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The present study deals with the effect of micromagnetorotation (MMR) on a micropolar
Poiseuille flow in the presence of a uniform magnetic field. Micromagnetorotation is
associated with the impact of magnetization on magnetohydrodynamic (MHD) micropolar
flows. Previously, magnetization was assumed to be parallel to the applied magnetic field
and thus, its influence on the flow was ignored. This assumption is incorrect in the case
of micropolar fluids, because their anisotropy affects magnetization. Here, the velocity
and microrotation fields, as well as the skin friction coefficient are examined analytically
by using a new MHD micropolar fluid theory that includes a constitutive equation for
magnetization. Results reveale that MMR has a strong braking effect both on velocity
and microrotation. Flow deceleration is found to be up to 16 %, while an increase in the
skin friction coefficient is also observed. Moreover, the stability of the MHD micropolar
flow is studied by introducing a modified version of the Orr–Sommerfeld equation, which
incorporates MMR. The eigenvalue problem is solved with the use of the open-source
Chebfun library. It is found that the MMR has a strong stabilizing effect on the MHD
micropolar flow. Thus, the MMR is proved to be a mechanism similar to the Lorentz force,
which dissipates additional magnetic energy to the flow via microrotation. In summary,
the important effect of MMR, neglected by researchers so far, should be considered for
industrial and bioengineering applications that involve micropolar fluids and magnetic
fields.

Key words: magnetic fluids

1. Introduction

Many recent technological advancements require the use of fluids whose dynamics cannot
be described by the popular Navier–Stokes equations. A well-established extension of
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the Navier–Stokes equations is the micropolar fluid theory, which is characterized by the
existence of a non-symmetric stress tensor (Ariman, Cakmak & Hill 1967). This theory
is applied to fluids that consist of small, rigid, randomly oriented bodies, suspended in a
viscous medium, where the deformation of fluid particles is ignored (Lukaszewicz 1999).
The model of micropolar fluids was established by Eringen (1964, 1966). The main feature
of this mathematical model is microrotation, a vector field that represents the total angular
velocity of the suspended particles. In this case, a new equation is introduced, which
corresponds to the conservation of the local angular momentum (Borrelli, Giantesio &
Patria 2015).

The micropolar fluid theory has found application in the rheology description of fluids
such as exotic lubricants, colloidal suspensions, liquid crystals and blood. Khonsari &
Brewe (1989) examined the performance of journal bearings lubricated with micropolar
fluids. It was found that they demonstrated higher load carrying capacity and reduced
skin friction compared with Newtonian fluids. These features depend on the micropolar
fluid properties and the size of the suspended particles. Eringen (1991) introduced a
continuum theory for rigid suspensions using the micropolar fluid model. This suspension
theory takes into account the micro-inertia tensor and its time evolution, especially the
anisotropy developed within the fluid because of the fluid–particle interaction. Eringen
(1978) again implemented the micropolar fluid theory to study the dynamics of liquid
crystals. He established the governing nonlinear constitutive equations by applying the
concepts of strain and rate measures along with the micro-inertia tensor. Kang & Eringen
(1976) investigated several cases associated with blood flow, such as the apparent viscosity
and the disparate concentration by using the micropolar fluid model. It was found that the
micropolar fluid theory can provide a consistent explanation for such complicated blood
flow phenomena. Recently, Karvelas et al. (2020) studied the blood flow inside a human
carotid model considering blood as a micropolar fluid. The work focused on the differences
arising from the blood microstructure compared with a classical Newtonian fluid and found
a significant decrease in the shear stress at the walls when the vortex viscosity and the
microrotation increased.

Micropolar fluid theory can be combined with the magnetohydrodynamic (MHD)
theory, as proposed by Eringen (1999, 2001). This model is based on Maxwell’s
equations and the micropolar balance laws. It also concerns the interaction of the fluid
and its microstructure with the magnetic field. In this case, the motion of the fluid
generates electric currents which modify the magnetic field. This theory has found
various applications over the years, especially in the field of biomedical engineering,
where magnetic fields are applied to blood flows. Bhargava et al. (2010) studied a
two-dimensional (2-D) flow of a biomagnetic micropolar fluid using the finite element
method. It was found that as the magnetic field and the vortex viscosity ratio increased,
the flow decelerated. Abd-Alla, Abo-Dahab & Al-Simery (2013) explored the effect of
rotation and magnetic field on a peristaltic micropolar flow through a porous medium.
Such flow configuration can be used for simulating the motion of biofluids in ureters,
intestines and arterioles. The results showed that the effect of the magnetic field and
rotation on the micropolar peristaltic flow is smaller compared with a Newtonian peristaltic
flow. Abdullah, Amin & Hayat (2011) investigated the unsteady MHD micropolar blood
flow through irregular stenosis. They proved that the micropolar effect and the magnetic
field reduce the axial velocity of the flow. Jaiswal & Yadav (2019) studied analytically a
two-phase blood flow model within a porous layered artery subject to a magnetic field.
The core region of the flow in the vessel was simulated as a micropolar fluid, while the
fluid in the peripheral region was assumed to be Newtonian. They found that the angular
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and linear velocities along with the wall shear stress were greatly reduced by the magnetic
field.

