
TRIANGULATION OF FIBRE BUNDLES 

H. PUTZ 

In this paper we consider the following problem. Let (E, M, N, T) be a 
difïerentiable fibre bundle, where E is the total space, M the base space, N 
the fibre, and ir: E —» M the projection map. Then, given a Cr triangulation 
(/, D) of M, can one obtain a CT triangulation (F, K) of E such that the induced 
map/_17r^: K —> D is linear? R. Lashof and M. Rothenberg (3) have obtained 
this result for vector bundles. 

Using methods quite different from theirs, we obtain a solution in the 
general case. The methods we use are the geometric methods developed by 
J. H. C. Whitehead. (7) in his triangulation of difïerentiable manifolds, as 
found in (5). In fact, our solution consists of generalizing his techniques in a 
fibre bundle setting. As a corollary of our main result, we are able to triangulate 
vector bundles whose base space is a finite-dimensional, locally finite, simplicial 
complex. 

The author takes this opportunity to thank Professor J. Munkres for sug
gesting this problem and for his encouragement. 

1. Introduction. All manifolds will be understood to be submanifolds of 
some Euclidean space. All simplicial complexes will be understood to be locally 
finite and to lie in some Euclidean space. All maps of simplicial complexes will 
be understood to be piecewise Cr (1 < r < oo and r fixed throughout this 
paper), that is, Cr on each simplex. 

1.1. Definition. Let K be a simplicial complex, and f:K—> Rq. T h e n / is an 
immersion if dfb: St(b, K) —> Rq is one-to-one, where dfb(x) = Df(b)- (x — b) 
(we denote the Jacobian of / at b by Df(b) and the closed star of b in K by 
St(b,K)). It is an embedding if it is also a homeomorphism. In addition, if 
f(K) = E, a difïerentiable manifold, it is a Cr triangulation of E. 

1.2. Definition. L e t / : K —> Rq, and ô map K continuously to the positive 
reals. The map g: K' —> Rq (Kf a subdivision of K) is a b(x)-approximation 
t o / if \\f(b) - g(b)\\_< 8(b) and \\dfb(x) - dgb(x)\\ < 5(b)\\x - b\\ for each b 
in K and each x in St(b, K'). 

1.3. THEOREM. For f: K —> Rq an immersion {embedding) there is a b(x) such 
that any 8(x)-approximation to f is an immersion (embedding). 

This is Theorem 8.8 of (5). 
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1.4. Remark. Let Ki be a subcomplex of K and Ki a subdivision of K\. 
We obtain the standard subdivision K' of K induced by K\ by subdividing only 
those simplices whose interiors lie in St(Kh K) — Ki as follows. First, 
barycentrically subdivide all 1-simplices. Assuming Bd a is subdivided, join 
the barycentre of cr to this subdivision to get a subdivision of cr. 

1.5. Definition. Let 

be a commutative array. The tuple (£, M, TT) is a differentiable fibre bundle 
with fibre N, where E and M are embedded as submanifolds of some Euclidean 
spaces. (We ignore the group of the bundle since it will play no role in our 
results.) K and D are simplicial complexes and rK: K —» D is a linear map. 
The maps F and / are Cr maps. Such an array will be called a diagram. 

1.6. Remark. In the special case where E = Rm X Rn, M = Rm, and r = pi 
an easy computation shows that dFh{x) = (dfTKW(rK(x)), d(p2F)b(x)), where 
x lies in St (b, K) and pi, p2 are the projection maps. 

We now give a definition of what it means for the images of two complexes 
in Euclidean space to fit together nicely. 

