Irish Section Meeting, 17–19 June 2015, Nutrition at key life stages: new findings, new approaches

Is there a relationship between whole grain intake and biomarkers of nutritional status?

A.P. Nugent¹, N.F.C. Devlin¹, J. Walton², A. Flynn² and B.A. McNulty¹

¹UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland and ²School of Food and Nutritional Sciences, University College Cork, Cork, Ireland

Previously, consumption of wholegrain foods has been related to a more nutrient dense diet in Irish adults⁽¹⁾. This analysis investigated any associations between eating wholegrain foods and biomarkers of nutritional status using data from the National Adult Nutrition Survey (2008–2010) (www.iuna.net)⁽²⁾. A 4-day semi-weighed food diary recorded food intake data of 1500 adults and wholegrain intake was identified at food and brand level⁽¹⁾. Markers of nutritional status were measured by ELISA (serum 25 (OH) vitamin D), microbiological assay (red blood cell (RBC) and serum folate), fluorescence polarization immunoassay (plasma homocysteine; Hcy), HPLC (plasma pyridoxal-5'-phosphate; PLP, vitamin B6), erythrocyte glutathione reductase activation coefficient (EGRAC; riboflavin), Beckman Coulter Counter (Haemoglobin; Hb) or a RX Daytona automated analyser (serum ferritin, Total Iron Binding Capacity; TIBC). After the exclusion of under-reporters, non-consumers of whole grain were identified and tertiles of intake calculated for consumers.

	Tertiles of mean daily whole grain intakes*								
	Non-consumers n = 94		Tertile 1 n = 298		Tertile 2 n = 313		Tertile 3 n = 346		P value
	Median	IQR	Median	IQR	Median	IQR	Median	IQR	
Wholegrain (g/d)	0^{a}	0	8.6 ^b	10.1	31.3°	11.8	$68 \cdot 3^{d}$	38.1	<0.001
Serum ferritin (ng/ml)	95.8	101.7	87.4	109.4	78.9	100.7	93.0	121.9	0.901
TIBC (µmol/L)	59.7	11.4	59.9	15.4	60.9	12.7	59.0	11.0	0.502
Haemoglobin (g/dL)	14.1	2.7	14.3	2.1	13.9	1.8	14.3	1.8	0.587
Serum folate (nmol/L)	17.8^{a}	14.6	20.9^{a}	17.0	28·3 ^b	24.2	31.9 ^b	27.8	<0.001
RBC folate (nmol/L)	790·4 ^a	387.9	799·8 ^a	424.0	908·7 ^b	558	1019·5 ^b	584.4	<0.001
Serum B12 (nmol/L)	269·3 ^a	141.9	273.6 ^a	155-3	302·1 ^b	137.2	329·4 ^b	169.8	<0.001
EGRAC	1.4^{a}	0.3	1.4^{a}	0.2	1.3 ^b	0.2	1.3 ^b	0.2	<0.001
Plasma PLP (nmol/L)	77·1 ^a	60.4	79.4 ^a	62.0	89.0^{b}	69.5	93.5 ^b	59.5	<0.001
Plasma Hcy (nmol/L)	13.0 ^a	4.8	$12 \cdot 1^{a}$	3.9	11.4 ^b	3.1	11·3 ^b	3.8	<0.001
Serum 25(OH)D (nmol/L)	48.1	40.1	56.6	28.8	56-4	33.7	59.8	35.7	0.249

* Differences between groups were determined by General Linear Model with Bonferroni post hoc tests on log transformed variables where applicable; controlling for social class, supplement use, gender, age, alcohol intake, smoking and energy intake. Different subscripted letters indicate statistically significant (P < 0.05) differences between groups.

Higher dietary wholegrain intakes were associated with improvements in B-vitamin and homocysteine status but not in biomarkers of iron or vitamin D intake. Across the consumption groups, there were no changes (P > 0.05) in dietary intakes (mg or $\mu g/10MJ/day$) of iron, vitamin D or of any of the B vitamins studied. Although correlations were weak, dietary intakes of wholegrain containing breads, ready to eat breakfast cereals and cooked breakfast cereals were more strongly (P < 0.05) related with B-vitamin and homocysteine status than other wholegrain containing foods. Further research will identify whether benefits of eating wholegrain containing foods exist beyond B-vitamin status.

The project was funded by the Irish Department of Agriculture, Food and the Marine under the Nutridata Project 13 F 542; 2014–2016.

- 1. Devlin NFC, McNulty BA, Walton et al. (2014) Proc Nutr Soc. Summer Meeting, Glasgow.
- 2. IUNA (2011) National Adult Nutrition Survey Summary Report. http://www.iuna.net. March 2015