There are also several experimental studies regarding the application of magnetic fields
on blood flows, which can be modelled with the use of the micropolar fluid theory. Ichioka
et al. (2000) and Nijm et al. (2008) investigated the effect of a strong magnetic field (8 T)
on the blood flow of living rats and found that the flow is significantly decelerated. Nilsson
et al. (2013) showed that the flow rate of human blood was reduced by 30 % when a
magnetic field of the same strength (8 T) was applied. Other in vitro experiments that use
magnetic fields of 3, 5 and 10 T, confirmed the same situation (Haik, Pai & Chen 2001).
Saunders (2005) reviewed various experimental studies that examine the effect of static
magnetic fields on blood flows of animals and concluded that even magnetic fields with a
strength much less than 1 T can influence the blood flow and the arterial blood pressure.

An important characteristic of biofluids, especially blood, is that they exhibit
polarization under the influence of a magnetic field. This situation exists owing to the
haemoglobin molecule, which is an iron oxide and behaves like a magnetic dipole. As
a result, the erythrocytes (red blood cells) tend to orient with their disk parallel to the
magnetic field lines in the presence of a magnetic field. In this case, the dominant forces
in the flow field are both the Lorentz force and the magnetization (Takeuchi et al. 1995;
Higashi, Ashida & Takeuchi 1997). Moreover, in cases such as magnetic drug delivery or
magnetic hyperthermia, nanoparticles are injected into the blood stream. Such particles
are considered as magnetic dipoles, which lead to a great increase in the magnetization of
blood (Li, Yao & Liu 2008).

There are many mathematical models that examine the effect of magnetic fields
on various blood flow configurations, while considering the impact of magnetization
(Papadopoulos & Tzirtzilakis 2004; Tzirtzilakis 2005, 2015). A limiting aspect of these
mathematical models is the fact that they only study blood as a Newtonian fluid and do not
consider its internal microstructure. However, Eringen’s micropolar MHD theory should
not be applied to blood flows under the influence of externally imposed magnetic fields.
This model does not incorporate magnetization, because it is considered parallel to the
applied magnetic field. To this end, a complete MHD micropolar mathematical model
which takes magnetization into consideration was introduced by Shizawa & Tanahashi
(1986). This theory combines the kinematic balance equations of the micropolar fluid
theory with Maxwell’s equations. A constitutive equation for the magnetization is derived
by using the dissipation function and free energy. To the authors’ best knowledge, there
are an extremely limited number of investigations that apply Shizawa and Tanahashi’s
model on MHD micropolar fluid flows (Okanaga et al. 1987; Shizawa, Ido & Tanahashi
1987a,b; Henjes 1992). Recently, Aslani et al. (2020) studied a simple MHD micropolar
Couette flow using this model, where they emphasized the effect of magnetization on the
flow (micromagnetorotation – MMR effect). They concluded that when the MMR effect is
considered, the MHD micropolar flow may accelerate or decelerate with differences from
4 % to 45 % compared with an MHD micropolar flow where magnetization is not included.
Therefore, more studies are needed to fully understand the MMR effect on various MHD
micropolar flow configurations, such as blood flow.

An important research topic in the field of fluid dynamics is hydrodynamic stability,
which deals with the reaction of a fluid subject to a disturbance of its initial state. A
disturbance is an infinitely small fluctuation which, when applied on a stable flow, will
not have any notable impact on its initial state and will die with time (Chandrasekhar
2013). The opposite phenomenon is observed in the case of an unstable flow. The
famous Orr–Sommerfeld equation is an eigenvalue equation, which has been widely

920 A25-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.437


K.-E. Aslani and I.E. Sarris

used for the examination of linear 2-D disturbance modes in parallel shear flows. The
2-D disturbance limitation comes after Squire’s theorem, which states that the minimum
critical Reynolds number at which the first instability appears can be noticed only when
2-D disturbances are considered (Hooper & Grimshaw 1996). Orszag (1971) was the first
to solve numerically the Orr–Sommerfeld equation for the simple Poiseuille Newtonian
flow using Chebyshev polynomials and the QR matrix eigenvalue algorithm. In this study,
the critical Reynolds number was found to be equal to 5772.22. Since then, a plethora
of researchers has examined the instability of various flow configurations using the same
method. For example, Pascal (1999), Nield (2003) and Liu, Liu & Zhao (2008) extensively
studied the porous Poiseuille flow, while Potter & Graber (1972), Bergholz (1978) and
Takashima (1993) investigated the simple Poiseuille flow with heat transfer. The plane
MHD Poiseuille flow was fully examined by Takashima (1996). It was concluded that
the magnetic field has a strong stabilizing effect on the flow when the magnetic Prandtl
number is sufficiently small (Pm ≤ 10−4).