1.7. Definition. Let Fi: Ki —» Ra and F2: K2 —» RQ be homeomorphisms whose 
images are closed subsets of Fi\Ki\ VJ F2\K2\. Then (Fi, Ki) and (F2, K2) 
intersect in a subcomplex if Lt = Fi~

1(Fi\Ki\ r\ F2\K2\) is a subcomplex of Kt 

for i = 1,2, and if F2~
lFi\ Li—>L2 is a linear isomorphism. They intersect 

in a full subcomplex if Lt is a full subcomplex of Ku i.e., if cr is a simplex in 
Ku all of whose vertices lie in Lu then <r is in Lt. We may then construct a 
complex K and a homeomorphism F: K —* RQ such that the following is 
commutative: 

-KIN 

n 

Ï2 

^ 1 

K * R* 

/ 
F2 

K/ / 

where ii and i2 are linear isomorphisms of Ki and K2 respectively, with sub-
complexes of K whose union equals K. We call (F, K) the union of (Fi, Ki) 
and (F2l K2). 
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1.8. Remark. Let 

7T and TK2 

be two diagrams. Suppose that / is a one-to-one map and that (Fh K\) and 
(F2, K2) intersect in a full subcomplex. Let (F, K) be their union. Then we 
can, in an obvious manner, construct a diagram 

F 
K >E 

TTK f 
D -*M 

1.9. Definition. Let 

Tip 
f 

c-

-> Rm X Rn 

Pi 

be a diagram. L e t / : C -^ i^m. We define a map F': P-> Rm X Rn as follows: 

F'(x) = (f'*p(x)}p2F(x)). 

We call T7' the shift of F over ft and obtain the shift diagram 

F' 

Tip 

c r l 
> R 

» Rm XRn 

Pi 

1.10. Remark. Using Remark 1.6, it is easily seen that, if F,f, and ft are 
immersions, embeddings, or closed embeddings, then F' is an immersion, 
embedding, or closed embedding, respectively. 

2. The triangulation of fibre bundles. 

2.1. THEOREM. Suppose that we have two diagrams 

G 

TÏ and -ni 
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where E and M are non-bounded, and F, G, and f are closed embeddings, and that 
ô(x) > 0 (defined on the disjoint union K\J L). Then there are two diagrams 

F' G' 
K! 

KK 

->E L' 

7Î and TTL 

-> £ 

D- -» D D- -> M 

where K' and L' are subdivisions of K and L. The maps F' and G' are b(x)-approxi
mations to F and G; (E', Kf) and (G\ L') intersect in a full subcomplex and their 
union is a closed embedding. 

Proof. See §4. 

2.2. COROLLARY. Let (E, M, ir) be a differentiable fibre bundle, with £ and M 
non-bounded. Let f: D —> M be a Cr triangulation. Then there is a diagram 

F 

where F: K —> E is a Cr triangulation. 

Proof. Mm has m + 1 coordinate neighbourhoods (Uif ht), i' = 1, . . . , m + 1, 
such that (Ui X N, <j>i) is a local product structure for E, where TV is the fibre 
of E. Let D = \J Ku i = 1, . . . , m + 1, where Kt is a subcomplex of D, such 
that f: Ki—+ U\. Now, since N is a differentiable manifold, there is (5, pp. 
101-103) a Cr triangulation g: L —» N. Let Ft be the composite map 

<t>i{fXg):Kt XL-+E. 

Then we have the diagrams 

F< 
Kt X L 

D 

->E 

~> M 

By Theorem 2.1, we have diagrams 

(Kt X L)' 

Pi I 
D -

Gi 
-> E 

-> M 
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where Gt is a b{%)-approximation to Ft, i = I, . . . } m + 1 such t ha t 
{(Gi, (Kt X L)')} intersect in a full subcomplex and their union is a closed 
Cr embedding. This union covers E and, therefore, is a Cr tr iangulation of E 
if d(x) is chosen small enough. 

2.3. COROLLARY. Corollary 2.2 holds in the case where the fibre N has a boundary, 
but M is still assumed to be non-bounded. 

