INERTIAL ISOMORPHISMS OF V-RINGS

N. HEEREMA

1. Introduction. Throughout this paper R and R_{n} will denote v-rings, that is, complete discrete rank-one valuation rings of characteristic zero, having a common residue field k of characteristic $p . R$ is assumed unramified and R_{n} has ramification index n. Let π be a prime element in R_{n}. Then $R_{n}=R[\pi]$, where π is a root of an Eisenstein polynomial $f=x^{n}+p f_{n-1} x^{n-1}+\ldots+p f_{0}$ with coefficients in R and f_{0} a unit. Thus R_{n} is inertially isomorphic to $R[[x]] / f R[(x)]$, that is, the rings are isomorphic by a mapping which induces the identity mapping on the common residue field. $R[[x]]$ represents the power series ring in the indeterminate x over R. In this paper we identify R_{n} with $R[[x]] / f R[[x]], R$ with its natural embedding in R_{n}, and π with $x+f R[[x]]$.

Let S be a local ring with maximal ideal M. Let $G_{S, r}$ represent the group of automorphisms α on S such that $\alpha(a)-a$ is in M^{r} for all $a \in S$. Let $H_{S, r}$ be the subgroup of $G_{S, r}$ having the additional property that $\alpha(a)-a$ is in M^{r+1} for a in M. We then have a sequence of ramification groups

$$
\begin{equation*}
G_{S, 1} \supset H_{S, 1} \supset G_{S, 2} \supset H_{S, 2} \supset \ldots, \tag{1}
\end{equation*}
$$

each of which is a normal subgroup of the automorphism group of S. The elements of $G_{S, 1}$ are called inertial automorphisms. Finally, an inertial embedding of R in R_{n} or in $R[[x]]$ is an isomorphism $R \rightarrow R_{n}(R \rightarrow R[[x]])$ which induces the identity mapping on the common residue field.

Some questions about mappings of rings R_{n} can be settled by lifting them to $R[[x]]$. For example, if k is perfect, then every automorphism of R_{n} lifts to $R[[x]]$. If R_{n} is tamely ramified, then this fact can be used to determine necessary and sufficient conditions for two such rings to be isomorphic in terms of the automorphism structure of k (2, Corollary 4). If $R_{p}(p \neq 2)$ is an extension of R by a root of $f=x^{p}+p f_{p-1} x^{p-1}+\ldots+p f_{0}$, then the quotient field of R_{p} is normal over the quotient field of R if and only if the residue of $f_{0} /(p-1) f_{p-1}$ has a $(p-1)$ th root in k (9 , Theorem 4.15). This result is obtained by constructing suitable inertial automorphisms in $R[[x]]$ which induce automorphisms on R_{n}.

Thus, in this paper we investigate the relationship between inertial automorphisms of rings R_{n} and inertial automorphisms of $R[[x]]$. In particular, we show that, for $m=1,2, \ldots, \alpha$ in $G_{R_{n}, m}\left(H_{R_{n}, m}\right)$ can be lifted to $G_{R[[x], m}$ $\left(H_{R[[x], m}\right)$. This is a corollary to Theorem 1 which states that every inertial embedding of R in R_{n} lifts to an inertial embedding of R in $R[[x]]$. The former result gains significance from the analysis of inertial automorphisms of $R[[x]]$ found in (6).

[^0]Theorem 2 states that an isomorphism of R_{n} onto R_{n}^{\prime} which leaves the common residue field fixed (an inertial isomorphism) can be lifted to an inertial automorphism on $R[[x]]$. Theorem 3 asserts that if R_{n} and $R_{n}{ }_{n}$ are extensions of R by Eisenstein polynomials f and f^{\prime}, then R_{n} and R_{n}^{\prime} are inertially isomorphic if and only if there is an infinite higher derivation $\left\{D^{(i, j)}\right\}_{2, j=0}^{\infty}$ (the definition follows) on $R[[x]]$ such that f and

$$
\sum_{i, j=0}^{\infty} D^{(i, j)}\left(f^{\prime}\right) p^{i} x^{j}
$$

are associate primes in $R[[x]]$.
Definition. An infinite higher derivation on two indices, defined on a ring S into a containing ring S^{\prime}, is a sequence of maps $\left\{D^{(i, j)}\right\}_{i, j=0}^{\infty}$ of S into S^{\prime} with the following properties:
(i) $D^{(i, j)}(a+b)=D^{(i, j)}(a)+D^{(i, j)}(b)$,
(ii) $D^{(i, j)}(a b)=\sum_{\substack{r \leqslant i \\ s \leqslant j}} D^{(r, s)}(a) D^{(i-r, j-s)}(b)$,
(iii) $D^{(0,0)}$ is the identity map.

An infinite higher derivation $\left\{D^{(0)}, D^{(1)}, D^{(2)}, \ldots\right\}$ is similarly defined. The relationship between infinite higher derivations and inertial automorphisms of $R[[x]]$ is investigated in (6).