The first attempt to study the stability of the plane micropolar fluid flow was made by Liu
(1971), who concluded that the presence of microelements stabilizes the flow. Kuemmerer
(1978) conducted a detailed numerical stability study of the micropolar Poiseuille flow.
He found that the microstructure has a destabilizing effect on the flow, in contrast to the
results of Liu (1971). Physically, this phenomenon can be explained by the chaotic rotation
of the dense particles which enhances flow instabilities. Other notable studies regarding
the stability of micropolar fluid flows have been made by Sastry & Das (1985), Brutyan &
Krapivsky (1992), Das, Guha & Chattopadhyay (2005), Weng & Chang (2009) and Chen,
Lin & Chen (2011).

Considering all the above studies, a simple MHD micropolar Poiseuille flow is examined
here by using the MHD micropolar fluid theory of Shizawa & Tanahashi (1986). The
velocity and microrotation fields are presented and discussed for various values of the
associate dimensionless parameters. Moreover, the stability of the flow is investigated by
introducing a modified Orr–Sommerfeld equation, which is solved numerically using the
Chebyshev collocation method. Emphasis is given to the MMR effect on the basic state and
stability of the MHD micropolar flow. It is anticipated that the findings of this work will be
used for the examination of numerous MHD micropolar flows with various technological
and bioengineering applications, such as magnetic hyperthermia and drug delivery, where
the effect of magnetization cannot be ignored.

2. Mathematical formulation

In this study, a fully developed laminar pressure-driven micropolar flow between two
infinite plates is considered (dp̄/dz̄ = −G, where G is a constant). The Cartesian
coordinates (x̄, ȳ, z̄) are used and the direction of the flow is parallel with the z̄ axis, while
the x̄ axis is perpendicular to the flow. The origin of the axes is set at the centre plane of the
plates. The plates are located at x̄ = ±L, where L is the half-distance between the plates.
Moreover, the plates are assumed to be insulators, i.e. χm = 0, where χm is the magnetic
susceptibility. A uniform external magnetic field H = (H0, 0, 0) is applied perpendicular
to the flow, as shown in figure 1. The components of the linear velocity, microrotation
and vorticity are given as U = (0, 0, ῡ(x̄)), W = (0, Ω̄(x̄), 0) and w = (0, ω̄(x̄), 0),
respectively.

As mentioned above, the MHD micropolar fluid theory of Shizawa & Tanahashi (1986)
is used for the study of the present flow. In this model, the constitutive equations of the
stress tensor and the couple stress tensor are determined using two thermodynamical
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Figure 1. Schematic representation of the Poiseuille micropolar flow.

conditions, i.e. the second law of thermodynamics is satisfied, while the dissipation
function is always positive. Moreover, a constitutive equation for the magnetization is
derived with the use of the dissipation function (Aslani et al. 2020). Then, the governing
equations for the present MHD micropolar Poiseuille flow are (Shizawa & Tanahashi
1986):

∇ · U = 0, (2.1)

∇ · W = 0, (2.2)

∇ · B = 0, (2.3)

ρ
dU
dt̄

= −∇p̄ + η∇2U + 2η1∇ × (W − w)+ j × B + (M · ∇)H + M × (∇ × H),

(2.4)

l
dW
dt̄

= γ∇2W + 4η1(w − W )+ M × H , (2.5)

w = ∇ × U
2
, (2.6)

∇ × H = j, (2.7)

j = σ(E + υ × B), (2.8)

B = μ0H + M, (2.9)

M = M0(I − τW · ε) · H
H̄

, (2.10)

where B is the magnetic induction vector, ρ is the density of the fluid, t̄ is the time, p̄ is the
pressure, η is the shear viscosity coefficient, η1 is the vortex viscosity coefficient, j is the
current density, M is the magnetization vector, l is the moment of inertia, γ is the angular
viscosity coefficient, σ is the electrical conductivity, μ0 is the magnetic permeability, M0
is the magnetization strength, I is the identical tensor, ε is the Levi–Civita symbol, τ is
the relaxation time of magnetization and H̄ is the magnitude of the magnetic field vector.