Proof. We can choose a product neighbourhood of the boundary of 
£ , Hi: Bd E X [0, 1) —» E such tha t the following is commutat ive : 

Hi 
BdEX [0, 1) > E 

1 

M ->M 
(see 5.2). Applying Corollary 2.2 to (Bd E, M, 7r), we have the diagram 

H2 

J- Bd£ 
T T j 

D- ->M 
Hence, we have the diagram 

H2 X 1 
J X [0, 1) > 

Ht 

BdEX [0 ,1) -» E 

TTjpl f 1 
D -> M 

Let H = Hi(H2 XI): J X [0,1) 
diagram 

L 

M 

E. By Corollary 2.2 we also have the 

G 
> I n t E 

VTL 

1 / 
D 

-> M 

where G is s, Cr tr iangulation of the interior of E. By suitably subdividing, we 
may obtain subcomplexes P oi J X (0, 1) and Q of L such tha t H\P and G\Q 

are closed embeddings and they cover E. A schematic diagram is given below: 

Bd E HlP 

o[ T - ) 
[ 

W e now may apply the proof of Theorem 2.1 (see 4.4), since the process of 
fitting together takes place sufficiently far away from the boundary so t h a t 
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we are in the non-bounded case. Furthermore, with ô(x) chosen small enough, 
H'\p> and G'\Q> will cover E. Their union (F, K) will be the desired Cr triangu
lation of E. We also note that, by staying away from the boundary, the 
subcomplex J of P will not be subdivided, nor H changed there. Hence, 
F~1H: J —> K will be a linear isomorphism of / with a subcomplex of K. Thus, 
the triangulation F of E is an extension of the triangulation H2 of Bd E. 

2.4. COROLLARY. Corollary 2.2 holds with no assumptions on the boundedness 
of E or M. 

Proof. By Corollaries 2.2 and 2.3 we need only consider the case where M 
has a boundary. We form the double of M, ikf*, and the double of D, D*. (We 
assume that the subcomplex of D which triangulates Bd M is a full subcom
plex.) Let/*: D* —> M* be the obvious "double" of / . Let r: M* —» M be the 
obvious retract, and let £* be the induced bundle over M*. Then, by using 
Corollary 2.2 or Corollary 2.3, depending on whether the fibre is with or 
without boundary, we obtain a diagram 

-> £* 

7TL I I 7T 

I J* I 
D*- ~> M* 

where the map G is a Cr triangulation. The diagram is commutative; therefore, 
if we let K = irL~l(P) (K is a complex, since wL is linear), G\K = F, TTL\K = TK, 

we obtain our desired result. 

2.5. COROLLARY. Let (E, M, TT) be a differ entiable fibre bundle and f: D —> M 
a Cr triangulation. Let N\ be a closed, non-bounded submanifold contained in the 
interior of N (the fibre of E), which is compatible with the fibre bundle structure. 
Let Ei denote the sub-bundle of E whose fibre is Ni (e.g. sphere bundles, etc.); 
then we have a diagram 

F 
K > E 

D » M 

where F: K —> E is a Cr triangulation and F~1(Ei) is a subcomplex of K. 

Proof. By Corollary 2.4 we have two diagrams 

G H 
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We apply the proof of Theorem 2.1 (see 4.4). Note that all of our approxi
mations, i.e. secant maps and extensions, were done locally in Rm X Rn (where 
n is the dimension of N). Now, H maps simplices into Rm X Rq C Rm X Rn 

(where q is the dimension of iVi), and note that, if Hf is a change in H obtained 
by secant approximation and extension, then Hf also maps simplices into 
Rm X RQ C Rm X Rn (see the proof of Theorem 3.3). Thus, there are approxi
mations G'\ L' —» E and Hf: P' —> Ei which intersect in a full subcomplex 
and their union is the desired Cr triangulation of E. 

2.6. LEMMA. Let £ = (E, M, ir) be a vector bundle, M a non-bounded Cr 

manifold. Then (E, M, ir) is a differentiable CT vector bundle. 

