
INERTIAL ISOMORPHISMS OF V-RINGS 

N. HEEREMA 

1. Introduction. Throughout this paper R and Rn will denote p-rings, that 
is, complete discrete rank-one valuation rings of characteristic zero, having a 
common residue field k of characteristic p. R is assumed unramified and Rn has 
ramification index n. Let r be a prime element in Rn. Then Rn = R[TT], where ir 
is a root of an Eisenstein polynomial / = xn + pfn-i #w_1 + . . . + £/o with 
coefficients in R and/o a unit. Thus i?w is inertially isomorphic to R[[x]]/fR[(x)], 
that is, the rings are isomorphic by a mapping which induces the identity 
mapping on the common residue field. i^[[x]] represents the power series ring in 
the indeterminate x over R. In this paper we identify Rn with i?[[x]]//7?[[x]], R 
with its natural embedding in Rni and it with x + //£[[#]]. 

Let S be a local ring with maximal ideal M. Let Gs,r represent the group of 
automorphisms a on S such that a (a) — a is in MT for all a £ S. Let Hs,r be the 
subgroup of Gs,r having the additional property that a (a) — a is in Mr+1 for a 
in Af. We then have a sequence of ramification groups 

(1) Gs,i D Hs,i D £s,2 D HS)2 D . . . , 
each of which is a normal subgroup of the automorphism group of S. The 
elements of Gs,i are called inertial automorphisms. Finally, an inertial embed­
ding of R in Rn or in i?[[x]] is an isomorphism R-* Rn(R-+R[[x]]) which 
induces the identity mapping on the common residue field. 

Some questions about mappings of rings Rn can be settled by lifting them to 
-K[[#]]• For example, if k is perfect, then every automorphism of Rn lifts to 
i?[[#]]. If Rn is tamely ramified, then this fact can be used to determine neces­
sary and sufficient conditions for two such rings to be isomorphic in terms of the 
automorphism structure of k (2, Corollary 4). If Rp (p ^ 2) is an extension of R 
by a root of / = xv + pjv-\ xv~l + . . . + pf0, then the quotient field of Rv is 
normal over the quotient field of R if and only if the residue of fo/(p — l ) /p- i 
has a (p — l ) th root in k (9, Theorem 4.15). This result is obtained by con­
structing suitable inertial automorphisms in i^[[x]] which induce automorphisms 
oni?w. 

Thus, in this paper we investigate the relationship between inertial auto­
morphisms of rings Rn and inertial automorphisms of i?[[#]]. In particular, we 
show that, for m = 1, 2, . . . , a in GRn,m(HRntW) can be lifted to GR[[X]],m 

(HR[[x]],m). This is a corollary to Theorem 1 which states that every inertial 
embedding of R in Rn lifts to an inertial embedding oî R in R[[x]]. The former 
result gains significance from the analysis of inertial automorphisms of i^[[x]] 
found in (6). 
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Theorem 2 states that an isomorphism of Rn onto R'n which leaves the com­
mon residue field fixed (an inertial isomorphism) can be lifted to an inertial 
automorphism on i^[[x]]. Theorem 3 asserts that if Rn and R'n are extensions of 
R by Eisenstein polynomials/and/ ' , then Rn and R'n are inertially isomorphic 
if and only if there is an infinite higher derivation {D^'j)}Tj=o (the definition 
follows) oni?[[x]] such tha t / and 

are associate primes in i£[[#]]. 

Definition. An infinite higher derivation on two indices, defined on a ring S 
into a containing ring S', is a sequence of maps {D{i'j)\TJ:=o of S into S' with the 
following properties: 

(i) Z>«.fl(a + b) = £><*'•» (a) + £>«''>(*), 

(li) D^j\ab) = £ D{r'*\a)D^ui-\b), 

(iii) .D(0'0) is the identity map. 