The first three equations represent the mass conservation laws and the Gauss law for
magnetism. Equations (2.4) and (2.5) are the conservation laws of linear and angular
momentum, respectively. Equation (2.6) defines the vorticity. Ampere’s and Ohm’s laws
are depicted in (2.7) and (2.8), respectively. Equations (2.9) and (2.10) represent the
constitutive equations for magnetization. The term M × H in (2.5) is the MMR term,
which is responsible for any magnetization effect on the microrotation.
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In the MHD micropolar fluid theory of Shizawa & Tanahashi (1986), the shear viscosity
coefficient η, the vortex viscosity coefficient η1, the angular viscosity coefficient γ , the
moment of inertia l and the relaxation time of magnetization τ are correlated as follows
(Shizawa & Tanahashi 1986):

γ = ι2η, (2.11)

η1 = l
4τs
, (2.12)

τ = τs(1 + ε), (2.13)

where ι2 = l/ρ is the microinertia, τs is the relaxation time of microrotation owing to the
fluid frictional drag and ε is the micropolar effect parameter, which is defined as ε = η1/η
(see (2.38a–e)).

By assuming that no electric field E is applied on the flow, (2.7) and (2.8) are equalized
as follows:

∇ × H = σ(υ × B). (2.14)

2.1. Steady-state flow
In the case of the steady-state flow, by analysing the vorticity and the conservation laws of
linear and angular momentum (2.4–2.6) in the three directions, we obtain:

ω̄ = −1
2

dῡ
dx̄
, (2.15)

∂ p̄
∂ x̄

= j̄yB̄z + M̄z
dH̄z

dx̄
, (2.16)

2(η + η1)
dω̄
dx̄

− 2η1
dΩ̄
dx̄

+ j̄yB̄x = −∂ p̄
∂ z̄
, (2.17)

γ
d2Ω̄

dx̄2 − 4η1(Ω̄ − ω̄)+ M̄zH̄x − M̄xH̄z = 0. (2.18)

In this context, the analysis of (2.14) in the x̄, ȳ, and z̄ directions leads to:

j̄x = 0, (2.19)

j̄y = −dH̄z

dx̄
= σ ῡB̄x, (2.20)

j̄z = 0. (2.21)

It should be noted that H̄z represents the induced magnetic field, hence, the magnetic field
vector is given as H = (H̄x, 0, H̄z). In this study, the induced magnetic field is assumed to
be sufficiently smaller than the applied magnetic field, i.e. H̄z/H̄x � 1. This is a popular
approach, namely the low-magnetic-Reynolds-number approximation (Rem � 1), and it
has been applied in several investigations (Shizawa et al. 1987a,b; Takashima 1996; Aslani
et al. 2020). This approximation ignores the solution of the magnetic induction equation,
which leads to a reduction of the equations to be solved. Thus, the magnetic field vector
becomes H ∼= H̄x, which also implies that H̄ ∼= H̄x.
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With the use of the low-Rem approximation, the magnetization vector M (2.10) is
analysed as follows:

M̄x = M0(H̄x + τ H̄zΩ̄)

H̄x
≈ M0, (2.22)

M̄y = 0, (2.23)

M̄z = M0(H̄z − τ H̄xΩ̄)

H̄x
≈ −τM0Ω̄. (2.24)

Moreover, the magnetic induction vector B can be analysed as follows:

B̄x = μ0H̄x + M̄x ≈ μ0H̄ + M0, (2.25)

B̄y = 0, (2.26)

B̄z = μ0H̄z + M̄z ≈ −τM0Ω̄. (2.27)

As can be seen from (2.22), the micropolar fluid is permanently magnetized in the x̄
direction with magnetization M0. Thus, the continuity of B across the plates requires that
B̄x = B0 = μ0H0. This leads to the derivation:

μ0H0 = μ0H̄ + M0, (2.28)

or,

H̄ = H0 − M0

μ0
. (2.29)

Equation (2.29) represents the reduction of the total magnetic field inside the magnetized
micropolar fluid (Rosensweig 2013).