Theorem 4 states that if R_{n} is tamely ramified (p does not divide n) every inertial embedding of R in R_{n} can be extended to an inertial automorphism on R_{n}. Theorem 5 identifies the factor groups of the ramification groups (1) in the case in which R_{n} is tamely ramified, completing in this particular case the analysis made by Neggers (8, Theorem 6).
2. The Embedding Theorem. The symbols listed below appear repeatedly in the body of the paper and always have the meaning here given. Some have been introduced already. The others will be identified again when they first appear. Nevertheless they are collected here for ease of reference.
R : unramified v-ring.
$R[[x]]$: power series ring in indeterminate x over R.
$R_{n}: R[[x]] / f R[[x]]$, where f is an Eisenstein polynomial of degree n.
$\pi: x+f R[[x]]$.
k : common residue field of R and R_{n}.
(2) $\quad k_{0}$: maximal perfect subfield of k.
R_{0} : complete subring of R having residue field k_{0}.
K_{0} : field of quotients of R_{0}.
M : maximal ideal of $R[[x]]$.
ϵ : identity map on a given ring.
η : natural map of a ring onto a residue class ring.
ϕ : inertial embedding of R in R_{n}.
t : inertial index of ϕ (see below).

Let S be a local ring with maximal ideal I and let S_{1} be a subring of S. An isomorphism $\xi: S_{1} \rightarrow S$ is said to have inertial index r if $(\xi-\epsilon)\left(S_{1}\right) \subset I^{r}$ but $(\xi-\epsilon)\left(S_{1}\right) \not \subset I^{r+1}$.

Let ϕ be an embedding of R in $R_{n}=R[[x]] / f R[[x]]$ where f is an Eisenstein polynomial of degree n. It is assumed that ϕ has inertial index $t>0$. Our objective is the construction of an embedding θ of R in $R[[x]]$ which induces ϕ and has inertial index equal to or greater than t. We obtain θ as a limit of a sequence $\left\{\theta_{1}, \theta_{2}, \ldots\right\}$ of isomorphisms where $\theta_{m}: R / p^{m} R \rightarrow R[[x]] / M^{m}$ and the following coset inclusion holds:

$$
\begin{equation*}
\left\langle\theta_{m+1}\left(a+p^{m+1} R\right)\right\rangle \subset\left\langle\theta_{m}\left(a+p^{m} R\right)\right\rangle \tag{3}
\end{equation*}
$$

We shall frequently wish to regard cosets of residue class rings of $R[[x]]$ as subsets of $R[[x]]$. This view is indicated by the use of the grouping symbols \rangle. The maps θ_{m} and ϕ induce isomorphisms $\bar{\theta}_{m}$ and $\bar{\phi}_{m}$, respectively, of $R / p^{m} R$ into $R_{n} / \pi^{m} R_{n}$. We shall construct θ_{m} so that $\bar{\theta}_{m}=\bar{\phi}_{m}$. By virtue of (3) the sequence $\left\{\theta_{m}\right\}$ determines a limit map θ which will induce ϕ. The method used to construct θ is similar to that used to construct a derivation on R which induces a given derivation on k (4, Section 2). Thus, we shall omit some of the details. It should be mentioned that θ can also be obtained by use of the Teichmüller Embedding Process in a manner resembling the proof of I. S. Cohen's Embedding Theorem (1, Theorem 11 and Corollary 1).

The symbols k_{0}, R_{0}, and K_{0} will represent the maximal perfect subfield of k, the complete subring of R with residue field k_{0}, and the quotient field of R_{0} respectively.

Lemma 1. The restriction, ϕ_{0}, of ϕ to R_{0} is the identity mapping.

Proof. If ϕ_{0} is not the identity mapping, it has inertial index $m>0$. The mapping $\phi^{\prime}{ }_{0}$ defined by $\phi^{\prime}{ }_{0}(a)=\left(\phi_{0}(a)-a\right) / \pi^{m}$ induces a derivation on k_{0} into k, which, by definition of m, must be a non-trivial mapping. But k_{0}, being perfect, has no non-trivial derivations. Thus ϕ_{0} must be the identity mapping.

Let \Im represent a subset of R which maps biuniquely under η, onto a p-basis $\bar{\Im}$ for k. The set $\overline{\mathfrak{S}}$ is algebraically independent over k_{0}. Hence, \subseteq is algebraically independent over K_{0}. We construct an isomorphism θ^{\prime} of $R \cap K_{0}(\Im)$ into $R[[x]]$ which will prove to be the restriction of θ to $R \cap K_{0}(\mathbb{S})$. This is done as follows:
(i) θ^{\prime} is the identity mapping on K_{0},
(ii) $\theta^{\prime}(s)=\phi^{\prime}(s)$ for s in \mathfrak{S}, where $\eta \phi^{\prime}(s)=\phi(s)$ and $\phi^{\prime}(s)-s \in M^{t}$. A method for constructing $\phi^{\prime}(s)$ is given below. We note, first, that conditions (i) and (ii) determine a homomorphism which satisfies the conditions:

$$
\begin{equation*}
\theta^{\prime}-\epsilon\left(R \cap K_{0}(\Im)\right) \subset M^{t} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta \theta^{\prime}(a)=\phi(a), \quad \text { for } a \text { in } R \cap K_{0}(\subseteq) \tag{5}
\end{equation*}
$$

