## TRIANGULATION OF FIBRE BUNDLES

H. PUTZ

In this paper we consider the following problem. Let $(E, M, N, \pi)$ be a differentiable fibre bundle, where $E$ is the total space, $M$ the base space, $N$ the fibre, and $\pi: E \rightarrow M$ the projection map. Then, given a $C^{r}$ triangulation $(f, D)$ of $M$, can one obtain a $C^{r}$ triangulation ( $F, K$ ) of $E$ such that the induced $\operatorname{map} f^{-1} \pi F: K \rightarrow D$ is linear? R. Lashof and M. Rothenberg (3) have obtained this result for vector bundles.

Using methods quite different from theirs, we obtain a solution in the general case. The methods we use are the geometric methods developed by J. H. C. Whitehead. (7) in his triangulation of differentiable manifolds, as found in (5). In fact, our solution consists of generalizing his techniques in a fibre bundle setting. As a corollary of our main result, we are able to triangulate vector bundles whose base space is a finite-dimensional, locally finite, simplicial complex.

The author takes this opportunity to thank Professor J. Munkres for suggesting this problem and for his encouragement.

1. Introduction. All manifolds will be understood to be submanifolds of some Euclidean space. All simplicial complexes will be understood to be locally finite and to lie in some Euclidean space. All maps of simplicial complexes will be understood to be piecewise $C^{r}(1 \leqslant r \leqslant \infty$ and $r$ fixed throughout this paper), that is, $C^{r}$ on each simplex.
1.1. Definition. Let $K$ be a simplicial complex, and $f: K \rightarrow R^{q}$. Then $f$ is an immersion if $d f_{b}: \overline{\mathrm{St}}(b, K) \rightarrow R^{q}$ is one-to-one, where $d f_{b}(x)=\operatorname{Df}(b) \cdot(x-b)$ (we denote the Jacobian of $f$ at $b$ by $D f(b)$ and the closed star of $b$ in $K$ by $\overline{\mathrm{St}}(b, K))$. It is an embedding if it is also a homeomorphism. In addition, if $f(K)=E$, a differentiable manifold, it is a $C^{r}$ triangulation of $E$.
1.2. Definition. Let $f: K \rightarrow R^{q}$, and $\delta$ map $K$ continuously to the positive reals. The map $g: K^{\prime} \rightarrow R^{q}\left(K^{\prime}\right.$ a subdivision of $K$ ) is a $\delta(x)$-approximation to $f$ if $\|f(b)-g(b)\|<\delta(b)$ and $\left\|d f_{b}(x)-d g_{b}(x)\right\|<\delta(b)\|x-b\|$ for each $b$ in $K$ and each $x$ in $\overline{\operatorname{St}}\left(b, K^{\prime}\right)$.
1.3. Theorem. For $f: K \rightarrow R^{q}$ an immersion (embedding) there is a $\delta(x)$ such that any $\delta(x)$-approximation to $f$ is an immersion (embedding).

This is Theorem 8.8 of (5).

[^0]1.4. Remark. Let $K_{1}$ be a subcomplex of $K$ and $K_{1}{ }^{\prime}$ a subdivision of $K_{1}$. We obtain the standard subdivision $K^{\prime}$ of $K$ induced by $K^{\prime}{ }_{1}$ by subdividing only those simplices whose interiors lie in $\operatorname{St}\left(K_{1}, K\right)-K_{1}$ as follows. First, barycentrically subdivide all 1 -simplices. Assuming $\mathrm{Bd} \sigma$ is subdivided, join the barycentre of $\sigma$ to this subdivision to get a subdivision of $\sigma$.

### 1.5. Definition. Let


be a commutative array. The tuple ( $E, M, \pi$ ) is a differentiable fibre bundle with fibre $N$, where $E$ and $M$ are embedded as submanifolds of some Euclidean spaces. (We ignore the group of the bundle since it will play no role in our results.) $K$ and $D$ are simplicial complexes and $\pi_{K}: K \rightarrow D$ is a linear map. The maps $F$ and $f$ are $C^{r}$ maps. Such an array will be called a diagram.
1.6. Remark. In the special case where $E=R^{m} \times R^{n}, M=R^{m}$, and $\pi=p_{1}$ an easy computation shows that $d F_{b}(x)=\left(d f_{\pi_{K}(b)}\left(\pi_{K}(x)\right), d\left(p_{2} F\right)_{b}(x)\right)$, where $x$ lies in $\overline{\mathrm{St}}(b, K)$ and $p_{1}, p_{2}$ are the projection maps.