An infinite higher derivation {D{Q\ D{1\ D(2\ . . .} is similarly defined. The 
relationship between infinite higher derivations and inertial automorphisms of 
jR[[x]] is investigated in (6). 

Theorem 4 states that if Rn is tamely ramified (p does not divide ri) every 
inertial embedding of R in Rn can be extended to an inertial automorphism on 
Rn. Theorem 5 identifies the factor groups of the ramification groups (1) in the 
case in which Rn is tamely ramified, completing in this particular case the 
analysis made by Neggers (8, Theorem 6). 

2. The Embedding Theorem. The symbols listed below appear repeatedly 
in the body of the paper and always have the meaning here given. Some have 
been introduced already. The others will be identified again when they first 
appear. Nevertheless they are collected here for ease of reference. 

R: unramified y-ring. 
i£[[x]]: power series ring in indeterminate x over R. 
Rn: R[[x]]/fR[[x]\, where/is an Eisenstein polynomial of degree n. 
TT:X +fR[[x]]. 
k: common residue field of R and Rn. 

(2) kom. maximal perfect subfield of k. 
R0: complete subring of R having residue field ko. 
K0: field of quotients of R0. 
M: maximal ideal of i£[[x]]. 
e: identity map on a given ring. 
77: natural map of a ring onto a residue class ring. 
<j>: inertial embedding of R in Rn. 
t: inertial index of 4> (see below). 
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Let S be a local ring with maximal ideal / and let Si be a subring of S. An 
isomorphism £: Si —> S is said to have inertial index r if (£ — e) (Si) C Ir b u t 

( f - « ) ( S i ) £ / f + 1 . 
Let 0 be an embedding of R in Rn = R[[x]]/fR[[x]] w h e r e / is an Eisenstein 

polynomial of degree n. I t is assumed tha t 0 has inertial index / > 0. Our 
objective is the construction of an embedding 6 oî R in R[[x]] wrhich induces 0 
and has inertial index equal to or greater than /. We obtain 0 as a limit of a 
sequence {0i, 02, . . .} of isomorphisms where dm: R/pmR —> R[[x]]/Mm and the 
following coset inclusion holds: 

(3) (6m+1(a + pm+1R)) C (0n(a + pmR)). 

We shall frequently wish to regard cosets of residue class rings of i?[[x]] as 
subsets of i^[[x]]. This view is indicated by the use of the grouping symbols ( ). 
T h e maps 6m and 0 induce isomorphisms dm and <f>m, respectively, of R/pmR into 
Rn/ir

mRn. We shall construct 0m so t ha t 6m = 0m. By vir tue of (3) the sequence 
{6m} determines a limit map 0 which will induce 0. The method used to construct 
0 is similar to t ha t used to construct a derivation on R which induces a given 
derivation on k (4, Section 2) . Thus , we shall omit some of the details. I t should 
be mentioned t ha t 0 can also be obtained by use of the Teichmuller Embedding 
Process in a manner resembling the proof of I. S. Cohen's Embedding Theorem 
(1 , Theorem 11 and Corollary 1). 

T h e symbols ko, Ro, and K0 will represent the maximal perfect subfield of k, 
the complete subring of R with residue field ko, and the quot ient field of Ro 
respectively. 

LEMMA 1. The restriction, 4>0, ofQ to R0 is the identity mapping. 

Proof. If 0o is not the identi ty mapping, it has inertial index m > 0. T h e 
mapping 0 r

o defined by <j>'o(a) = (0o(#) — a)/nm induces a derivation on k0 

into k, which, by definition of m, mus t be a non-trivial mapping. Bu t ko, being 
perfect, has no non-trivial derivations. T h u s 0O mus t be the identi ty mapping. 