It follows from (4) that θ^{\prime} is in fact an isomorphism. The elements $\phi^{\prime}(s)$ are chosen in the following way. Let

$$
s_{0}+s_{1} x+\ldots+s_{n-1} x^{n-1}
$$

be the unique polynomial of degree less than n in $\langle\phi(s)-s\rangle$ and let $t=q n+r$ where $0 \leqslant r<n$. Then, since $\phi(s)-s$ is in $\pi^{q n+\tau} R_{n}$ we have

$$
\begin{array}{lr}
s_{i}=s_{i}{ }^{\prime} p_{b}, & \text { for } i>r, \\
s_{i}=s_{i}^{\prime} p^{q+1}, & \text { for } i \leqslant r . \tag{6}
\end{array}
$$

The coset of p in R_{n} contains an element $x^{n} u$ where

$$
u=-\left(f_{0}+f_{1} x+\ldots+f_{n-1} x^{n-1}\right)^{-1}
$$

We substitute $x^{n} u$ for p in (6), obtaining elements $s_{j}{ }^{\prime \prime}$ such that

$$
s^{\prime \prime}{ }_{0}+s^{\prime \prime}{ }_{1} x+\ldots+s^{\prime \prime}{ }_{n-1} x^{n-1}
$$

is in $M^{t} \cap\langle\phi(s)-s\rangle$. Thus we choose $\phi^{\prime}(s)$ to be

$$
s+s^{\prime \prime}{ }_{0}+s^{\prime \prime}{ }_{1} x+\ldots+s^{\prime \prime}{ }_{n-1} x^{n-1}
$$

The extension of θ^{\prime} to θ involves the procedure referred to at the beginning of $\S 2$. Let \mathfrak{U} be a set of elements in R such that η maps \mathfrak{l} biuniquely onto a basis $\overline{\mathfrak{u}}$ for k as a linear space over $k_{0}(\overline{\mathscr{S}})$. The element 1 is assumed to be in \mathfrak{U}. Then, for any positive integer m, the set $\mathfrak{l} \mathfrak{p}^{m}$ of p^{m} th powers of the elements in \mathfrak{l} also maps onto a basis for k over $k_{0}(\mathbb{S})(4$, p. 347). Thus if a is in R,

$$
a=\sum_{i=1}^{r} a_{i} u_{i}^{p^{m}} \bmod p^{m}
$$

where the u_{i} are in \mathfrak{l}, the a_{i} are in $R_{0} \cap K_{0}(\subseteq)$ and are uniquely determined, $\bmod p^{m}$. Thus, every coset of $p^{m} R$ has the form

$$
\begin{equation*}
\sum a_{i} u_{i} p^{m}+p^{m} R, \quad a_{i} \in R \cap K_{0}(\mathbb{S}), u_{i} \in \mathfrak{U} \tag{7}
\end{equation*}
$$

a form which we shall use repeatedly below. We define $\theta_{m}: R / p^{m} R \rightarrow R[[x]] / M^{m}$ by

$$
\begin{equation*}
\theta_{m}\left(a+p^{m} R\right)=\sum \theta^{\prime}\left(a_{i}\right) u_{i}^{p^{m}}+M^{m} . \tag{8}
\end{equation*}
$$

The mapping θ_{m} is well defined since the a_{i} are unique, $\bmod p^{m}$. Moreover, θ_{m} preserves sums and has the following two properties:

$$
\begin{equation*}
\theta_{m}\left(a+p^{m} R\right)=a+M^{m} \bmod M^{\iota} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{m}(x y)=\theta_{m}(x) \theta_{m}(y) . \tag{10}
\end{equation*}
$$

Property (9) follows from (4) and we prove (10) below.

Let $x=\sum a_{i} u_{i}{ }^{p m}+p^{m} R$ and $y=\sum b_{i} u_{i}{ }^{p^{m}}+p^{m} R$ using (7). Then

$$
x y=\sum a_{i} b_{j} u_{i}^{p^{m}} u_{j}^{p^{m}}+p^{m} R .
$$

But, using (7), we have $u_{i} u_{j}=\sum c_{k} u_{k}, \bmod p$, and, hence

$$
u_{i}^{p^{m}} u_{j}^{p^{m}}=\left[\sum c_{k} u_{k}\right]^{p^{m}} \bmod p^{m+1} .
$$

By Lemma 1 of (4, p. 347) with $r=0$ we have that

$$
u_{i}^{p^{m}} u_{j}^{p^{m}}=\sum_{k=0}^{m-1} p^{k} \sum_{l} s_{i, j, k, l} c_{i, j, k, l}^{p^{m-k}} u_{l}^{p^{m}} \bmod p^{m}
$$

where $s_{i, j, k, l}$ is a rational integer and $c_{i, j, k, l}$ is in $R \cap K_{0}(\mathfrak{S})$. Thus

$$
x y=\sum_{i, j} a_{i} b_{j} \sum_{k, l} p^{k} s_{i, j, k, l} c_{i, j, k, l}^{m-k} u_{l}^{p^{m}}+p^{m} R
$$

and

$$
\theta_{m}(x y)=\sum \theta^{\prime}\left(a_{i} b_{j} p^{k} s_{i, j, k, l} i_{i, j, k, l}^{m-k}\right) u_{l}^{p^{m}}+M^{m} .
$$