Proof. Let y = (E2, Gv,n, w2) denote the classifying (C°°) bundle for n-
dimensional vector bundles. By (4, p. 50) we have a continuous map 
g: M —> Gp>n such that g*(y) is isomorphic to J. By (5, p. 39) we may construct 
a map g'\ M —>Gp,n which is Cr and which is homotopic to g. By (6, p. 53), 
gr is a Cr map so g'* (7) has a natural Cr structure induced by 7. The isomor
phism of g'*(y) with J gives J a C r structure. 

2.7. THEOREM. Given a vector bundle £ = (E,K,TT), where K is a finite-
dimensional locally finite simplicial complex, there is a triangulation G: L —> E 
such that -KG is linear. 

Proof. There is a subdivision K' of K which may be embedded as a subcom
plex of a rectilinear triangulation of some Euclidean space RQ (for finite K, 
see (5, p. 71), and for infinite K proceed locally). Let N2(Kr) denote the 
second regular neighbourhood of K''. There is a retraction map r: N2(K') —> K' ; 
see (2, p. 70; the proofs there go through for infinite complexes). Now, N2(K') 
is an open subset of Ra and has, therefore, by (1, p. 143), a (rectilinear) 
simplicial structure such that Kr is a subcomplex. Also, as an open subset, 
N2(Kr) is a differentiable manifold which we shall denote by M. The map 
r: M —> Kr induces a vector bundle Ei over M which by Lemma 2.6 is a 
differentiable vector bundle (the bundle E\ over Kf is our original bundle E 
over K'). By Corollary 2.2 we have the diagram 

( 
F 

C >L -1 

N2(K' 
, 1 . 
) -»JI f 

where F is a Cr triangulation of Ex. Let L be the subcomplex Trc~
l{Kr). Then 

F\L: L-+E is a triangulation of E, and nF\L = -KG\L\ L —» Kr is linear and, 
therefore, itF\L: L —> K is linear. 
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2.8. THEOREM. Suppose that we have two diagrams 

and 

where F is a closed Cr embedding, and f and G are Cr triangulations, and assume 
that F(K) = 7T--1 (77 (F(K))). Then there exist approximations F' and G' to F and 
G respectively, with the usual commutative diagrams, such that G' is a Cr triangu
lation and Ff(Kf) = 7i~1(Tr(F/(Kf))). Furthermore, (G,)~1F/ is an isomorphism 
of Kr with a subcomplex of Lf. 

Proof. When M and the fibre N of E are non-bounded, this is just Theorem 
2.1, with d(x) taken small enough that G1 is a Cr triangulation and 

F'(K') = *-l(ir(F'(K'))). 

We consider now the case where the fibre N of E has a boundary but M is 
non-bounded. Let N* denote the double of N, and E* the induced double of 
E. We apply Theorem 2.1 to the bundle it : £* —» M. As in the proof of Corol
lary 2.5, we see that the approximation G' to G will carry Bd L into Bd E. 
By choosing 8(x) small enough we can ensure that G'(Bd L) = Bd E. Hence 
we have G'(Lf) contained in E. Again if 8(x) is small enough we shall get 
G'(L') = E. If we now consider Bd £ H F(K) instead of Bd E, then similar 
reasoning yields F'(Kf) = -K~1(TI(F'' (Kr))) if <5(x) is chosen small enough. 

Finally we consider the case where M has a boundary and the fibre N of E 
is with or without boundary. Let ikf* denote the double of M and D* the double 
of D (we assume that the subcomplex of D which triangulates Bd M is a full 
subcomplex). By r: M* —> M we denote the obvious retract and by £* we 
denote the induced bundle over M*. Similarly we form K*t L* and the "doubles" 
/*, F*, G*. We now have the hypotheses for the theorem for the bundle 
7r: £* —•» M*. By one of the previous two cases and by restriction to the bundle 
7r: E —» M we obtain the conclusions of the theorem for the induced bundle. 