Let © represent a subset of R which maps biuniquely under rj, onto a £-basis 
@ for k. T h e set @ is algebraically independent over k0. Hence, © is algebraically 
independent over K0. We construct an isomorphism 0' of R C\ i£ 0 (©) into 
i£[[x]] which will prove to be the restriction of 6 to R C\ i £ 0 (©) . This is done as 
follows: 

(i) 6' is the identi ty mapping on K0, 
(ii) 0'(s) = 0 'O) for 5 in @, where itf (s) = <t>(s) and </>'(s) - s £ M1. A 

method for constructing <!>'(s) is given below. We note, first, t h a t conditions (i) 
and (ii) determine a homomorphism which satisfies the conditions: 

(4) 0' - e(Rr\Kom) CM1 

and 

(5) ij0'(a) = 0 ( a ) , for a in R H K0(<&). 
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It follows from (4) that 0' is in fact an isomorphism. 
The elements <j>f (s) are chosen in the following way. Let 

So + sx x + . . . + sn-i xn~l 

be the unique polynomial of degree less than n in (<t>(s) — s) and let t = qn + r 
where 0 < r < n. Then, since <j> (s) — sismirQn+rRn we have 

St = st'pb, for i > r, 
(6) 

5, = s/£c+1 , for i < r. 
The coset of p in i?w contains an element xnu where 

« = - ( f o + / i X + . . . + / n _ 1 x w ~ 1 ) - 1 . 

We substitute xww for p in (6), obtaining elements s / ' such that 

*"o + *"i X + ...+ 5,,
n_i x^"1 

is in Jkf * Pi (<£(s) — s). Thus we choose 0'(s) to be 

s + s"o + s"1x + . . . + A - 1 X " - 1 . 

The extension of 0' to 0 involves the procedure referred to at the beginning of 
§2. Let U be a set of elements in R such that rj maps U biuniquely onto a basis U 
for k as a linear space over &0(©). The element 1 is assumed to be in U. Then, 
for any positive integer w, the set IP™ of pmth powers of the elements in 11 also 
maps on to a basis f or k over è0(©) (4, p. 347). Thus if a is in R, 

r 

a = ^2 aiu?m mod £>m, 

where the w* are in U, the at are in R0 H i£o(@) and are uniquely determined, 
mod pm. Thus, every coset oipmR has the form 

(7) T,atufm + pmR, at £ RnK0(<5),ut G U, 

a form which we shall use repeatedly below. We define 6m: R/pmR —> i?[[x]]/ATm 

by 

(8) 6m{a + pmR) = Y.V(ax)u?m + Mm. 

The mapping 6m is well defined since the at are unique, mod pm. Moreover, 0m 

preserves sums and has the following two properties: 

(9) 6m(a + pmR) = a + Mm mod M\ 

and 

(10) dm(xy) = 6n(x)6m(y). 

Property (9) follows from (4) and we prove (10) below. 
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Letx = *Eatutm + pmRaxidy = Y,biU?m + pmRusing (7).Then 

xy = Y<ai bj ujTuf1 + pmR. 

But, using (7), we have ut Uj = Y,ck uk} mod p, and, hence 

ufuf = [LctUtT modpm+\ 

By Lemma 1 of (4, p. 347) with r = 0 we have that 

m - l 

u{ Uj = Zs P 2^ Sij,k,iCi,j,k,iUf modp , 

where 5i);,A, fis a rational integer and citjtktiisinR C\ K0(&). Thus 

^ = E <*<&* E pkSij,Jcic7Z,iuf +pmR 
i,j k,l 

and 

*mfoO = E O'iaibjp^j^^'l^ui^ + Mm. 

Relation (4) implies the following: 

(11) *'(<££..) = cZti modMm-k. 

Hence, 
0»(*y) = T.o'(fil)o'(!>j)p

tsi,,Jt.l(£i-£lu'r + Mm 

= Z e'(.ai)6'{bj)prur+Mm = ft,(x)ft,(y). 

Thus 0m is a homomorphism and relation (9) implies the following lemma. 

LEMMA 2. The mapping 6m defined by (8) is an isomorphism. 

