tq2)∂x3 mod h ·X 1
C5

where s = s3 and t = t3. It remains to show that s and t are equal to zero. Using (11), we
compute

0 = h−1{h, f} = aQq1 + (t∂x3b+ sx3)q1q2 + (tx3)q
2
2 mod (h, q21).

Since x3 is not a zero divisor modulo (h, q1), we must have t = 0. Moreover, since all terms but the
first lie in (q1, q2)

2, we must have that Q is a linear combination of q1 and q2, say Q = λ1q1+λ2q2.
Therefore the equation above reduces to

(sx3 + λ2a)q1q2 = 0 mod (h, q21),

which implies that sx3 = −λ2a. If s were nonzero, we would have

{h, a} = {h,−sλ−12 x3} = −s2λ−12 q1 mod h,
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which contradicts the fact that {h, a} = 0 mod h. Hence s must be zero, completing the proof
that (h) is a Poisson ideal when M = 0.

Case 2 : M has rank three. In this case, the linear forms x = a11, y = a22 and z = a12 must be
linearly independent, and hence we may use them as the homogeneous coordinates x0, x1 and x2.

The quadric M = xy − z2 lies in I and hence is a linear combination of q1 and q2. After a
change of basis in the pencil spanned by q1 and q2, we may assume that M = q1. We then choose
our final homogeneous coordinate w = x3 so that

q2 = w2 +Q(x, y, z)

for a quadratic form Q in three variables.
Computing the bracket {h, f} = 0, we obtain the equation

1
2{h, x}q

2
1 + {h, z}q1q2 + 1

2{h, y}q
2
2 = −(xB + z(A+D) + yC)q1q2

− (Ax+ zC)q21
− (yD + zB)q22 mod h. (12)

Since I is a Poisson ideal, the left-hand side of this equation lies in I3. Thus the coefficients of
q21, q1q2 and q22 on the right-hand side must be linear combinations of q1 and q2 modulo h. But
these coefficients are quadratic forms that lie in the ideal (x, y, z) defining the critical locus of
q1 = xy − z2. Since the critical locus is not in the base locus of the pencil, these forms must all
be multiples of q1. This puts strong constraints on A,B,C and D; one can easily compute that
they must be written as

A = Fy +Gz, B = −Uy − V z, C = −Gx− Fz, D = V x+ Uz

for some constants F,G,U, V ∈ C. Then, using the form (9) of the elementary brackets, the
definition (10) of A and B, and the formula q1 = xy − z2, one finds that

{h, x} = Fq1 − Uq2 mod h,

{h, y} = 0 mod h,

{h, z} = −1
2Gq1 + 1

2V q2 mod h.

(13)

Equation (12) now gives

Fq31 + (U +G)q21q2 + V q1q
2
2 = 0 mod h,

which implies that F = V = 0 and U = −G. Hence C = −Gx and D = −Gz. Using the definition
(10) of C and D together with the brackets (13), we find that

Gq2∂xQ− 1
2Gq1∂zQ+ 2{h,w}w = −Gxq1 −Gzq2 mod h,

which is easily seen to imply that G = 0 and that {h,w} = 0 modulo h. It follows that h
generates a Poisson ideal, as required. 2

5.3 Cubic fourfolds
In order to complete the proof of Theorem 1.3, it remains to show that a smooth cubic fourfold
X does not admit any purely elliptic log symplectic forms. From Table 2, we know that the
degeneracy divisor D ⊂ X of such a structure would have Ẽ6 singularities along a locus Y ⊂ X
that is a union of elliptic curves of total degree six. Hence Y must be either a single curve of
degree six or a pair of plane cubics. In Propositions 5.6 and 5.7 below, we will show that such
a hypersurface cannot exist. We begin by reducing the problem to the study of singular cubic
fourfolds.
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Lemma 5.5. Let X ⊂ P5 be a smooth cubic fourfold and D ⊂ X an anticanonical divisor. Suppose
that C ⊂ Dsing is a submanifold along which D has multiplicity three. Then there is a unique

cubic fourfold D̃ ⊂ P5 such that D = D̃ ∩ X and D̃ has multiplicity three along C. Moreover, D̃
contains the variety Sec2(C) swept out by the secant planes of C.

Proof. Let J ⊂ OX and I ⊂ OP5 be the ideals defining C as a subspace of X and P5, respectively,
and let OP5(−X) ⊂ OP5 be the ideal defining X. By the adjunction formula, we have K∨X ∼= OX(3),
and so the anticanonical divisors with multiplicity three along C are cut out by sections of J 3(3).