We now give a definition of what it means for the images of two complexes in Euclidean space to fit together nicely.
1.7. Definition. Let $F_{1}: K_{1} \rightarrow R^{q}$ and $F_{2}: K_{2} \rightarrow R^{q}$ be homeomorphisms whose images are closed subsets of $F_{1}\left|K_{1}\right| \cup F_{2}\left|K_{2}\right|$. Then ( $F_{1}, K_{1}$ ) and ( $F_{2}, K_{2}$ ) intersect in a subcomplex if $L_{i}=F_{i}^{-1}\left(F_{1}\left|K_{1}\right| \cap F_{2}\left|K_{2}\right|\right)$ is a subcomplex of $K_{i}$ for $i=1,2$, and if $F_{2}^{-1} F_{1}: L_{1} \rightarrow L_{2}$ is a linear isomorphism. They intersect in a full subcomplex if $L_{i}$ is a full subcomplex of $K_{i}$, i.e., if $\sigma$ is a simplex in $K_{i}$, all of whose vertices lie in $L_{i}$, then $\sigma$ is in $L_{i}$. We may then construct a complex $K$ and a homeomorphism $F: K \rightarrow R^{q}$ such that the following is commutative:

where $i_{1}$ and $i_{2}$ are linear isomorphisms of $K_{1}$ and $K_{2}$ respectively, with subcomplexes of $K$ whose union equals $K$. We call $(F, K)$ the union of ( $F_{1}, K_{1}$ ) and ( $F_{2}, K_{2}$ ).
1.8. Remark. Let

be two diagrams. Suppose that $f$ is a one-to-one map and that ( $F_{1}, K_{1}$ ) and ( $F_{2}, K_{2}$ ) intersect in a full subcomplex. Let $(F, K)$ be their union. Then we can, in an obvious manner, construct a diagram

1.9. Definition. Let

be a diagram. Let $f^{\prime}: C \rightarrow R^{m}$. We define a map $F^{\prime}: P \rightarrow R^{m} \times R^{n}$ as follows:

$$
F^{\prime}(x)=\left(f^{\prime} \pi_{\boldsymbol{P}}(x), p_{2} F(x)\right)
$$

We call $F^{\prime}$ the shift of $F$ over $f^{\prime}$ and obtain the shift diagram
1.10. Remark. Using Remark 1.6 , it is easily seen that, if $F, f$, and $f^{\prime}$ are immersions, embeddings, or closed embeddings, then $F^{\prime}$ is an immersion, embedding, or closed embedding, respectively.

## 2. The triangulation of fibre bundles.

2.1. Theorem. Suppose that we have two diagrams

where $E$ and $M$ are non-bounded, and $F, G$, and $f$ are closed embeddings, and that $\delta(x)>0$ (defined on the disjoint union $K \cup L$ ). Then there are two diagrams

where $K^{\prime}$ and $L^{\prime}$ are subdivisions of $K$ and $L$. The maps $F^{\prime}$ and $G^{\prime}$ are $\delta(x)$-approximations to $F$ and $G$; $\left(F^{\prime}, K^{\prime}\right)$ and $\left(G^{\prime}, L^{\prime}\right)$ intersect in a full subcomplex and their union is a closed embedding.

Proof. See $\S 4$.
2.2. Corollary. Let $(E, M, \pi)$ be a differentiable fibre bundle, with $E$ and $M$ non-bounded. Let $f: D \rightarrow M$ be a $C^{r}$ triangulation. Then there is a diagram

where $F: K \rightarrow E$ is a $C^{r}$ triangulation.
Proof. $M^{m}$ has $m+1$ coordinate neighbourhoods $\left(U_{i}, h_{i}\right), i=1, \ldots, m+1$, such that ( $U_{i} \times N, \phi_{i}$ ) is a local product structure for $E$, where $N$ is the fibre of $E$. Let $D=\cup K_{i}, i=1, \ldots, m+1$, where $K_{i}$ is a subcomplex of $D$, such that $f: K_{i} \rightarrow U_{i}$. Now, since $N$ is a differentiable manifold, there is (5, pp. 101-103) a $C^{r}$ triangulation $g: L \rightarrow N$. Let $F_{i}$ be the composite map

$$
\phi_{i}(f \times g): K_{i} \times L \rightarrow E
$$

Then we have the diagrams


By Theorem 2.1, we have diagrams

where $G_{i}$ is a $\delta(x)$-approximation to $F_{i}, i=1, \ldots, m+1$ such that $\left\{\left(G_{i},\left(K_{i} \times L\right)^{\prime}\right)\right\}$ intersect in a full subcomplex and their union is a closed $C^{r}$ embedding. This union covers $E$ and, therefore, is a $C^{r}$ triangulation of $E$ if $\delta(x)$ is chosen small enough.
2.3. Corollary. Corollary 2.2 holds in the case where the fibre $N$ has a boundary, but $M$ is still assumed to be non-bounded.

Proof. We can choose a product neighbourhood of the boundary of $E, H_{1}: \mathrm{Bd} E \times[0,1) \rightarrow E$ such that the following is commutative:

(see 5.2). Applying Corollary 2.2 to $(\mathrm{Bd} E, M, \pi)$, we have the diagram


Hence, we have the diagram


Let $H=H_{1}\left(H_{2} \times 1\right): J \times[0,1) \rightarrow E$. By Corollary 2.2 we also have the diagram

where $G$ is a $C^{r}$ triangulation of the interior of $E$. By suitably subdividing, we may obtain subcomplexes $P$ of $J \times(0,1)$ and $Q$ of $L$ such that $H_{\mid P}$ and $G_{\mid Q}$ are closed embeddings and they cover $E$. A schematic diagram is given below:


We now may apply the proof of Theorem 2.1 (see 4.4), since the process of fitting together takes place sufficiently far away from the boundary so that
we are in the non-bounded case. Furthermore, with $\delta(x)$ chosen small enough, $H^{\prime}{ }_{\mid P^{\prime}}$ and $G^{\prime}{ }_{\mid Q^{\prime}}$ will cover $E$. Their union ( $F, K$ ) will be the desired $C^{r}$ triangulation of $E$. We also note that, by staying away from the boundary, the subcomplex $J$ of $P$ will not be subdivided, nor $H$ changed there. Hence, $F^{-1} H: J \rightarrow K$ will be a linear isomorphism of $J$ with a subcomplex of $K$. Thus, the triangulation $F$ of $E$ is an extension of the triangulation $H_{2}$ of $\mathrm{Bd} E$.
2.4. Corollary. Corollary 2.2 holds with no assumptions on the boundedness of $E$ or $M$.