Subsequently, using all the above-mentioned assumptions, the governing equations can
be recast as

ω̄ = −1
2

dῡ
dx̄
, (2.30)

2(η + η1)
dω̄
dx̄

− 2η1
dΩ̄
dx̄

+ j̄yM0 + μ0 j̄yH̄ = G, (2.31)

γ
d2Ω̄

dx̄2 − 4η1(Ω̄ − ω̄)− τM0Ω̄H̄ = 0. (2.32)

It should be noted that H̄ is represented by (2.29), while (2.16) is no longer used, as
∂ p̄/∂ x̄ is associated with the induced magnetic field H̄z which is ignored. No-slip boundary
conditions are imposed for the linear velocity, while Condiff–Dahler conditions are used
for the angular velocity:

ῡ(−L) = 0, ῡ(L) = 0, Ω̄(−L) = δω̄(−L), Ω̄(L) = δω̄(L). (2.33a–d)

The term δ is called the wall coefficient. Here, it is assumed that δ = 0, which implies that
the microelements adjacent to the channel walls are not able to rotate (Kuemmerer 1978;
Borrelli et al. 2015; Aslani et al. 2020).
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Equations (2.30)–(2.32) take a non-dimensional form with the use of the following
dimensionless terms:

x = x̄
L
, z = z̄

L
, υ = ῡ

υ0
, Ω = Ω̄

�0
,

ω = ω̄

ω0
, H = H̄

H0
, M = M̄

M0
, j = j̄

j0
,

⎫⎪⎪⎬
⎪⎪⎭ (2.34)

where υ0 = 2GL2/η, Ω0 = GL/(2η), ω0 = GL/(2η), j0 = σμ0H0(2GL2/η). Hence, the
dimensionless governing equations become:

ω = −2
dυ
dx
, (2.35)

dω
dx

− ε

1 + ε

dΩ
dx

+ 2Ha2

1 + ε
υ = 1

1 + ε
, (2.36)

d2Ω

dx2 − 4ελ2(1 + ζ(1 − h))Ω + 4ελ2ω = 0. (2.37)

The dimensionless parameters which are introduced in (2.35)–(2.37) are:

ε = η1

η
, λ = L

ι
, Ha = μ0H0L

√
σ

η
, ζ = ττsH0M0

l
, h = M0

μ0H0
. (2.38a–e)

Here, ε corresponds to the micropolar effect parameter, λ is the size effect parameter
and Ha is the Hartmann number. The two new parameters ζand h are associated with
the impact of the magnetization on the micropolar flow. The quantity ζ(1 − h) in (2.28)
is called the magnetization effect parameter (σm = ζ(1 − h)) and it is the dimensionless
parameter used for the study of the MMR effect. The boundary conditions are written in
dimensionless form as follows:

υ(−1) = 0, υ(1) = 0, Ω(−1) = 0, Ω(1) = 0. (2.39a–d)

By differentiating (2.36) and using (2.35) and (2.37), a one-way coupled differential
equation system is derived as:

d4υ

dx4 − ξ1
d2υ

dx2 + ξ2υ − ξ3 = 0, (2.40)

Ω = K
dυ
dx

−Λ
d3υ

dx3 . (2.41)

The constants ξ1, ξ2, ξ3, K and Λ can be found in Appendix A. The final solutions of the
dimensionless velocity and microrotation are:

υ = C4e−Ax + C3eAx + C2e−Bx + C1eBx + ξ3

ξ2
, (2.42)

Ω = e−(A+B)x(−BeAx(C2 − C1e2Bx)K + B3eAx(C2 − C1e2Bx)Λ

+ AeBx(C4 − C3e2Ax)(−K + A2Λ)).
(2.43)

All variables appearing in (2.42) and (2.43) are included in Appendix A.
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The skin friction coefficient of the flow can be generally defined as (Kim & Kim 2004)

Cf = 2τ̄w

ρυ02 , (2.44)

where τ̄w is the shear stress, which, according to Shizawa & Tanahashi (1986) and Shizawa
et al. (1987a), can be interpreted as

τ̄w = (η + η1)
dῡ
dx̄

+ 2η1Ω̄. (2.45)

The shear stress can be non-dimensionalized by introducing the associated dimensionless
shear stress variable as τ̄w = τw/τ0, where τ0 = ηυ0/2L. Considering the latter and the
dimensionless variables defined in (2.34) and (2.38a–e), the shear stress can be written as

τw = 2(1 + ε)
dυ
dx

+ εΩ. (2.46)

In this case, the skin friction coefficient for the lower plate takes the form:

Cf = Re−1
(

2(1 + ε)
dυ
dx

∣∣∣∣
x=−1

+ εΩ|x=−1

)
, (2.47)

where Re = ρυ0L/η is the Reynolds number.

2.2. Stability analysis
In this study, the linear stability of the MHD micropolar Poiseuille flow is performed by
assuming an infinitesimal disturbance on the initial state of the flow, as follows:

ūx = ū + ūxf , ūz = ῡ + ūzf , W̄ = Ω̄ + Ω̄ f , P̄ = p̄ + p̄f ,

j̄ = j̄y + j̄yf , b̄x = B̄x + B̄xf , b̄z = B̄z + B̄zf , h̄x = H̄x + H̄xf ,

h̄z = H̄z + H̄zf , m̄x = M̄x + M̄xf , m̄z = M̄z + M̄zf .