LEMMA 3. The mapping 6: R —» i?[M] gwew 6y 

0(a) = H 0«(a + />"20 
ra=l 

is aw embedding which agrees with Q' on R C\ 2£0(@). Moreover, 6 — e(R) C M"'. 

Proof. We first establish the relation (3) as follows. For each u £ U we have 
wp = ]£c* «<, mod p, where the ct are in R H 2£0(©). Thus upm+1 = [J^c* ^t]p m , 
mod pm. Or, using Lemma 1 of (4, p. 347). 

m— 1 

(12) M/""+1 = £ f ' £ si,j,kc
v^'kUum modp"\ 

Using (7), a + £m+1i? = Y.btufm+i + />"+I^ and, by (12), 

a + pmR = £ 61 *>'*,.,.* CTM «**" + *>"*. 

With the aid of (11) we have that 

em(a + pmR) = E e'ibttfs,,,* CTJFT* «**" + ^ m 

= ze'(^)«r+1+Mm 
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and 
6m+1(a + pWR) = L 0 ' ( e ^ / M + 1 + M™+\ 

Relation (3) follows. Since 

PI M* = 0, 

0 is well denned and is an isomorphism by Lemma 2. I t follows from relation (9) 
and the definition of 0 that 0 — e(R) C Ml. In particular, then, 0 is an embed­
ding. Since 1 is in U, we have 0m(a) = 6'(a) + Mm for a in i? C\ i£0(©) and all 
w. Hence 0(a) - 6'(a). 

We wish to show finally that 0 induces <£. Given a in R and some positive 
integer m, we have, using the form (7), a = X!&z w/w, mod pm, where the at are 
i n ^ n ^ o ( © ) . T h u s , 

*(<0 = tCLdiU?™) modpm. 

However, since 0 is inertial, 

4>(u?m) = ufm mod irm; 
thus, 

(13) 0(a) = T.<t>(a>i)ufm mod TT .̂ 

From relation (5) we have 

(14) <t>(at) =6*(at)+fR[[x]]. 

Substitution of (14) in (13) and an appeal to the definition of 6 yield 

<t>{a) = 0(a) +fR[[x]] mod irm. 

This being true for arbitrary w, we have proved the following theorem. 

THEOREM 1. Every inertial embedding <f> of R in Rn lifts to an embedding 0 of R 
in R[[x]]. If, for some positive integer m, <t> — e(R) C TrmRni then 0 can be chosen 
so that 0 - e(R) C Mm. 

3. Applications. We recall that an inertial isomorphism f of Rn into Rn' 
is one which induces the identity mapping on their common residue field. 

THEOREM 2. Every inertial isomorphism f of Rn onto R'n can be lifted to an 
inertial automorphism T on R[[x]]. If f (R) = R, then r can be chosen to agree with 
T on R. 

Proof, Let f be an inertial isomorphism of Rn onto R'n. The mapping </> 
obtained by restricting f to R is an embedding of R in Rf

n. We apply Theorem 1 
and lift 4> to an embedding 0 of R in i^[[x]]. If f(R) = R we may assume 0 to be 
4>. We define r by the conditions r{a) = 0(a) for a in R and r(x) is the unique 
polynomial g = pa0 + a,\ x + . . . + an_i xn~l of degree less than n in (r(7r)). 
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Necessarily a,\ is a unit and the demonstration that r, so defined, is an inertial 
automorphism is straightforward. Since f(a+fR[[x]]) = r(a) + fR[[x]] for 
a in R and f(x + fR[[x]]) = T(X) + fR[[x]], it follows that r induces f. 