Proof. By Corollaries 2.2 and 2.3 we need only consider the case where $M$ has a boundary. We form the double of $M, M_{*}$, and the double of $D, D_{*}$. (We assume that the subcomplex of $D$ which triangulates $\mathrm{Bd} M$ is a full subcomplex.) Let $f_{*}: D_{*} \rightarrow M_{*}$ be the obvious "double" of $f$. Let $r: M_{*} \rightarrow M$ be the obvious retract, and let $E^{*}$ be the induced bundle over $M_{*}$. Then, by using Corollary 2.2 or Corollary 2.3, depending on whether the fibre is with or without boundary, we obtain a diagram

where the map $G$ is a $C^{r}$ triangulation. The diagram is commutative; therefore, if we let $K=\pi_{L}^{-1}(D)\left(K\right.$ is a complex, since $\pi_{L}$ is linear), $G_{\mid K}=F, \pi_{L \mid K}=\pi_{K}$, we obtain our desired result.
2.5. Corollary. Let $(E, M, \pi)$ be a differentiable fibre bundle and $f: D \rightarrow M$ a $C^{r}$ triangulation. Let $N_{1}$ be a closed, non-bounded submanifold contained in the interior of $N$ (the fibre of $E$ ), which is compatible with the fibre bundle structure. Let $E_{1}$ denote the sub-bundle of $E$ whose fibre is $N_{1}$ (e.g. sphere bundles, etc.); then we have a diagram

where $F: K \rightarrow E$ is a $C^{r}$ triangulation and $F^{-1}\left(E_{1}\right)$ is a subcomplex of $K$.
Proof. By Corollary 2.4 we have two diagrams


We apply the proof of Theorem 2.1 (see 4.4). Note that all of our approximations, i.e. secant maps and extensions, were done locally in $R^{m} \times R^{n}$ (where $n$ is the dimension of $N$ ). Now, $H$ maps simplices into $R^{m} \times R^{q} \subset R^{m} \times R^{n}$ (where $q$ is the dimension of $N_{1}$ ), and note that, if $H^{\prime}$ is a change in $H$ obtained by secant approximation and extension, then $H^{\prime}$ also maps simplices into $R^{m} \times R^{q} \subset R^{m} \times R^{n}$ (see the proof of Theorem 3.3). Thus, there are approximations $G^{\prime}: L^{\prime} \rightarrow E$ and $H^{\prime}: P^{\prime} \rightarrow E_{1}$ which intersect in a full subcomplex and their union is the desired $C^{r}$ triangulation of $E$.
2.6. Lemma. Let $\xi=(E, M, \pi)$ be a vector bundle, $M$ a non-bounded $C^{r}$ manifold. Then $(E, M, \pi)$ is a differentiable $C^{r}$ vector bundle.

Proof. Let $\gamma=\left(E_{2}, G_{p, n}, \pi_{2}\right)$ denote the classifying ( $C^{\infty}$ ) bundle for $n$ dimensional vector bundles. By (4, p. 50) we have a continuous map $g: M \rightarrow G_{p, n}$ such that $g^{*}(\gamma)$ is isomorphic to $\xi$. By (5, p. 39) we may construct a map $g^{\prime}: M \rightarrow G_{p, n}$ which is $C^{r}$ and which is homotopic to $g$. By (6, p. 53), $g^{\prime}$ is a $C^{r}$ map so $g^{\prime *}(\gamma)$ has a natural $C^{r}$ structure induced by $\gamma$. The isomorphism of $g^{\prime *}(\gamma)$ with $\xi$ gives $\xi$ a $C^{r}$ structure.
2.7. Theorem. Given a vector bundle $\xi=(E, K, \pi)$, where $K$ is a finitedimensional locally finite simplicial complex, there is a triangulation $G: L \rightarrow E$ such that $\pi G$ is linear.

Proof. There is a subdivision $K^{\prime}$ of $K$ which may be embedded as a subcomplex of a rectilinear triangulation of some Euclidean space $R^{q}$ (for finite $K$, see (5, p. 71), and for infinite $K$ proceed locally). Let $N^{2}\left(K^{\prime}\right)$ denote the second regular neighbourhood of $K^{\prime}$. There is a retraction map $r: N^{2}\left(K^{\prime}\right) \rightarrow K^{\prime}$; see (2, p. 70; the proofs there go through for infinite complexes). Now, $N^{2}\left(K^{\prime}\right)$ is an open subset of $R^{q}$ and has, therefore, by (1, p. 143), a (rectilinear) simplicial structure such that $K^{\prime}$ is a subcomplex. Also, as an open subset, $N^{2}\left(K^{\prime}\right)$ is a differentiable manifold which we shall denote by $M$. The map $r: M \rightarrow K^{\prime}$ induces a vector bundle $E_{1}$ over $M$ which by Lemma 2.6 is a differentiable vector bundle (the bundle $E_{1}$ over $K^{\prime}$ is our original bundle $E$ over $K^{\prime}$ ). By Corollary 2.2 we have the diagram