To prove the existence and uniqueness of D̃, we must show that the map

H0(I3(3)) // H0(J 3(3))

induced by the restriction OP5 → OX is an isomorphism.
Since X and C are smooth, the restriction gives a surjection I3 → J 3 with kernel

I3∩OP5(−X), and this kernel is the precisely the image of the multiplication map I2⊗OP5(−X) →

I3. Twisting by OP5(3), we obtain an exact sequence

0 // I2 // I3(3) // J 3(3) // 0,

and the relevant part of the long exact sequence reads

H0(I2) // H0(I3(3)) // H0(J 3(3)) // H1(I2).

Now h0(I2) = 0 since P5 has no nonconstant global functions. Hence the lemma will follow if we
can show that h1(I2) = 0 as well. For this, we consider the exact sequence

0 // I2 // I // N∨ // 0

defining the conormal sheaf N∨ of C in P5. Since N∨ ⊂ Ω1
P5 |C ⊂ OC(−1)⊕6, we have h0(N∨) = 0.

Hence the vanishing of h1(I2) follows from the vanishing of h1(I), which in turn follows from
the exact sequence

0 // I // OP5 // OX
// 0

and the vanishing of h1(OP5). This completes the proof of the existence and uniqueness of D̃.

To see that Sec2(C) ⊂ D̃, let W ⊂ P5 be a plane that hits C at three points p, q, r ∈ C that are
not collinear. Then either W ⊂ Y or the intersection W∩Y is a cubic curve with multiplicity three
at p, q and r. But the latter is impossible because the only cubic curve with three non-collinear
singular points is a triangle, for which the singularities are nodes. 2

Proposition 5.6. Let X ⊂ P5 be a smooth cubic fourfold. If D ⊂ X is an anticanonical divisor
having multiplicity three along an elliptic curve of degree six, then D is not normal.

Proof. Let Y ⊂ X ⊂ P5 be a degree-six elliptic curve. In light of Lemma 5.5, it is enough to show
that a cubic fourfold D̃ with multiplicity three along Y cannot be normal.

To this end, let W ⊂ P5 be the smallest linear subspace containing Y. We have h0(OY(1)) = 6
by Riemann–Roch, and hence Y is the linear projection of an elliptic normal sextic Y′ ⊂ P5 to
W. Since the secant planes of an elliptic normal sextic fill out all of P5, we must have that
W = Sec2(Y). Hence W ⊂ D̃ by Lemma 5.5. It follows that the dimension of W is at most four.
On the other hand, the dimension of W is at least three because P2 does not contain an elliptic
sextic.
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If W has dimension four, then W is an irreducible component of D̃. Hence D̃ is not normal.
Therefore, suppose that W has dimension three. Choose homogeneous coordinates x0, x1, y0,

. . . , y3 for P5 such that W is cut out by the equations x0 = x1 = 0. Since D̃ contains W, it is cut
out by a cubic polynomial of the form

f = x0q0 + x1q1 mod (x0, x1)
2

where q0 and q1 are quadratic forms in the variables y0, . . . , y3. Now f vanishes to order three
on Y. Hence the derivative

df = q0 dx0 + q1 dx1 mod (x0, x1)

and the Hessian

Hess(f) = dq0 · dx0 + dq1 · dx1 mod (x0, x1, (dx0)
2, dx0 · dx1, (dx1)2)

must vanish on Y. This implies that the quadrics defined by q0 and q1 are singular along Y.
But the singular locus of a quadric is a linear subspace, and W is the smallest linear subspace
containing Y. Hence q0 = q1 = 0 identically, which implies that f ∈ (x0, x1)

2. Hence D̃ is singular

along W, which implies that D̃ is not normal. 2

Proposition 5.7. Let X ⊂ P5 be a smooth cubic fourfold. If D ⊂ X is an anticanonical divisor
having multiplicity three along a pair Y1,Y2 ⊂ X of disjoint cubic elliptic curves, then D is not
normal.

Proof. Because of the degrees, the curves Y1 and Y2 must be contained in planes W1 and W2. Let
us denote by W⊥i ⊂ H0(OP5(1)) the space of linear forms cutting out Wi. Because Yi = X ∩Wi

is a complete intersection, the cubic fourfolds with multiplicity three along Yi are given by the
subspace

Sym3W⊥i ⊂ H0(OP5(3)).

Hence, if D̃ ⊂ P5 is the singular cubic fourfold provided by Lemma 5.5, its defining equation lies
in the intersection

Sym3W⊥1 ∩ Sym3W⊥2 = Sym3(W⊥1 ∩W⊥2 ).

Therefore D̃ has multiplicity three along the linear span of W1 and W2 in P5, which implies that
the singular locus of D̃ has codimension at most dim(W1∩W2) in D̃. Thus D̃ can only be normal
if W1 = W2, but then the cubic curves Y1 and Y2 lie in the same plane, and hence they cannot
be disjoint. 2
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LPT13 F. Loray, J. Vitório Pereira and F. Touzet, Foliations with trivial canonical bundle on Fano
3-folds, Math. Nachr. 286 (2013), 921–940; MR 3066408.
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