Relation (4) implies the following:

$$
\begin{equation*}
\theta^{\prime}\left(c_{i, j, k, l}^{p m-k}\right)=c_{i, j, k, l}^{m-k} \bmod M^{m-k} \tag{11}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \theta_{m}(x y)=\sum \theta^{\prime}\left(a_{i}\right) \theta^{\prime}\left(b_{j}\right) p^{k} s_{i, j, k, l} c_{i, j, k, l}^{p^{m-k}} u_{l}^{p^{m}}+M^{m} \\
& \quad=\sum \theta^{\prime}\left(a_{i}\right) \theta^{\prime}\left(b_{j}\right) p_{i}^{p^{m}} u_{j}^{p^{m}}+M^{m}=\theta_{m}(x) \theta_{m}(y)
\end{aligned}
$$

Thus θ_{m} is a homomorphism and relation (9) implies the following lemma.
Lemma 2. The mapping θ_{m} defined by (8) is an isomorphism.
Lemma 3. The mapping $\theta: R \rightarrow R[[x]]$ given by

$$
\theta(a)=\bigcap_{m=1}^{\infty} \theta_{m}\left(a+p^{m} R\right)
$$

is an embedding which agrees with θ^{\prime} on $R \cap K_{0}(\Im)$. Moreover, $\theta-\epsilon(R) \subset M^{t}$.
Proof. We first establish the relation (3) as follows. For each $u \in \mathfrak{H}$ we have $u^{p}=\sum c_{i} u_{i}, \bmod p$, where the c_{i} are in $R \cap K_{0}(\Im)$. Thus $u^{p^{m+1}}=\left[\sum c_{i} u_{i}\right]^{p^{m}}$, $\bmod p^{m}$. Or, using Lemma 1 of (4, p. 347).

$$
\begin{equation*}
u_{i}^{p^{m+1}}=\sum_{j=0}^{m-1} p^{j} \sum s_{i, j, k} c_{i, j, k}^{p^{m-i}} u_{k}^{p^{m}} \bmod p^{m} \tag{12}
\end{equation*}
$$

Using (7), $a+p^{m+1} R=\sum b_{i} u_{i}^{p^{m+1}}+p^{m+1} R$ and, by (12),

$$
a+p^{m} R=\sum b_{i} p^{j} s_{i, j, k} c_{i, j, k}^{p^{m-i}} u_{k}^{p^{m}}+p^{m} R
$$

With the aid of (11) we have that

$$
\begin{aligned}
\theta_{m}\left(a+p^{m} R\right) & =\sum \theta^{\prime}\left(b_{i}\right) p^{j} s_{i, j, k} c_{i, j, k}^{p^{m-i}} u_{k}^{p^{m}}+M^{m} \\
& =\sum \theta^{\prime}\left(b_{i}\right) u_{i}^{p^{m+1}}+M^{m}
\end{aligned}
$$

and

$$
\theta_{m+1}\left(a+p^{m+1} R\right)=\sum \theta^{\prime}\left(b_{i}\right) u_{i}^{p^{m+1}}+M^{m+1}
$$

Relation (3) follows. Since

$$
\bigcap_{i=1}^{\infty} M^{i}=0
$$

θ is well defined and is an isomorphism by Lemma 2. It follows from relation (9) and the definition of θ that $\theta-\epsilon(R) \subset M^{t}$. In particular, then, θ is an embedding. Since 1 is in \mathfrak{U}, we have $\theta_{m}(a)=\theta^{\prime}(a)+M^{m}$ for a in $R \cap K_{0}(\Im)$ and all m. Hence $\theta(a)=\theta^{\prime}(a)$.

We wish to show finally that θ induces ϕ. Given a in R and some positive integer m, we have, using the form (7), $a=\sum a_{i} u_{i}{ }^{p^{m}}$, $\bmod p^{m}$, where the a_{i} are in $R \cap K_{0}(\Im)$. Thus,

$$
\phi(a)=\phi\left(\sum a_{i} u_{i}^{p^{m}}\right) \quad \bmod p^{m} .
$$

However, since ϕ is inertial,

$$
\phi\left(u_{i}^{p^{m}}\right)=u_{i}^{p^{m}} \bmod \pi^{m} ;
$$

thus,

$$
\begin{equation*}
\phi(a)=\sum \phi\left(a_{i}\right) u_{i}{ }^{p^{m}} \bmod \pi^{m} . \tag{13}
\end{equation*}
$$

From relation (5) we have

$$
\begin{equation*}
\phi\left(a_{i}\right)=\theta^{\prime}\left(a_{i}\right)+f R[[x]] . \tag{14}
\end{equation*}
$$

Substitution of (14) in (13) and an appeal to the definition of θ yield

$$
\phi(a)=\theta(a)+f R[[x]] \bmod \pi^{m} .
$$

This being true for arbitrary m, we have proved the following theorem.
Theorem 1. Every inertial embedding ϕ of R in R_{n} lifts to an embedding θ of R in $R[[x]]$. If, for some positive integer $m, \phi-\epsilon(R) \subset \pi^{m} R_{n}$, then θ can be chosen so that $\theta-\epsilon(R) \subset M^{m}$.
3. Applications. We recall that an inertial isomorphism $\bar{\tau}$ of R_{n} into $R_{n}{ }^{\prime}$ is one which induces the identity mapping on their common residue field.