where $F$ is a $C^{r}$ triangulation of $E_{1}$. Let $L$ be the subcomplex $\pi_{C}{ }^{-1}\left(K^{\prime}\right)$. Then $F_{\mid L}: L \rightarrow E$ is a triangulation of $E$, and $\pi F_{\mid L}=\pi_{C \mid L}: L \rightarrow K^{\prime}$ is linear and, therefore, $\pi F_{\mid L}: L \rightarrow K$ is linear.
2.8. Theorem. Suppose that we have two diagrams

where $F$ is a closed $C^{r}$ embedding, and $f$ and $G$ are $C^{r}$ triangulations, and assume that $F(K)=\pi^{-1}(\pi(F(K)))$. Then there exist approximations $F^{\prime}$ and $G^{\prime}$ to $F$ and $G$ respectively, with the usual commutative diagrams, such that $G^{\prime}$ is a $C^{r}$ triangulation and $F^{\prime}\left(K^{\prime}\right)=\pi^{-1}\left(\pi\left(F^{\prime}\left(K^{\prime}\right)\right)\right)$. Furthermore, $\left(G^{\prime}\right)^{-1} F^{\prime}$ is an isomorphism of $K^{\prime}$ with a subcomplex of $L^{\prime}$.

Proof. When $M$ and the fibre $N$ of $E$ are non-bounded, this is just Theorem 2.1, with $\delta(x)$ taken small enough that $G^{\prime}$ is a $C^{r}$ triangulation and

$$
F^{\prime}\left(K^{\prime}\right)=\pi^{-1}\left(\pi\left(F^{\prime}\left(K^{\prime}\right)\right)\right) .
$$

We consider now the case where the fibre $N$ of $E$ has a boundary but $M$ is non-bounded. Let $N_{*}$ denote the double of $N$, and $E_{*}$ the induced double of $E$. We apply Theorem 2.1 to the bundle $\pi: E_{*} \rightarrow M$. As in the proof of Corollary 2.5 , we see that the approximation $G^{\prime}$ to $G$ will carry $\operatorname{Bd} L$ into $\operatorname{Bd} E$. By choosing $\delta(x)$ small enough we can ensure that $G^{\prime}(\operatorname{Bd} L)=\operatorname{Bd} E$. Hence we have $G^{\prime}\left(L^{\prime}\right)$ contained in $E$. Again if $\delta(x)$ is small enough we shall get $G^{\prime}\left(L^{\prime}\right)=E$. If we now consider $\operatorname{Bd} E \cap F(K)$ instead of $\mathrm{Bd} E$, then similar reasoning yields $F^{\prime}\left(K^{\prime}\right)=\pi^{-1}\left(\pi\left(F^{\prime}\left(K^{\prime}\right)\right)\right)$ if $\delta(x)$ is chosen small enough.

Finally we consider the case where $M$ has a boundary and the fibre $N$ of $E$ is with or without boundary. Let $M_{*}$ denote the double of $M$ and $D_{*}$ the double of $D$ (we assume that the subcomplex of $D$ which triangulates $\mathrm{Bd} M$ is a full subcomplex). By $r: M_{*} \rightarrow M$ we denote the obvious retract and by $E^{*}$ we denote the induced bundle over $M_{*}$. Similarly we form $K^{*}, L^{*}$ and the "doubles" $f_{*}, F_{*}, G_{*}$. We now have the hypotheses for the theorem for the bundle $\pi: E^{*} \rightarrow M_{*}$. By one of the previous two cases and by restriction to the bundle $\pi: E \rightarrow M$ we obtain the conclusions of the theorem for the induced bundle.

As an immediate corollary we obtain the following.
2.9. Corollary. Given the hypotheses of the theorem above and assuming that $F: K \rightarrow E$ is a $C^{r}$ triangulation, then there are subdivisions of $K$ and $L$ that are isomorphic.

Theorem 2.8 also gives us the following result due to Hirsch and Mazur (unpublished).
2.10. Corollary. Let $G: L \rightarrow E$ and $f: D \rightarrow M$ be $C^{r}$ triangulations such that the composite map $\pi_{L}=f^{-1} \pi G$ is piecewise linear. Then $\pi_{L}: L \rightarrow D$ is a piecerwise linear fibre bundle (i.e. piecewise linearly locally trivial) with fibre a complex $P$ smoothly triangulating the fibre of $\pi: E \rightarrow M$.