As an immediate corollary we obtain the following. 

2.9. COROLLARY. Given the hypotheses of the theorem above and assuming that 
F: K —> E is a CT triangulation, then there are subdivisions of K and L that 
are isomorphic. 

Theorem 2.8 also gives us the following result due to Hirsch and Mazur 
(unpublished). 

2.10. COROLLARY. Let G: L —> E andf: D —» M be Cr triangulations such that 
the composite map nL = f~xTsG is piecewise linear. Then TL: L —* D is a piecewise 
linear fibre bundle (i.e. piecewise linearly locally trivial) with fibre a complex 
P smoothly triangulating the fibre of TT: E —> M. 
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Proof. Fix a Cr triangulation h: P —> N of the fibre N of E. By subdividing 
D, if necessary, we can find about each point of D an open set W contained in 
a subcomplex Q such that/(<2) is contained in U, where (U X N, 0) is a local 
product neighbourhood for E. Thus we have the two diagrams 

K = Ç X P > £ 

TTX 

D 

7i a n d 7i ; 

-» M 

L > £ 

/ 
£> > M 

where 7^ is projection into the first factor and F = </>(/ X h). We note that 
F: K—> E is a closed (7 embedding and F(K) = 7r_1(7r (F(K))). We apply 
Theorem 2.8 and obtain subdivisions i£' and Lr and an isomorphism 
6 = (G')~lFr of i£r with a subcomplex of L' together with the associated 
commutative diagram. Furthermore, 6{Kf) = itL~l(jtL(Q(&')))> By (1, p. 143) 
the open sets W and 'n^iW) have simplicial structures so that the inclusion 
maps into D and 1/ respectively are piecewise linear. Also the simplicial struc
ture on W induces a simplicial structure onWXP. Thus we have the following 
commutative diagram: 

where i denotes the obvious inclusion map. Now by (5, Corollary 7.9) any 
two simplicial complexes which have the same polytope have a common 
simplicial subdivision. Therefore we obtain a piecewise linear homeomorphism 
i~l6i\ (W X P)f —> 7T2,_1(1^)- Thus TL: L —> D is a piecewise linear fibre bundle 
with fibre P. 

As an application of our triangulation of vector bundles we have the following 
theorem. 

2.11. THEOREM. Let M be a non-bounded Cr (1 < r < °o) submanifold con
tained in the interior of the Cr manifold V. Then any CT triangulation of M may 
be extended to a Cr triangulation of V. (Iff: D —> M is a Cr triangulation of M, 
an extension off is a Cr triangulation j : J —+ V of V such that j~lf is a linear 
isomorphism of some subdivision of D with a subcomplex of J.) 

Proof. Let (N, M,it) be the normal bundle of the embedding i: M —* V. By 
the tubular neighbourhood theorem we may choose a Riemannian metric on 
N such that if iV([0, 1]) denotes the subset of N of all vectors of length less 
than or equal to 1, then there is a difreomorphism P of iV([0, 1]) with a closed 
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neighbourhood of i (M) in V. (M need not be compact because there exists a 
Cr map ô: M —> R+ such that the subset of N, 

N(5(x)) = [v\ \\v\\ < ô(x),Tt(v) = x], 

is diffeomorphic with a neighbourhood of i(M) in V. Using the diffeomorphism 
of N with itself taking the vector v to è(x)v yields the desired result.) By 
Corollary 2.2 there is a commutative diagram 

where TTK is linear and F: K —> N is a Cr triangulation. The zero section of X 
is isomorphic with a subdivision D' of P . (The rest of the proof now follows 
the proof of Theorem 10.6 of (5) where it is shown that a Cr triangulation of 
the boundary of a given manifold can be extended to a triangulation of the 
manifold.) By subdividing K, if necessary, let K0 be the subcomplex of K 
whose image under F contains iV([0, 5/6]) and is contained in N([0, 1]). 
Define g = PF: K0 —-> V. Let h: L —> F be a Cr triangulation of F. Let L0 