The following example illustrates the fact that rings Rn and R'n can be iso­
morphic without being inertially isomorphic. Let R be the unramified v-r'mg 
with residue field GF(27), the field with 27 elements. Let Ru and R'n be 
extensions of R by roots of the Eisenstein polynomials x13 — 3a and x13 — 3a3 

where â, the residue of a, is a primitive 26th root of unity. An inertial iso­
morphism of Rn onto R'n has the identity mapping as its restriction to R. By 
Theorem 3 of (2) the identity mapping on R extends to an inertial isomorphism 
of Rn onto R'n if and only if the equation as13 = â3 has a solution in GF(27). 
However â2 is a primitive 13th root of unity and cannot itself be a thirteenth 
power. Thus Rn and R'n are not inertially isomorphic. However, the Frobenius 
automorphism r on R such that r{a) = â3 can be extended to an isomorphism 
of i^isontoi^is (2, Theorem 3). 

COROLLARY 1. Each automorphism in GRni7ri (HRntm) can be lifted to a mapping 
inGR[[x]],m (HR[[x]],m)form = 1, 2, . . . . 

Proof. We let R'n = Rn in Theorem 2 and modify the construction of r as 
follows. Again, let <j> represent the restriction of r to R. The assumption that r 
is in GBn,m means that 0(a) — a is in -nmRn for all a in R. Thus, by Theorem 1, <j> 
lifts to an embedding 6 oî R in R[[x]] such that 6(a) —a is in Mm for all a in R. 
Let the automorphism r on i?[[x]] be defined by 

(i) r = 0 on R 
and 

(ii) T{X) -X£ <T(TO - TT> r\ Mm if f G GRntm 

and T(X) - x e (f(ir) - x) C\ Mm+1 if f 6 HRn,m. 

An element in (T(TT) - TT) P I Mm
 ((T(TT) - TT) P I Mm+1) can be found by the 

process used to construct an element in M1 P (#00 — s) (see the paragraph 
which contains (6)). The mapping r so constructed induces f and is in GR[[Z]],m. 
If f is in HRntm, then, by construction, r is in HR[[X]] iTn. 

COROLLARY 2. Let Rn and Rf
n be tamely ramified extensions of R by roots of 

Eisenstein polynomials 
f = Xn + pfn_± xn-l + tmm+pfQ 

and 
g = Xn + Pgn-x Xn~l + . . . + pgo 

respectively. Rn and R'n are inertially isomorphic if and only if vigofiT1) is an nth 
power in the residue field k. 

Proof. Let f: R'n —> Rn be an inertial isomorphism. Then, by Theorem 2, f 
lifts to an inertial automorphism r on i?[[x]] having the property 

(15) r(g) =fE,Wfx\ 
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Comparing the coefficients of x° and xn on either side of (15), remembering that 
wr (go) = v(go)j we conclude that 77 (go) = v(foW0) and rj(hn) = y(w0) where 
T(X) = pU + h x + . . . . I t follows that ^(go/o"1) is an nth power in k. 

Conversely, if 77(go/0-1) is a n »th power in k, then we consider the possibility 
of choosing t\, t%, . . . in R, t\ a unit, so that there is a unit 

00 

*=o 
for which 

(16) g(^i x + U x2 + . . .) = f(x)Y,Wi x\ 

Equating coefficients on either side of (16), we obtain 

(17, 0) pg0 = pfo wo, 

pFt = pifoWi + . . . +fiW0), 0 < i < n, 

(17, i) hn + pFn = wo + py Ç /i ^ - y » i = n, 

nti'h^n+x + Gi-n + pFi = Wi-n + / > ( ] £ fj Wi-j) » * > », 

where 671 and i7* are polynomials in tlf . . . , tt over i^. Equality (17, 0) deter­
mines Wo. If rj(gofo~1) is an wth power in k, then 77(̂ 0) is an nth power and t\ can 
be chosen so that 77 (tin) = rj(wo). We next choose w\ so that (17, 1) is true. 
Suppose that /1, . . . , tT and w0, . . . , wr have been selected so that 

(a) (17.i) is true for i = 0, . . . , r. 
(b) 7][ntin~Hi-n+1 + Gt-.n] = r)Wi-niori = tij. . . , n + r — 1. We choose £r+i 

so that (b) holds for i = n -\- r and then select wT+i so that (17, r + 1) is true. 
This selection is always possible since when r > n condition (b) holds for 
i = n} . . . , n + r, which includes i = r. 