Proof. Fix a $C^{r}$ triangulation $h: P \rightarrow N$ of the fibre $N$ of $E$. By subdividing $D$, if necessary, we can find about each point of $D$ an open set $W$ contained in a subcomplex $Q$ such that $f(Q)$ is contained in $U$, where $(U \times N, \phi)$ is a local product neighbourhood for $E$. Thus we have the two diagrams

where $\pi_{K}$ is projection into the first factor and $F=\phi(f \times h)$. We note that $F: K \rightarrow E$ is a closed $C^{r}$ embedding and $F(K)=\pi^{-1}(\pi(F(K)))$. We apply Theorem 2.8 and obtain subdivisions $K^{\prime}$ and $L^{\prime}$ and an isomorphism $\theta=\left(G^{\prime}\right)^{-1} F^{\prime}$ of $K^{\prime}$ with a subcomplex of $L^{\prime}$ together with the associated commutative diagram. Furthermore, $\theta\left(K^{\prime}\right)=\pi_{L}^{-1}\left(\pi_{L}\left(\theta\left(K^{\prime}\right)\right)\right)$. By (1, p. 143) the open sets $W$ and $\pi_{L}^{-1}(W)$ have simplicial structures so that the inclusion maps into $D$ and $L^{\prime}$ respectively are piecewise linear. Also the simplicial structure on $W$ induces a simplicial structure on $W \times P$. Thus we have the following commutative diagram:

where $i$ denotes the obvious inclusion map. Now by (5, Corollary 7.9) any two simplicial complexes which have the same polytope have a common simplicial subdivision. Therefore we obtain a piecewise linear homeomorphism $i^{-1} \theta i:(W \times P)^{\prime} \rightarrow \pi_{L}^{-1}(W)$. Thus $\pi_{L}: L \rightarrow D$ is a piecewise linear fibre bundle with fibre $P$.

As an application of our triangulation of vector bundles we have the following theorem.
2.11. Theorem. Let $M$ be a non-bounded $C^{r}(1 \leqslant r \leqslant \infty)$ submanifold contained in the interior of the $C^{r}$ manifold $V$. Then any $C^{r}$ triangulation of $M$ may be extended to a $C^{r}$ triangulation of $V$. (If $f: D \rightarrow M$ is a $C^{r}$ triangulation of $M$, an extension of $f$ is a $C^{r}$ triangulation $j: J \rightarrow V$ of $V$ such that $j^{-1} f$ is a linear isomorphism of some subdivision of $D$ with a subcomplex of $J$.)

Proof. Let $(N, M, \pi)$ be the normal bundle of the embedding $i: M \rightarrow V$. By the tubular neighbourhood theorem we may choose a Riemannian metric on $N$ such that if $N([0,1])$ denotes the subset of $N$ of all vectors of length less than or equal to 1 , then there is a diffeomorphism $P$ of $N([0,1])$ with a closed
neighbourhood of $i(M)$ in $V$. ( $M$ need not be compact because there exists a $C^{r}$ map $\delta: M \rightarrow R^{+}$such that the subset of $N$,

$$
N(\delta(x))=[v\| \| v \| \leqslant \delta(x), \pi(v)=x],
$$

is diffeomorphic with a neighbourhood of $i(M)$ in $V$. Using the diffeomorphism of $N$ with itself taking the vector $v$ to $\delta(x) v$ yields the desired result.) By Corollary 2.2 there is a commutative diagram

where $\pi_{K}$ is linear and $F: K \rightarrow N$ is a $C^{r}$ triangulation. The zero section of $K$ is isomorphic with a subdivision $D^{\prime}$ of $D$. (The rest of the proof now follows the proof of Theorem 10.6 of (5) where it is shown that a $C^{r}$ triangulation of the boundary of a given manifold can be extended to a triangulation of the manifold.) By subdividing $K$, if necessary, let $K_{0}$ be the subcomplex of $K$ whose image under $F$ contains $N([0,5 / 6])$ and is contained in $N([0,1])$. Define $g=P F: K_{0} \rightarrow V$. Let $h: L \rightarrow V$ be a $C^{r}$ triangulation of $V$. Let $L_{0}$ be the subcomplex of $L$ whose image under $h$ contains $V-P(N([0,4 / 5)))$. We assume, by subdividing $L$ if necessary, that the image of $L_{0}$ is disjoint from $P(N([0,3 / 4]))$. By Theorem 10.4 of $\mathrm{f}(5)$ we obtain approximations $g^{\prime}: K_{0}{ }^{\prime} \rightarrow V$ and $h^{\prime}: L_{0}{ }^{\prime} \rightarrow V$ to $g$ and $h$ respectively, which intersect in a full subcomplex whose union $j: J \rightarrow V$ is a $C^{r}$ triangulation of $V$. Furthermore, $g^{\prime}=g$ and $K_{0}{ }^{\prime}=K_{0}$ on $D^{\prime}$, the zero section of $K$. (The reader is referred to Chapter II of (5) for the relevant details.) Thus we have the commutative diagram

where $j_{1}$ and $j_{2}$ are linear isomorphisms with subcomplexes of $J$. Therefore $i_{1}=j^{-1} g^{\prime}=j^{-1} g=j^{-1} f: D^{\prime} \rightarrow J$ is a linear isomorphism with a subcomplex of $J$.

## 3. Secant approximations and extensions.

3.1. Definition. Let $f: K \rightarrow R^{q}$ and $K^{\prime}$ be a subdivision of $K$. The linear map $L_{K^{\prime}}$, defined by $L_{K^{\prime}}(v)=f(v)$ for each vertex $v$ of $K^{\prime}$, is called the secant map induced by $f$.
3.2. Theorem. Let $f: K \rightarrow R^{q}$ and $K_{1}$ be a finite subcomplex of $K$. Given $\delta>0$, there is a $\delta$-approximation $g: K^{\prime} \rightarrow R^{q}$ to $f$ such that (1) $g$ equals the secant map induced by $f$ on $K_{1}{ }^{\prime}$, (2) $g=f$ and $K^{\prime}=K$ outside $\operatorname{St}\left(K_{1}, K\right)$.