Theorem 2. Every inertial isomorphism $\bar{\tau}$ of R_{n} onto R_{n}^{\prime} can be lifted to an inertial automorphism τ on $R[[x]]$. If $\bar{\tau}(R)=R$, then τ can be chosen to agree with $\bar{\tau}$ on R.

Proof. Let $\bar{\tau}$ be an inertial isomorphism of R_{n} onto $R^{\prime}{ }_{n}$. The mapping ϕ obtained by restricting $\bar{\tau}$ to R is an embedding of R in R_{n}^{\prime}. We apply Theorem 1 and lift ϕ to an embedding θ of R in $R[[x]]$. If $\bar{\tau}(R)=R$ we may assume θ to be ϕ. We define τ by the conditions $\tau(a)=\theta(a)$ for a in R and $\tau(x)$ is the unique polynomial $g=p a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$ of degree less than n in $\langle\bar{\tau}(\pi)\rangle$.

Necessarily a_{1} is a unit and the demonstration that τ, so defined, is an inertial automorphism is straightforward. Since $\bar{\tau}(a+f R[[x]])=\tau(a)+f R[[x]]$ for a in R and $\bar{\tau}(x+f R[[x]])=\tau(x)+f R[[x]]$, it follows that τ induces $\bar{\tau}$.

The following example illustrates the fact that rings R_{n} and R_{n}^{\prime} can be isomorphic without being inertially isomorphic. Let R be the unramified v-ring with residue field GF (27), the field with 27 elements. Let R_{13} and $R^{\prime}{ }_{13}$ be extensions of R by roots of the Eisenstein polynomials $x^{13}-3 a$ and $x^{13}-3 a^{3}$ where \bar{a}, the residue of a, is a primitive 26th root of unity. An inertial isomorphism of R_{13} onto $R^{\prime}{ }_{13}$ has the identity mapping as its restriction to R. By Theorem 3 of (2) the identity mapping on R extends to an inertial isomorphism of R_{13} onto $R^{\prime}{ }_{13}$ if and only if the equation $\bar{a} z^{13}=\bar{a}^{3}$ has a solution in GF (27). However \bar{a}^{2} is a primitive 13 th root of unity and cannot itself be a thirteenth power. Thus R_{13} and $R^{\prime}{ }_{13}$ are not inertially isomorphic. However, the Frobenius automorphism τ on R such that $\tau(a)=\bar{a}^{3}$ can be extended to an isomorphism of R_{13} onto $R^{\prime}{ }_{13}$ (2, Theorem 3).

Corollary 1. Each automorphism in $G_{R_{n}, m}\left(H_{R_{n}, m}\right)$ can be lifted to a mapping in $G_{R[[x]], m}\left(H_{R[[x]], m}\right)$ for $m=1,2, \ldots$

Proof. We let $R^{\prime}{ }_{n}=R_{n}$ in Theorem 2 and modify the construction of τ as follows. Again, let ϕ represent the restriction of τ to R. The assumption that $\bar{\tau}$ is in $G_{R_{n}, m}$ means that $\phi(a)-a$ is in $\pi^{m} R_{n}$ for all a in R. Thus, by Theorem $1, \phi$ lifts to an embedding θ of R in $R[[x]]$ such that $\theta(a)-a$ is in M^{m} for all a in R. Let the automorphism τ on $R[[x]]$ be defined by
(i) $\tau=\theta$ on R
and
(ii) $\tau(x)-x \in\langle\bar{\tau}(\pi)-\pi\rangle \cap M^{m} \quad$ if $\bar{\tau} \in G_{R_{n}, m}$
and $\tau(x)-x \in\langle\bar{\tau}(\pi)-\pi\rangle \cap M^{m+1} \quad$ if $\bar{\tau} \in H_{R_{n}, m}$.
An element in $\langle\bar{\tau}(\pi)-\pi\rangle \cap M^{m}\left(\langle\bar{\tau}(\pi)-\pi\rangle \cap M^{m+1}\right)$ can be found by the process used to construct an element in $M^{t} \cap\langle\phi(s)-s\rangle$ (see the paragraph which contains (6)). The mapping τ so constructed induces $\bar{\tau}$ and is in $G_{R[[x], m}$. If $\bar{\tau}$ is in $H_{R n, m}$, then, by construction, τ is in $H_{R[[x], m}$.