be the subcomplex of L whose image under h contains V — F(N([0, 4/5))) . 
We assume, by subdividing L if necessary, that the image of L0 is disjoint 
from P(N([0, 3/4])). By Theorem 10.4 off (5) we obtain approximations 
g': K{f —> V and hr: L0' —» V to g and h respectively, which intersect in a full 
subcomplex whose union j : J —* V is a C7" triangulation of V. Furthermore, 
g' = g and Ko' = Ko on D', the zero section of K. (The reader is referred to 
Chapter II of (5) for the relevant details.) Thus we have the commutative 
diagram 

KQ'. 

where ji and j*2 are linear isomorphisms with subcomplexes of / . Therefore 
7i 

of/. 

= j~lg' = J lè = 3 !/: D' —> / is a linear isomorphism with a subcomplex 

3. Secant approximations and extensions. 

3.1. Definition. Le t / : K —» Ra and i£r be a subdivision of K. The linear map 
LK>, defined by LK>(v) = f(v) for each vertex v of K', is called the secant map 
induced by f. 
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3.2. THEOREM. Let f:K-+Rq and K\ be a finite subcomplex of K. Given 
8 > 0, there is a 8-approximation g: K' —> Rq to f such that (1) g equals the secant 
map induced by f on K{, (2) g = f and K' = K outside St(Kh K). 

This is Theorem 9.7 of (5). 

3.3. THEOREM. Let 

f 

_+Rm X Rn 

Pi 

-> Rn 

P = QVJA 

Tip 

c 
be a diagram, where A is a finite subcomplex. Let F\ Qj F\A, andf be closed embed-
dings. Let S = F~lF{A), Po = St (5, P ) , -Pi = St(P0 , P ) , and assume fis linear 
on up (Pi). Then given <5 > 0, there is a 8-approximation G: P' —» Rm X Rn to F 
which preserves commutativity and which is such that (*)G\Q* and G\A* are closed 
embeddings which intersect in a full subcomplex and whose union is a closed 
embedding. Furthermore, G = F and P' = P outside St (Pi, P ) . 

Proof. Let G be the ^-approximation given in the previous theorem. By the 
proof of Lemma 10.2 of (5) (*) holds. Thus, it only remains to prove com
mutativity, i.e. that firP = p\G. If a point x lies in P — St (Pi, P ) , then 
G(x) = F(x), so there is no problem. 

(1) Let x lie in Ph say x = J^at vt. Then, since G and pi are linear, 

piG(x) = J2<XiPiG(Vi) = T,0LipiF(vt) = T,aif7rp(Vi). 

Now, since/ is linear on 7rP(Pi), we have/7rP(x) = X ^ / ^ P ^ * ) -

(2) Let x lie in St (Pi, P ) — Pi . Assume x lies in the interior of a and G 
has been defined on Bd <r so that commutativity holds there. For a point x of 
o-, x = ty + (1 — t)<ro, where y is in Bd <T, <r0 is the barycentre of a, and 
0 < t < 1. Let a(t) be a monotonie C°° function, which is 0 for t < 1/3 and 
1 for t > 2/3. We now recall (proof of Theorem 9.7 of (5)) how G is extended 
over a-: 

G(x) = F(x)+a(t(x))(G(y(x)) - F(y(x))). 

Since p\ is linear and 

piG(y(x)) = piF(y(x)) = f-nP(y(x))y 

we have 

3.4. LEMMA. Let 

piG(x) = piF(x) = f7Tp(x). 

Tip 
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be a diagram. Suppose that E and M are non-bounded, Let P i be a finite sub-
complex of P . Given ô > 0, there is an e > 0 such that (*) any ^-approximation 
G: P ' i —» E to F\Pl can be extended to a d-approximation H: Pf—> E to F such 
that H = F and P' = P outside St (Pi, P ) . Furthermore, if G preserves com-
mutativity so does H. 