Corollary 2 is related to Theorem 3 of (2), which states that a given auto­
morphism on R extends to an isomorphism of Rn onto Rf

n if and only if a 
condition similar to that of Corollary 2 is satisfied. 

THEOREM 3. Let Rn and R'n be extensions of R by roots of Eisenstein polynomials 
f andf. Then there is an inertial isomorphism of Rn onto R'n if and only if there is 
an infinite higher derivation {D{i'j)} on R[[x]], such that (i) 1 + Z)(0il)(x) is a 
unit and (ii) / ' and 

are associate primes. 

Proof. This is an immediate consequence of Theorem 2 and the fact that 
every inertial automorphism on i?[[x]] is of the form 

00 

A-+ £ DH'j){A)pix" 
i,j=0 
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for some infinite higher derivation {D^'^} on i^[[x]] such tha t 1 -|- D(°>v (x) is a 
uni t (6, Theorem 31). 

T h e following theorem offers a sufficient condition on Rn t h a t every embed­
ding of R in Rn be extendable to an inertial automorphism. I t is clearly not 
necessary since if k is perfect the only embedding of R in Rn is the identi ty 
mapping which does extend to an inertial automorphism. 

T H E O R E M 4. If Rn is tamely ramified, every inertial embedding ofR in Rn can be 
extended to an inertial automorphism on Rn. 

Proof. Let 0 be an inertial embedding of R in Rn = R[[x]]/fR[[x]]. We lift 0 
to an embedding 6 oî R in R[[x]]. If we extend 6 to an inertial automorphism r 
on i?[[#]] with the property t ha t r(f) is a multiple of/, then r will induce an 
inertial automorphism f on Rn which is an extension of <£. T o this end we define 
r on i^[[x]] to agree with 6 on R and let r (x) = t\ x + t2 x2 + . . . , where the tt 

must be so chosen t ha t t\ is a unit and 

(18) r(f) =fY,WiX\ 

Equat ions (17) and the argument which follows them now apply with one 
modification: pg0 = pfoWo becomes pf0 + p2a — pfoWo, where a is some 
element in R independent of th t2, . . . . We note t ha t in the present case 
T](WO) = 1 and hence 77(̂ 1) is an nth root of unity. Moreover, we need to note 
for the proof of Theorem 5 tha t t\ may be chosen arbitrari ly save for this 
condition. 

T h e author is indebted to the referee for supplying an example on which the 
following inertial embedding is based, an inertial embedding which does not 
extend to an inertial automorphism. Let k be any field which is not perfect. 
Choose a in J? so t h a t its residue 77(a) = â is not in kp and let Rv = R[n] where -n 
is a root of xp — pa. Let {d(0), d(1\ d{2\ . . .} be a higher derivation on k such t ha t 
dW(â) = l a n d ^ ( â ) = 0, for i > 1 (3, Theorem 1). We lift {<*<*>} to a higher 
derivation [D{i)] on R (5, Corollary 1). T h u s D(i) induces d(i\ via rj, for all i. 
T h e mapping 0: R —> Rb given by 0(6) = ^i:iD{i) (b) is an inertial embedding. 
If </> can be extended to an inertial automorphism f on Rbl then Ç(pa) ( = pa 
-\- rjw, mod TTV+2) mus t be a ^»th power in Rb. Thus , we assume there is a uni t 
u such t ha t 

(wn)p = pa + pir mod irp+2 or (up — \)TTP = pir mod TTP+2. 

This requires t ha t up — 1 be in TTRP and not in -n2Rp. Bu t up — 1 = (u — l)p, 
mod iip, and (u — \)p is a unit or is in np. We have arrived a t a contradiction. 