Corollary 2. Let R_{n} and R_{n}^{\prime} be tamely ramified extensions of R by roots of Eisenstein polynomials

$$
f=x^{n}+p f_{n-1} x^{n-1}+\ldots+p f_{0}
$$

and

$$
g=x^{n}+p g_{n-1} x^{n-1}+\ldots+p g_{0}
$$

respectively. R_{n} and R_{n}^{\prime} are inertially isomorphic if and only if $\eta\left(g_{0} f_{0}{ }^{-1}\right)$ is an nth power in the residue field k.

Proof. Let $\bar{\tau}: R_{n}^{\prime} \rightarrow R_{n}$ be an inertial isomorphism. Then, by Theorem $2, \bar{\tau}$ lifts to an inertial automorphism τ on $R[[x]]$ having the property

$$
\begin{equation*}
\tau(g)=f \sum w_{i} x^{i} . \tag{15}
\end{equation*}
$$

Comparing the coefficients of x^{0} and x^{n} on either side of (15), remembering that $\eta \tau\left(g_{0}\right)=\eta\left(g_{0}\right)$, we conclude that $\eta\left(g_{0}\right)=\eta\left(f_{0} w_{0}\right)$ and $\eta\left(t_{i}{ }^{n}\right)=\eta\left(w_{0}\right)$ where $\tau(x)=p t_{0}+t_{1} x+\ldots$ It follows that $\eta\left(g_{0} f_{0}-1\right)$ is an nth power in k.

Conversely, if $\eta\left(g_{0} f_{0}{ }^{-1}\right)$ is an nth power in k, then we consider the possibility of choosing t_{1}, t_{2}, \ldots in R, t_{1} a unit, so that there is a unit

$$
\sum_{i=0}^{\infty} w_{i} x^{i}
$$

for which

$$
\begin{equation*}
g\left(t_{1} x+t_{2} x^{2}+\ldots\right)=f(x) \sum w_{i} x^{i} . \tag{16}
\end{equation*}
$$

Equating coefficients on either side of (16), we obtain

$$
\begin{array}{cr}
p g_{0}=p f_{0} w_{0}, & 0<i<n, \tag{17,0}\\
p F_{i}=p\left(f_{0} w_{i}+\ldots+f_{i} w_{0}\right), & i=n, \\
t_{1}^{n}+p F_{n}=w_{0}+p\left(\sum_{j=0}^{n-1} f_{j} w_{n-j}\right), & i>n,
\end{array}
$$

where G_{i} and F_{i} are polynomials in t_{1}, \ldots, t_{i} over R. Equality (17, 0) determines w_{0}. If $\eta\left(g_{0} f_{0}^{-1}\right)$ is an nth power in k, then $\eta\left(w_{0}\right)$ is an nth power and t_{1} can be chosen so that $\eta\left(t_{1}{ }^{n}\right)=\eta\left(w_{0}\right)$. We next choose w_{1} so that $(17,1)$ is true. Suppose that t_{1}, \ldots, t_{r} and w_{0}, \ldots, w_{r} have been selected so that
(a) $(17 . i)$ is true for $i=0, \ldots, r$.
(b) $\eta\left[n t_{1}{ }^{n-1} t_{i-n+1}+G_{i-n}\right]=\eta w_{i-n}$ for $i=n_{j} \ldots, n+r-1$. We choose t_{r+1} so that (b) holds for $i=n+r$ and then select w_{r+1} so that $(17, r+1)$ is true. This selection is always possible since when $r \geqslant n$ condition (b) holds for $i=n, \ldots, n+r$, which includes $i=r$.

Corollary 2 is related to Theorem 3 of (2), which states that a given automorphism on R extends to an isomorphism of R_{n} onto R_{n}^{\prime} if and only if a condition similar to that of Corollary 2 is satisfied.

Theorem 3. Let R_{n} and R_{n}^{\prime} be extensions of R by roots of Eisenstein polynomials f and f^{\prime}. Then there is an inertial isomorphism of R_{n} onto R_{n}^{\prime} if and only if there is an infinite higher derivation $\left\{D^{(i, j)}\right\}$ on $R[[x]]$, such that (i) $1+D^{(0,1)}(x)$ is a unit and (ii) f^{\prime} and

$$
\sum_{i, j=0}^{\infty} D^{(i, j)}\left(f^{\prime}\right) p^{i} x^{j}
$$

are associate primes.
Proof. This is an immediate consequence of Theorem 2 and the fact that every inertial automorphism on $R[[x]]$ is of the form

$$
A \rightarrow \sum_{i, j=0}^{\infty} D^{(i, j)}(A) p^{i} x^{i}
$$

for some infinite higher derivation $\left\{D^{(i, j)}\right\}$ on $R[[x]]$ such that $1+D^{(0,1)}(x)$ is a unit (6, Theorem 31).

The following theorem offers a sufficient condition on R_{n} that every embedding of R in R_{n} be extendable to an inertial automorphism. It is clearly not necessary since if k is perfect the only embedding of R in R_{n} is the identity mapping which does extend to an inertial automorphism.

Theorem 4. If R_{n} is tamely ramified, every inertial embedding of R in R_{n} can be extended to an inertial automorphism on R_{n}.