Proof. We extend H over St(Pi , P ) — P i first on 1-simplices, then on 
2-simplices, and so on. Without loss of generality, we may assume that F and 
/ map simplices into coordinate neighbourhoods, so we may replace (P, M", -n) 
by (Rm X Rn, Rm, pi); then (*) follows by Lemma 9.8 of (5). The commuta-
tivity assertion is proved as in the preceding theorem. 

4. Proof of Theorem 2.1. Our first lemma is similar to Theorem 3.3, ex-
except that in Theorem 3.3 we required / to be linear on a subcomplex and we 
do not require this here. 

4.1. LEMMA. Let 

F 
P = QKJ A >Rm X Rn 

7Tr 

f 
C > R 

be a diagramj where A is a finite subcomplex. Let F\Ql F\A, and f be closed em
bedding. Then given ô > 0, there is a 8-approximation G: P'" —* Rm X Rn to F 
which preserves commutativity and which is such that (*) G\Q>" and G\A>" are 
closed embeddings which intersect in a full subcomplex and whose union is a closed 
embedding. Furthermore, G = F and P'" = P outside St5(P -1P(^4), P ) . 

Proof. Let _ 5 = F^F^A), P 0 = St(5, P ) , P i = St(P0 , P ) ; therefore, 
TTPPI C Ci = St(7TP(Po), C). Let / ' : C' -> Rm be the map of Theorem 3.2 
which is the secant approximation to / on C\. Now C induces a subdivision 
P' of P so that 7TP: P' -* C is still linear. Let F': P' -* Rm X Rn be the shift 
of F over /''. Using Remark 1.10, we are in a position to apply Theorem 3.3. 
Let F"\ P" ->Rm X Rn be the ^-approximation to F' of that theorem. The 
map F" preserves commutativity and (*) holds for this map. Now let 
G: P" - > P W X Rn be the shift of F" over / . Since G is merely a shift of P" , 
it is easily seen that (*) holds for the map G. Using Remark 1.6, one sees that 
G is a ^-approximation to F. By letting P 2 = St4(^_ 1P(^-), P ) and P 2 " be the 
subdivision induced by P" we obtain P / 7 / , the standard subdivision of P 
induced by P 2 " . One checks that for G: P'" -> Rm X Rn, (*) holds; hence, 
since nP: P,n —> C is linear, the theorem is proved. 

4.2. Remark. The following corollary is our main tool and is used in induction 
arguments. It enables us to fit together a finite subcomplex (̂ 4) with what 
we have already embedded nicely (Q). For induction arguments we only wish 
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to change maps and subdivisions locally; hence in the above proof we replace 
pu b y p///a 

4.3. COROLLARY. The preceding lemma is true if we replace (Rm X Rn, Rm, pi) 
by (E, M, IT) where E and M are non-bounded manifolds. 

Proof. Without loss of generality, we may assume that simplices are mapped 
into coordinate neighbourhoods, which allows us to apply the lemma. 

4.4. Proof of Theorem 2.1. Without loss of generality, we assume that sim
plices are mapped into coordinate neighbourhoods. We order the simplices of 
L: Ai, A2, . . . , A u . . . such that each simplex is preceded in the ordering by 
all of its faces. Let F0 = F, G0 = G, K0 = K, and L0 = L. 

Induction Hypothesis 
Suppose that we have diagrams 

TSK 

Kt >E 

f 
D > M 

G, 
L, > E 

7T a n d 7TL 1 / 
D > M 

where Kt and Lt are subdivisions of K and L. The maps Ft and Gt are 
(1 — l/2i)ô(x)-approximations to F and G. Furthermore, if Jt is the subcom-
plex of Lt whose poly tope is Ai U . . . VJ Aif we suppose that (Fit Kt) and 
(Git Ji) intersect in a full subcomplex and that their union is a closed 
embedding. 