⎫⎪⎬
⎪⎭ (2.48)

Here, ūx and ūz are the dimensional perturbed velocities in the x̄ and z̄ directions,
respectively, b̄x and b̄z are the dimensional perturbed magnetic flux density components
in the x̄ and z̄ directions, respectively, h̄x and h̄z are the dimensional perturbed magnetic
field components in the x̄ and z̄ directions, respectively, m̄x and m̄z are the dimensional
perturbed magnetization components in the x̄ and z̄ directions, respectively, and W̄, P̄ and
j̄ are the dimensional perturbed microrotation, pressure and current density, respectively.
Additionally, ū = 0, while ῡ and Ω̄ are the base velocity and microrotation states, as they
were derived in (2.42) and (2.43). Squire’s theorem (Drazin & Reid 2004) is valid and
only 2-D disturbances in the z̄ − x̄ plane are considered, i.e. ūxf (x̄, z̄, t̄), ūzf (x̄, z̄, t̄) and
Ω̄f (x̄, z̄, t̄). Then, the dimensional perturbed governing equations are:

j̄yf = σ(ūzf B̄x + ῡB̄xf − ūxf B̄z), (2.49)

M̄xf = 0, (2.50)
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M̄zf = −τM0Ω̄f , (2.51)

ρ

(
∂ ūxf

∂ t̄
+ ῡ

∂ ūxf

∂ z̄

)
= −∂ p̄f

∂ x̄
+ η

(
∂2ūxf

∂ x̄2 + ∂2ūxf

∂ z̄2

)
+ η1

(
∂2ūxf

∂ z̄2 − ∂2ūzf

∂ z̄∂ x̄

)

− 2η1
∂Ω̄ f

∂ z̄
+ μ0(j̄yH̄zf + j̄yf H̄z)+ M̄x

∂H̄xf

∂ x̄
+ M̄z

∂H̄xf

∂ z̄
, (2.52)

ρ

(
∂ ūzf

∂ t̄
+ ūxf

∂ῡ

∂ x̄
+ ῡ

∂ ūzf

∂ z̄

)
= −∂ p̄f

∂ z̄
+ η

(
∂2ūzf

∂ x̄2 + ∂2ūzf

∂ z̄2

)
+ 2η1

∂Ω̄ f

∂ x̄

+ η1

(
∂2ūzf

∂ x̄2 − ∂2ūxf

∂ x̄∂ z̄

)
− μ0(j̄yH̄xf + j̄yf H̄x)

+M̄z
∂H̄zf

∂ z̄
+ M̄x

∂H̄zf

∂ x̄
+ M̄xf

∂H̄z

∂ x̄
, (2.53)

l

(
∂Ω̄ f

∂ t̄
+ ūxf

∂Ω̄

∂ x̄
+ ῡ

∂Ω̄ f

∂ z̄

)
= γ

(
∂2Ω̄ f

∂ x̄2 + ∂2Ω̄ f

∂ z̄2

)
+ 2η1

(
∂ ūxf

∂ z̄
− ∂ ūzf

∂ x̄
− 2Ω̄ f

)

+ M̄zH̄xf + M̄zf H̄x − (M̄xH̄zf + M̄xf H̄z). (2.54)

It should be noted that the vorticity w in the perturbed governing equations (2.49)–(2.54)
has been replaced by (2.6). Considering that the magnetic Reynolds number is very small,
and following the steps of Takashima (1996), the magnetic Prandtl number Pm = Rem/Re
is also very small and, thus, the terms involving H̄z can be ignored, while H̄ ∼= H̄x.
Moreover, the total magnetic field H̄ inside the magnetized micropolar fluid is given in
(2.29).

A disturbance streamfunction with wavenumber ᾱ and frequency c̄ is introduced as
follows:

ψ̄(x̄, z̄, t̄) = ϕ̄(x̄) eiᾱ(z̄−c̄t̄), (2.55)

where ūxf = −(∂ψ̄/∂ z̄), ūzf = ∂ψ̄/∂ x̄, and i is the imaginary unit.
The corresponding microrotation disturbance is

Ω̄f (x̄, z̄, t̄) = w̄(x̄) eiᾱ(z̄−c̄t̄). (2.56)

The wavenumber ᾱ and the frequency c̄ are assumed to be periodic in space, where ᾱ is
real and is able to decay or grow with time, while c̄ = c̄r + ic̄i is complex. The parameter
c̄r represents the disturbance wave propagation speed and c̄i is the temporal amplification
coefficient. When c̄i < 0, the disturbance decays and the flow is stable, while for c̄i > 0,
the disturbance grows and the flow becomes unstable. The objective here is to derive c̄i
as a function of ᾱ for various values of the dimensionless parameters associated with the
flow (see (2.38a–e)). In this manner, the boundary conditions for the perturbed flow are