This is Theorem 9.7 of (5).
3.3. Theorem. Let

be a diagram, where $A$ is a finite subcomplex. Let $F_{1 Q}, F_{1 A}$, and $f$ be closed embeddings. Let $S=F^{-1} F(A), P_{0}=\overline{\operatorname{St}}(S, P), P_{1}=\overline{\operatorname{St}}\left(P_{0}, P\right)$, and assume is linear on $\pi_{P}\left(P_{1}\right)$. Then given $\delta>0$, there is a $\delta$-approximation $G: P^{\prime} \rightarrow R^{m} \times R^{n}$ to $F$ which preserves commutativity and which is such that $(*) G_{\mid Q^{\prime}}$ and $G_{\mid A^{\prime}}$ are closed embeddings which intersect in a full subcomplex and whose union is a closed embedding. Furthermore, $G=F$ and $P^{\prime}=P$ outside $\operatorname{St}\left(P_{1}, P\right)$.

Proof. Let $G$ be the $\delta$-approximation given in the previous theorem. By the proof of Lemma 10.2 of (5) (*) holds. Thus, it only remains to prove commutativity, i.e. that $f \pi_{P}=p_{1} G$. If a point $x$ lies in $P-\operatorname{St}\left(P_{1}, P\right)$, then $G(x)=F(x)$, so there is no problem.
(1) Let $x$ lie in $P_{1}$, say $x=\sum \alpha_{i} v_{i}$. Then, since $G$ and $p_{1}$ are linear,

$$
p_{1} G(x)=\sum \alpha_{i} p_{1} G\left(v_{i}\right)=\sum \alpha_{i} p_{1} F\left(v_{i}\right)=\sum \alpha_{i} f \pi_{P}\left(v_{i}\right) .
$$

Now, since $f$ is linear on $\pi_{P}\left(P_{1}\right)$, we have $f \pi_{P}(x)=\sum \alpha_{i} f \pi_{P}\left(v_{i}\right)$.
(2) Let $x$ lie in $\operatorname{St}\left(P_{1}, P\right)-P_{1}$. Assume $x$ lies in the interior of $\sigma$ and $G$ has been defined on $\mathrm{Bd} \sigma$ so that commutativity holds there. For a point $x$ of $\sigma, x=t y+(1-t) \sigma_{0}$, where $y$ is in $\operatorname{Bd} \sigma, \sigma_{0}$ is the barycentre of $\sigma$, and $0 \leqslant t \leqslant 1$. Let $\alpha(t)$ be a monotonic $C^{\infty}$ function, which is 0 for $t \leqslant 1 / 3$ and 1 for $t \geqslant 2 / 3$. We now recall (proof of Theorem 9.7 of (5)) how $G$ is extended over $\sigma$ :

$$
G(x)=F(x)+\alpha(t(x))(G(y(x))-F(y(x))) .
$$

Since $p_{1}$ is linear and

$$
p_{1} G(y(x))=p_{1} F(y(x))=f \pi_{P}(y(x))
$$

we have

$$
p_{1} G(x)=p_{1} F(x)=f \pi_{P}(x) .
$$

3.4. Lemma. Let

be a diagram. Suppose that $E$ and $M$ are non-bounded, Let $P_{1}$ be a finite subcomplex of $P$. Given $\delta>0$, there is an $\epsilon>0$ such that $\left(^{*}\right)$ any $\epsilon$-approximation $G: P^{\prime}{ }_{1} \rightarrow E$ to $F_{\mid P_{1}}$ can be extended to a $\delta$-approximation $H: P^{\prime} \rightarrow E$ to $F$ such that $H=F$ and $P^{\prime}=P$ outside $\operatorname{St}\left(P_{1}, P\right)$. Furthermore, if $G$ preserves commutativity so does $H$.

Proof. We extend $H$ over $\operatorname{St}\left(P_{1}, P\right)-P_{1}$ first on 1 -simplices, then on 2 -simplices, and so on. Without loss of generality, we may assume that $F$ and $f$ map simplices into coordinate neighbourhoods, so we may replace ( $E, M, \pi$ ) by ( $R^{m} \times R^{n}, R^{m}, p_{1}$ ) ; then (*) follows by Lemma 9.8 of (5). The commutativity assertion is proved as in the preceding theorem.
4. Proof of Theorem 2.1. Our first lemma is similar to Theorem 3.3, exexcept that in Theorem 3.3 we required $f$ to be linear on a subcomplex and we do not require this here.

### 4.1. Lemma. Let


be a diagram, where $A$ is a finite subcomplex. Let $F_{1 Q}, F_{1 A}$, and $f$ be closed embedding. Then given $\delta>0$, there is a $\delta$-approximation $G: P^{\prime \prime \prime} \rightarrow R^{m} \times R^{n}$ to $F$ which preserves commutativity and which is such that (*) $G_{\mid Q^{\prime \prime}}$ and $G_{\mid A^{\prime \prime \prime}}$ are closed embeddings which intersect in a full subcomplex and whose union is a closed embedding. Furthermore, $G=F$ and $P^{\prime \prime \prime}=P$ outside $\operatorname{St}^{5}\left(F^{-1} F(A), P\right)$.