Proof. Let ϕ be an inertial embedding of R in $R_{n}=R[[x]] / f R[[x]]$. We lift ϕ to an embedding θ of R in $R[[x]]$. If we extend θ to an inertial automorphism τ on $R[[x]]$ with the property that $\tau(f)$ is a multiple of f, then τ will induce an inertial automorphism $\bar{\tau}$ on R_{n} which is an extension of ϕ. To this end we define τ on $R[[x]]$ to agree with θ on R and let $\tau(x)=t_{1} x+t_{2} x^{2}+\ldots$, where the t_{i} must be so chosen that t_{1} is a unit and

$$
\begin{equation*}
\tau(f)=f \sum w_{i} x^{i} . \tag{18}
\end{equation*}
$$

Equations (17) and the argument which follows them now apply with one modification: $p g_{0}=p f_{0} w_{0}$ becomes $p f_{0}+p^{2} a=p f_{0} w_{0}$, where a is some element in R independent of t_{1}, t_{2}, \ldots We note that in the present case $\eta\left(w_{0}\right)=1$ and hence $\eta\left(t_{1}\right)$ is an nth root of unity. Moreover, we need to note for the proof of Theorem 5 that t_{1} may be chosen arbitrarily save for this condition.

The author is indebted to the referee for supplying an example on which the following inertial embedding is based, an inertial embedding which does not extend to an inertial automorphism. Let k be any field which is not perfect. Choose a in R so that its residue $\eta(a)=\bar{a}$ is not in k^{p} and let $R_{p}=R[\pi]$ where π is a root of $x^{p}-p a$. Let $\left\{d^{(0)}, d^{(1)}, d^{(2)}, \ldots\right\}$ be a higher derivation on k such that $d^{(1)}(\bar{a})=1$ and $d^{(i)}(\bar{a})=0$, for $i>1$ (3, Theorem 1). We lift $\left\{d^{(i)}\right\}$ to a higher derivation $\left\{D^{(i)}\right\}$ on R (5, Corollary 1). Thus $D^{(i)}$ induces $d^{(i)}$, via η, for all i. The mapping $\phi: R \rightarrow R_{b}$ given by $\phi(b)=\sum \pi^{i} D^{(i)}(b)$ is an inertial embedding. If ϕ can be extended to an inertial automorphism ζ on R_{b}, then $\zeta(p a)(=p a$ $+\eta \pi, \bmod \pi^{p+2}$) must be a p th power in R_{b}. Thus, we assume there is a unit u such that

$$
(u \pi)^{p}=p a+p \pi \quad \bmod \pi^{p+2} \quad \text { or } \quad\left(u^{p}-1\right) \pi^{p}=p \pi \quad \bmod \pi^{p+2} .
$$

This requires that $u^{p}-1$ be in πR_{p} and not in $\pi^{2} R_{p}$. But $u^{p}-1=(u-1)^{p}$, $\bmod \pi^{p}$, and $(u-1)^{p}$ is a unit or is in π^{p}. We have arrived at a contradiction.

It was first shown by MacLane (7, Corollary to Theorem 15) that

$$
G_{R, m} / G_{R, m+1}, \quad m=1,2, \ldots,
$$

is isomorphic to the additive group of derivations of k. Since $\alpha(p)=p$ for every
automorphism α of R, it follows that $H_{R, m}=G_{R, m}$ for all m. Neggers has shown (8, Theorem 6) that for $m \geqslant n+p / p-1, H_{R_{n}, m} / G_{R_{n}, m+1}$ is isomorphic to the additive group of those derivations on k each of which lifts to R_{n}. He observed that if R_{n} is tamely ramified over R, then every derivation on k lifts to R_{n} (8, Corollary 2). The following result extends that of Neggers.

Theorem 5. If R_{n} is tamely ramified, then, for $m=2,3, \ldots, G_{R_{n}, m}=H_{R_{n}, m}$ and $G_{R_{n}, m} / G_{R_{n}, m+1}$ is isomorphic to the additive group of derivations on k, as is $H_{R_{n}, 1} / G_{R_{n}, 2} . G_{R_{n}, 1} / H_{R_{n}, 1}$ is isomorphic to the group of nth roots of unity in k.

Proof. We show first that if $m>1$, then $G_{R_{n}, m}=H_{R_{n}, m}$. It is sufficient to show that $\alpha\left(\pi^{\prime}\right)-\pi^{\prime}$ is in $\pi^{m+1} R_{n}$ for all α in $G_{R_{n}, m}$ and some prime element π^{\prime} of R_{n}. We choose π^{\prime} to be an nth root of some prime element $p b$ in R, b a unit (2, Corollary 3). Now α in $G_{R_{n}, m}$ has the form $\epsilon+\pi^{m} \alpha^{\prime}$ where ϵ is the identity map. Thus,

$$
\alpha\left(\pi^{\prime}\right)^{n}=\left(\pi^{\prime}+\pi^{m} \alpha^{\prime}\left(\pi^{\prime}\right)\right)^{n}=p\left(b+\pi^{m} \alpha^{\prime}(b)\right),
$$

or, expanding the left side, we obtain

$$
\left(\pi^{\prime}\right)^{n}+n\left(\pi^{\prime}\right)^{n-1} \pi^{m} \alpha^{\prime}\left(\pi^{\prime}\right)+\ldots=p b+p \pi^{m} \alpha^{\prime}(b)
$$

Since $m>1$, the remaining terms on the left side are all in $\pi^{n+m} R_{n}$. Hence $n \pi^{n+m-1} \alpha^{\prime}\left(\pi^{\prime}\right)-p \pi^{m} \alpha^{\prime}(b) \in \pi^{n+m} R_{n}$. Since n is prime to p, it follows that $\alpha^{\prime}\left(\pi^{\prime}\right)$ is in πR_{n} or $\alpha\left(\pi^{\prime}\right)-\pi^{\prime} \in \pi^{m+1} R_{n}$.