ϕ̄(±L) = 0,
∂ϕ̄

∂ x̄
(±L) = 0, w̄(±L) = 0. (2.57a–c)

The perturbed governing equations can be non-dimensionalized using the dimensionless
variables from (2.34) and (2.38a–e) and introducing new ones, as follows:

α = ᾱL, c = c̄
υ0
, ϕ = ϕ̄

υ0L
, w = w̄

4L
υ0
. (2.58a–d)
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where υ0 = 2GL2/η. Then, the resulting dimensionless perturbed equation system is

1
iαRe

[
(1 + ε)

(
∂4ϕ

∂x4 − 2α2 ∂
2ϕ

∂x2 + α4ϕ

)
+ ε

2

(
∂2w
∂x2 − α2w

)
− Ha2(1 − h)

∂2ϕ

∂x2

]

= (υ − c)
(
∂2ϕ

∂x2 − α2ϕ

)
− ∂2υ

∂x2 ϕ,

(2.59)

1
iαRe

[(
∂2w
∂x2 − α2w

)
− 8ελ2

(
1
2

w + ∂2ϕ

∂x2 − α2ϕ

)
− 4ελ2σmw

]
= (υ − c)w − ∂�

∂x
ϕ,

(2.60)

with the following dimensionless boundary conditions:

ϕ(±1) = 0,
∂ϕ

∂x
(±1) = 0, w(±1) = 0. (2.61a–c)

The system of the sixth-order perturbed equations (2.59–2.60) constitutes a modified
version of the Orr–Sommerfeld equation. These equations appear to have the same form as
equations (13) and (14) in the micropolar stability study of Kuemmerer (1978), including
two extra terms. The first term is the second derivative of ϕ multiplied by the Hartmann
number Ha and the parameter h, as seen in (2.59). This term is associated with the stability
effects of the applied magnetic field and the magnetization on the fluid velocity as it
appears in (2.44) of the MHD stability study of Takashima (1996). The second term
involves the variable w multiplied by the micropolar effect parameter ε, the size effect
parameter λ and the magnetization effect parameter σm, as seen in (2.60). This term is
derived for the first time and involves the stabilizing effect of the MMR on the MHD
micropolar Poiseuille flow.

In many stability studies associated with the Orr–Sommerfeld equation or its modified
versions, the Chebyshev collocation method is employed for the solution of the perturbed
equations (Orszag 1971; Takashima 1993, 1996; Liu et al. 2008; Essaghir et al. 2016;
Shankar, Kumar & Shivakumara 2017). The discretization of the stability equations in N
collocation points results in a linear algebraic equation system:

AX = cBX . (2.62)

For fixed values of the dimensionless parameters along with the Reynolds number Re and
the wavenumber α, the frequency c can be obtained as the eigenvalues of the matrix B−1A.
From N eigenvalues c(1), c(2), . . . , c(N), the one with the largest imaginary part (c(K),
say) is chosen. To derive the neutral stability curves, the value of the Reynolds number Re
for which the imaginary part of c(K) is zero must be selected. When B is singular, the QZ
algorithm of Moler & Stewart (1973) is used for the solution of the eigenvalue problem.

In the present study, the free open-source numerical software ‘Chebfun’ and ‘Chebop’,
initially developed by Z. Battles and L.N. Trefethen of Oxford University, is employed
(Battles & Trefethen 2004). The fifth version of this software (Chebfun v5), used for
the numerical solution of the difficult eigenvalue problem, uses Chebyshev expansion
coefficients to sufficiently discretize complicated functions that require even 1 000 000
points. Chebfun implements adaptive procedures to detect the correct number of points
automatically. This procedure results in a highly accurate representation of functions,
with an accuracy of up to 15 digits (Driscoll, Hale & Trefethen 2014). Chebop is
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a differential or integral operator that acts on Chebfun and it is employed to solve
differential equations such as the Orr–Sommerfeld equation (Essaghir et al. 2016). Once
the modified Orr–Sommerfeld equations (2.59)–(2.60) along with the corresponding
boundary conditions (2.61a–c) are implemented in Chebop code, the frequency c
eigenvalues are obtained with the use of the command ‘eigs’ in MATLAB. This command
is built on the QZ algorithm and it is suitable for the solution of singular matrices. Finally,
a code based on the bisection method was used for the derivation of the neutral stability
curves.