Proof. Let $S=F^{-1} F(A), \quad P_{0}=\overline{\mathrm{St}}(S, P), P_{1}=\overline{\mathrm{St}}\left(P_{0}, P\right)$; therefore, $\pi_{P} P_{1} \subset C_{1}=\overline{\operatorname{St}}\left(\pi_{P}\left(P_{0}\right), C\right)$. Let $f^{\prime}: C^{\prime} \rightarrow R^{m}$ be the map of Theorem 3.2 which is the secant approximation to $f$ on $C_{1}{ }^{\prime}$. Now $C^{\prime}$ induces a subdivision $P^{\prime}$ of $P$ so that $\pi_{P}: P^{\prime} \rightarrow C^{\prime}$ is still linear. Let $F^{\prime}: P^{\prime} \rightarrow R^{m} \times R^{n}$ be the shift of $F$ over $f^{\prime}$. Using Remark 1.10, we are in a position to apply Theorem 3.3. Let $F^{\prime \prime}: P^{\prime \prime} \rightarrow R^{m} \times R^{n}$ be the $\delta$-approximation to $F^{\prime}$ of that theorem. The map $F^{\prime \prime}$ preserves commutativity and $\left({ }^{*}\right)$ holds for this map. Now let $G: P^{\prime \prime} \rightarrow R^{m} \times R^{n}$ be the shift of $F^{\prime \prime}$ over $f$. Since $G$ is merely a shift of $F^{\prime \prime}$, it is easily seen that (*) holds for the map $G$. Using Remark 1.6 , one sees that $G$ is a $\delta$-approximation to $F$. By letting $P_{2}=\overline{\operatorname{St}}^{4}\left(F^{-1} F(A), P\right)$ and $P_{2}{ }^{\prime \prime}$ be the subdivision induced by $P^{\prime \prime}$ we obtain $P^{\prime \prime \prime}$, the standard subdivision of $P$ induced by $P_{2}{ }^{\prime \prime}$. One checks that for $G: P^{\prime \prime \prime} \rightarrow R^{m} \times R^{n},(*)$ holds; hence, since $\pi_{P}: P^{\prime \prime \prime} \rightarrow C$ is linear, the theorem is proved.
4.2. Remark. The following corollary is our main tool and is used in induction arguments. It enables us to fit together a finite subcomplex ( $A$ ) with what we have already embedded nicely $(Q)$. For induction arguments we only wish
to change maps and subdivisions locally; hence in the above proof we replace $P^{\prime \prime}$ by $P^{\prime \prime \prime}$.
4.3. Corollary. The preceding lemma is true if we replace $\left(R^{m} \times R^{n}, R^{m}, p_{1}\right)$ by $(E, M, \pi)$ where $E$ and $M$ are non-bounded manifolds.

Proof. Without loss of generality, we may assume that simplices are mapped into coordinate neighbourhoods, which allows us to apply the lemma.
4.4. Proof of Theorem 2.1. Without loss of generality, we assume that simplices are mapped into coordinate neighbourhoods. We order the simplices of $L: A_{1}, A_{2}, \ldots, A_{i}, \ldots$ such that each simplex is preceded in the ordering by all of its faces. Let $F_{0}=F, G_{0}=G, K_{0}=K$, and $L_{0}=L$.

Induction Hypothesis
Suppose that we have diagrams

where $K_{i}$ and $L_{i}$ are subdivisions of $K$ and $L$. The maps $F_{i}$ and $G_{i}$ are ( $1-1 / 2 i) \delta(x)$-approximations to $F$ and $G$. Furthermore, if $J_{i}$ is the subcomplex of $L_{i}$ whose polytope is $A_{1} \cup \ldots \cup A_{i}$, we suppose that ( $F_{i}, K_{i}$ ) and $\left(G_{i}, J_{i}\right)$ intersect in a full subcomplex and that their union is a closed embedding.

We now establish the induction hypothesis for $i+1$. If $(H, Q)$ is the union of $\left(F_{i}, K_{i}\right)$ and ( $G_{i}, J_{i}$ ) we have the usual diagram (Remark 1.8). Let $Q=K_{i} \cup J_{i}$. Let $P=Q \cup A_{i+1}$ formed by identifying points in $\operatorname{Bd} A_{i+1}$ with $J_{i}$ and extend $H$ over $P$ by letting $H$ equal $G_{i}$ on $A_{i+1}$. The map $\pi_{P}$ on $A_{i+1}$ is $\pi_{L}$. Given $\epsilon>0$, we apply Corollary 4.3 to obtain a diagram