In order to determine $H_{R_{n}, 1} / G_{R_{n}, 2}$ and $G_{R_{n}, m} / G_{R_{n}, m+1}$, for $m>1$, we let α be an automorphism in $H_{R_{n}, m}\left(=G_{R_{n}, m}\right.$ for $\left.m>1\right)$. Again, $\alpha=\epsilon+\pi^{m} \alpha^{\prime}$ and a simple calculation shows that α^{\prime} induces a derivation d_{α} on k. The correspondence $\xi: \alpha \rightarrow d_{\alpha}$ maps $H_{R_{n}, m}$ homomorphically into the additive group of derivations on k with kernel $G_{R_{n}, m+1}$. To demonstrate that ξ is onto let d be any derivation on k. There is an infinite higher derivation $\left\{d^{(i)}\right\}$ on k such that $d^{(1)}=d$ (3, Theorem 1). We lift $\left\{d^{(i)}\right\}$ to an infinite higher derivation $\left\{D^{(i)}\right\}$ on $R(5$, Corollary 1). The correspondence $\phi: R \rightarrow R[[x]]$ given by

$$
\phi(a)=\sum_{i=0}^{\infty} D^{(i)}(a) x^{m i}
$$

is an inertial embedding. We need to extend ϕ to an inertial automorphism τ on $R[[x]]$ such that $\tau(f) \in f R[[x]]$ and

$$
\begin{equation*}
\tau(x)=x+x^{m+1}\left(t_{0}+t_{1} x t \ldots\right) \tag{19}
\end{equation*}
$$

for then τ will induce $\bar{\tau}$ in $H_{R_{n}, m}$, and $\xi(\bar{\tau})$ will be d.
In view of (19) and the fact that $\phi(a)-a$ is in $x^{m} R[[x]]$, we can replace the condition (18) by

$$
\begin{equation*}
\tau(f)-f=f \sum_{i=m}^{\infty} w_{i} x^{i} \tag{20}
\end{equation*}
$$

The proof that t_{0}, t_{1}, \ldots can be chosen so that (20) holds for some series

$$
\sum_{i=m}^{\infty} w_{i} x^{i}
$$

goes much like the proof of Theorem 4. We let

$$
\tau(f)-f=\sum_{i=m}^{\infty} a_{i} x^{i}
$$

Then $a_{m} \in p R$,

$$
a_{i}=p F_{i}\left(t_{0} \ldots t_{i-m-1}\right), \quad \text { for } m<i<m+n
$$

and

$$
\begin{aligned}
& a_{i}=n t_{i-m-n}+G_{i}\left(t_{0} \ldots t_{i-m-n-1}\right)+p F_{i}\left(t_{0} \ldots t_{i-m-1}\right) \\
& \qquad \text { for } i \geqslant m+n,
\end{aligned}
$$

where again F_{i} and G_{i} are polynomials over R in the indicated quantities. A modification of the argument following (17) establishes the existence of the desired τ.

To determine G_{1} / H_{1} we map α in G_{1} onto $\xi(\alpha)=\eta\left(t_{1}\right)$ where $\alpha(\pi)=t_{1} \pi$. The correspondence ξ is a homomorphism into the group of nth roots of unity in k and has kernel H_{1}. In view of the observation at the end of the proof of Theorem $4, \xi$ is onto.

References

1. I. S. Cohen, Structure of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106.
2. N. Heerema, On ramified complete discrete valuation rings, Proc. Amer. Math. Soc., 10 (1959), 490-496.
3. -—Derivations and embeddings of a field in its power series ring, 11, Michigan Math. J., 8 (1961), 129-134.
4. - Derivations on p-adic fields, Trans. Amer. Math. Soc., 102 (1962), 346-351.
5. ———Embeddings of a p-adic field and its residue field in their power series rings, Proc. Amer. Math. Soc., 14 (1963), 37-43.
6. -_Derivations and inertial automorphisms of complete regular local rings, Amer. J. Math., 88 (1966), 33-42.
7. S. MacLane, Subfields and automorphism groups of p-adic fields, Ann. of Math., 40 (1939), 423-442.
8. J. Neggers, Derivations on \bar{p}-adic fields, Trans. Amer. Math. Soc., 115 (1965), 496-504.
9. E. Wishart, Higher derivations on \bar{p}-adic fields, Dissertation, Florida State University (1965).

Florida State University

[^0]: Received January 19, 1966. This research was supported by NSF GP-1084.