We now establish the induction hypothesis for i + 1. If (H, Q) is the union 
of (Fi, Ki) and (Gu Jt) we have the usual diagram (Remark 1.8). Let 
Q = Kt\J Ji. Let P — Q^J Ai+\ formed by identifying points in Bd A i+1 with 
Jt and extend H over P by letting H equal G* on A i+i. The map irP on A i+i 
is iiL. Given e > 0, we apply Corollary 4.3 to obtain a diagram 

H' 
P' - > £ 

KH 

D -> M 

where H' is an e-approximation to H. The maps Hf \ Q> and H'\Ai +l> intersect in 
a full subcomplex and their union is a closed embedding. This union is the 
same as the union of Hf \Ki> and iï ' i JVIM* +I'- Furthermore, if e is small enough, 
H':K'i->E will be a b{x)/2i+l approximation to H. We let K/ = Ki+1 and 
Fi+i = H'\Kif> Also, if e is small enough by Lemma 3.4, we may extend 
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H'\ J/ KJ Ai+i - > £ to a ô(x)/2i+ ^approximation of Gi+\\ Li+i—*E. Thus, 
the induction hypothesis is established for i + 1. 

Now, since maps and subdivisions are changed only locally at each stage i, 
we may form K' = lim Ku F' = lim Fu L' = lim Lu G' = lim Gf. The maps 
F' and G' are automatically ô (x)-approximations to F and G. Thus, Theorem 
2.1 is proved. 

5. Appendix. 

5.1. LEMMA. Let (E, M,n) be a differentiable fibre bundle, where M is non-
bounded, but the fibre N has a boundary, denoted Bd N. Then there exists a 
neighbourhood W of the boundary of E, Bd E, and a smooth retraction 
p: W -^ Bd E, such that -np = -n, i.e. the retraction is along the fibre. 

Proof. We recall (Theorem 5.9 of (5)) that there is a diffeomorphism g of a 
neighbourhood F of Bd TV with Bd N X [0, 1), such that g(x) = (x, 0) for 
x in Bd N. Le t / , : Bd TV X [0, 1) -> Bd N X [0, 1) be defined by 

ft(x,s) = (x,ts). 

Let gt = g~lftg'- V —> V; gi = 1, go is a retraction of V onto Bd N, and 
gt\Ba N = 1-

Now let {(Ui,ki)} be a locally finite coordinate cover of M such that 
kiiUt) = B(2) (the ball of radius 2) and {kc^BO-))} covers M. 

Let a (s) be a monotonie smooth function, which is 0 for s < 1 + 1/3 and 
1 for s > 1 + 2/3. We now define a smooth map which retracts B(l) X V 
onto B( l ) X Bd N. Let ht: UtX V-* Ut X F where ht{x, y) = (*, g0(y)) if 
||&*(x)|| < 1 and hi(x,y) = (x, ga{s)(y)) if 1 < ||&*(x))|| = 5 < 2. Let 
j ([/* X N, <t>i)} be the local product structure for E. Choose a neighbourhood 
IF of Bd £ such that Wt = W H T I - 1 ^ ) C <t>i(Ut X F) and Pi = 0< A, 0 r x : 
W% —> IFi. By the definition of p ,̂ it is obvious that we can extend it to a 
smooth function on all of W. We let p = lim pt: W —> Bd £ . Because each 
Pi is fibre preserving, so is p, i.e. 7rp = IT. 

5.2. COROLLARY. PFe can choose a product neighbourhood of the boundary of 
E, F\: Bd E X [0, 1) —» £ swcA /Aa/ the following is commutative: 

Fi 
BdEX [0, 1) » E 

Tlpl 1 71 

M >M 

Proof. The proof is that of Theorem 5.9 of (5), using in that proof the 
retraction of the previous lemma. The choice of this particular retraction 
yields the desired commutativity. 
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