I t was first shown by MacLane (7, Corollary to Theorem 15) t ha t 

GR,m/GRim+i, m = 1, 2, . . . , 

is isomorphic to the addit ive group of derivations of k. Since a(p) = p for every 
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automorphism a of R, it follows that HR,m = GR,m for all m. Neggers has shown 
(8, Theorem 6) that for m > n + £ /£ — 1, HRn}m/GBn>m+i is isomorphic to the 
additive group of those derivations on k each of which lifts to Rn. He observed 
that if Rn is tamely ramified over R, then every derivation on k lifts to Rn (8, 
Corollary 2). The following result extends that of Neggers. 

THEOREM 5. If Rn is tamely ramified, then, for m = 2, 3, . . . , GRntM = HRnim 

and GBn,m/GRn,m+i is isomorphic to the additive group of derivations on k, as is 
HRn,i/GRn,2- GRnti/HRnti is isomorphic to the group of nth roots of unity in k. 

Proof. We show first that if m > 1, then GRni7n = HRn,m. I t is sufficient to 
show that a(nf) — irf is in -nm+lRn for all a in GRn,m and some prime element TT' 
of Rn. We choose -n' to be an nt\\ root of some prime element pb in R, b a unit 
(2, Corollary 3). Now a in GRn,m has the form e + nmar where e is the identity 
map. Thus, 

a(ir')n = (TT' + TT'VCTT'))* = £(ô + T T V ( Ô ) ) , 

or, expanding the left side, we obtain 

(TT')* + WCTTO^WCTTO + . . . = pb + pirma'(b). 

Since m > 1, the remaining terms on the left side are all in irn+mRn. Hence 
mtn+m-W (TT') - pvma' (b) G Tn+mRn. Since » is prime to p, it follows that a! (TT') 
isinTT^oraCTrO - TT' 6 7rw+1i?n. 

In order to determine HRn,i/GRn,2 and GBB,m/GBn,TO+i, for m > 1, we let a be 
an automorphism in HRn>m ( = GRn>m for m > 1). Again, a = e + ïrma' and a 
simple calculation shows that af induces a derivation da on k. The correspon­
dence £: a-* da maps HRn>m homomorphically into the additive group of 
derivations on k with kernel GRn,m+i- To demonstrate that £ is onto let d be any 
derivation on k. There is an infinité higher derivation {d(i)} on k such that 
d(1) = d (3, Theorem 1). We lift {d(i)} to an infinite higher derivation {D{i)\ on 
R (5, Corollary 1). The correspondence <j>: R-+ R[[x]] given by 

4>(fl) = £ D{i\a)xmi 

is an inertial embedding. We need to extend <j> to an inertial automorphism r on 
i?[[x]] such that r(f) G/£[[*]] and 

(19) r(x) = x + xw+1(7o + ^ xt. . .) 

for then r will induce r in HRn,m, and £(f ) will be d. 
In view of (19) and the fact that 4>(a) —a is in xmi^[[x]], we can replace the 

condition (18) by 

oo 

(20) r ( / ) - / = / J » l ï ' . 
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The proof that t0, tly . . . can be chosen so that (20) holds for some series 

CO 

goes much like the proof of Theorem 4. We let 

r ( / ) - / = £ atx\ 

Then am £ ^K, 

a, = pFi(t0. . . ^f-ro-i), for m < i < m + n, 
and 

a< = nti-m-n + Gi(to. . . ^_w_n_i) + pFi(to. . . ^_m_i), 

for i > m + w, 
« 
where again Ft and G< are polynomials over R in the indicated quantities. A 
modification of the argument following (17) establishes the existence of the 
desired r. 

To determine Gi/Hi we map a in G\ onto J (a) = 77(̂ 1) where a (it) = /17r. 
The correspondence £ is a homomorphism into the group of ^th roots of unity in 
k and has kernel Hi. In view of the observation at the end of the proof of 
Theorem 4, £ is onto. 
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