where $H^{\prime}$ is an $\epsilon$-approximation to $H$. The maps $H^{\prime}{ }_{Q^{\prime}}$ and $H_{\mid A i+1^{\prime}}^{\prime}$ intersect in a full subcomplex and their union is a closed embedding. This union is the same as the union of $H_{\mid K_{i^{\prime}}}^{\prime}$ and $H_{\mid J_{i^{\prime}} U_{A i+1^{\prime}}}^{\prime}$. Furthermore, if $\epsilon$ is small enough, $H^{\prime}: K^{\prime}{ }_{i} \rightarrow E$ will be a $\delta(x) / 2^{i+1}$ approximation to $H$. We let $K_{i}{ }^{\prime}=K_{i+1}$ and $F_{i+1}=H^{\prime}{ }_{\mid K i^{\prime}}$. Also, if $\epsilon$ is small enough by Lemma 3.4, we may extend
$H^{\prime}: J_{i} \cup^{\prime} A_{i+1}{ }^{\prime} \rightarrow E$ to a $\delta(x) / 2^{i+1}$-approximation of $G_{i+1}: L_{i+1} \rightarrow E$. Thus, the induction hypothesis is established for $i+1$.

Now, since maps and subdivisions are changed only locally at each stage $i$, we may form $K^{\prime}=\lim K_{i}, F^{\prime}=\lim F_{i}, L^{\prime}=\lim L_{i}, G^{\prime}=\lim G_{i}$. The maps $F^{\prime}$ and $G^{\prime}$ are automatically $\delta(x)$-approximations to $F$ and $G$. Thus, Theorem 2.1 is proved.

## 5. Appendix.

5.1. Lemma. Let $(E, M, \pi)$ be a differentiable fibre bundle, where $M$ is nonbounded, but the fibre $N$ has a boundary, denoted $\mathrm{Bd} N$. Then there exists a neighbourhood $W$ of the boundary of $E, \mathrm{Bd} E$, and a smooth retraction $\rho: W \rightarrow \mathrm{Bd} E$, such that $\pi \rho=\pi$, i.e. the retraction is along the fibre.

Proof. We recall (Theorem 5.9 of (5)) that there is a diffeomorphism $g$ of a neighbourhood $V$ of $\mathrm{Bd} N$ with $\operatorname{Bd} N \times[0,1)$, such that $g(x)=(x, 0)$ for $x$ in $\operatorname{Bd} N$. Let $f_{t}: \operatorname{Bd} N \times[0,1) \rightarrow \operatorname{Bd} N \times[0,1)$ be defined by

$$
f_{t}(x, s)=(x, t s)
$$

Let $g_{t}=g^{-1} f_{t} g: V \rightarrow V ; g_{1}=1, g_{0}$ is a retraction of $V$ onto $\mathrm{Bd} N$, and $g_{t \mid \mathrm{Bd} N}=1$.

Now let $\left\{\left(U_{i}, k_{i}\right)\right\}$ be a locally finite coordinate cover of $M$ such that $k_{i}\left(U_{i}\right)=B(2)$ (the ball of radius 2) and $\left\{k_{i}^{-1}(B(1))\right\}$ covers $M$.

Let $\alpha(s)$ be a monotonic smooth function, which is 0 for $s \leqslant 1+1 / 3$ and 1 for $s>1+2 / 3$. We now define a smooth map which retracts $B(1) \times V$ onto $\mathrm{B}(1) \times \operatorname{Bd} N$. Let $h_{i}: U_{i} \times V \rightarrow U_{i} \times V$ where $h_{i}(x, y)=\left(x, g_{0}(y)\right)$ if $\left\|k_{i}(x)\right\| \leqslant 1$ and $h_{i}(x, y)=\left(x, g_{\alpha(s)}(y)\right) \quad$ if $\left.1 \leqslant \| k_{i}(x)\right) \|=s \leqslant 2$. Let $\left\{\left(U_{i} \times N, \phi_{i}\right)\right\}$ be the local product structure for $E$. Choose a neighbourhood $W$ of $\mathrm{Bd} E$ such that $W_{i}=W \cap \pi^{-1}\left(U_{i}\right) \subset \phi_{i}\left(U_{i} \times V\right)$ and $\rho_{i}=\phi_{i} h_{i} \phi_{i}{ }^{-1}$ : $W_{2} \rightarrow W_{i}$. By the definition of $\rho_{i}$, it is obvious that we can extend it to a smooth function on all of $W$. We let $\rho=\lim \rho_{i}: W \rightarrow \operatorname{Bd} E$. Because each $\rho_{i}$ is fibre preserving, so is $\rho$, i.e. $\pi \rho=\pi$.
5.2. Corollary. We can choose a product neighbourhood of the boundary of $E, F_{1}: \mathrm{Bd} E \times[0,1) \rightarrow E$ such that the following is commutative:


Proof. The proof is that of Theorem 5.9 of (5), using in that proof the retraction of the previous lemma. The choice of this particular retraction yields the desired commutativity.

## References

1. P. Alexandroff and H. Hopf, Topologie (Springer, 1935).
2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology (Princeton, 1952).
3. R. Lashof and M. Rothenberg, Microbundles and smoothing, Topology, 3, 4 (1965), 357-388.
4. J. Milnor, Differential topology (mimeographed notes, Princeton, 1958).
5. J. R. Munkres, Elementary differential topology (Princeton, 1963).
6. N. Steenrod, The topology of fibre bundles (Princeton, 1951).
7. J. H. C. Whitehead, On C¹-complexes, Ann. of Math., 41 (1940), 809-824.

Temple University, Philadelphia


[^0]:    Received January 10, 1966.