3. Results and discussion

In this study, the problem of the MMR effect on an MHD micropolar Poiseuille flow is
examined. As was shown in § 2, two dimensionless parameters, ζ and h are associated
with the impact of magnetization on the flow. These two parameters are combined in the
magnetization effect parameter σm = ζ(1 − h). When σm = 0, i.e. ζ = 0 and/or h = 1,
the MMR term is negated and the theory of Shizawa & Tanahashi (1986) is reduced
to Eringen’s MHD micropolar fluid model. To specify the MMR effect on the flow, the
velocity and microrotation are presented for various values of the associated dimensionless
parameters for σm = 0 and 1. In the case of σm = 1, it is assumed that ζ = 2 and h = 0.5
while for σm = 0, ζ = 0 and h = 0 are considered. The impact of MMR on the velocity
υ and microrotation Ω profiles is clearly illustrated by the induced relative errors �υ and
�Ω , by switching on and off the magnetization effect parameter σm, while keeping the
other dimensionless parameters fixed. The relative differences �υ and �Ω are defined as
follows:

�υ(%) = υσm=1 − υσm=0

υσm=0
× 100, (3.1)

�Ω(%) = Ωσm=1 −Ωσm=0

Ωσm=0
× 100. (3.2)

Considering all the above, the effect of the MMR term on the base velocity and
microrotation states is discussed below.

3.1. Steady-state flow

3.1.1. Effect of MMR on the flow for various values of micropolar effect parameter ε
The micropolar effect parameter, ε, is the ratio of the vortex viscosity coefficient to
the Newtonian kinematic viscosity. It varies in the range 0 < ε < 1. When ε → 0, the
classical equations for the Newtonian fluid flow are retrieved, while as ε increases, the
fluid internal microstructure becomes denser (Borrelli et al. 2015). Thus, ε represents a
measure of the micropolar diffusion over molecular dissipation (Aslani et al. 2020).

The influence of the MMR term on the dimensionless velocity υ and microrotation Ω
distributions is presented in figure 2, when ε = 0.2, 0.5 and 0.8, for λ = 5 and Ha = 1. It
can be seen that as ε increases, the flow is slightly decelerated, while the microrotation is
increased. The consideration of the magnetization parameter, σm, differentiates further
the velocity and microrotation profiles. A significant observation on the velocity field
(figure 2(a–c), left side) is that, for small ε values, the magnetization does not seem to
have a noticeable effect, but as ε increases, magnetization starts to affect the fluid velocity.
This occurs because, when small ε values are considered, the velocity field is similar to
that of a Newtonian fluid. However, when ε increases, the microrotation is enhanced and
the MMR term appears to have a stronger impact on the flow.
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Figure 2. Effect of σm on velocity (left) and microrotation (right) for λ = 5, Ha = 1 and ε equal to: (a) 0.2
(top), (b) 0.5 (middle), and (c) 0.8 (bottom).

The effect of the magnetization on microrotation is depicted in figure 2(a–c) (right side).
It is obvious that when σm = 1, microrotation is reduced as ε increases, and its maximum
value approaches the walls resulting in a narrower boundary layer. In this manner, the
MMR term seems to enhance the dissipation in a similar way to that of an increasing
magnetic field (Pothérat & Klein 2017). It appears that the magnetic energy, which usually
has a braking effect on the flow, is transferred directly via the Lorentz force and the
micromagnetorotation to the linear and angular momentums, respectively. It should be
noted, that when the MMR term is ignored, i.e. σm = 0, the magnetic energy has a direct
influence only on the velocity via the Lorentz force and on the microrotation indirectly,
via the velocity.
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Figure 3. Relative difference in (a) velocity �υ, and (b) microrotation �Ω between σm = 0 and 1, for
ε = 0.2, 0.5 and 0.8, λ = 5 and Ha = 1.

The relative differences for the velocity and microrotation fields for σm = 0 and 1, in
the cases of ε = 0.2, 0.5 and 0.8, are demonstrated in figures 3(a) and 3(b), respectively.
As already mentioned, the MMR term tends to decelerate the flow. The flow reduction
increases as it moves away from the plates and reaches a maximum at the centre of the
channel. The relative reductions increase as ε increases, approaching the value of 16 %
for the velocity and 61 % for microrotation when ε = 0.8. It seems that the dual action of
the magnetic field via the Lorentz force and the MMR term has a braking impact, which
results in an analogous deceleration of the flow.

3.1.2. Effect of MMR on the flow for various values of size effect parameter λ
The size effect parameter, λ = L/ι, is associated with the geometry of the flow, through the
channel half-height, L, and the microinertia, ι, which is also related to the angular viscosity
coefficient γ , because γ = ι2η. As mentioned by Shizawa et al. (1987a,b), the size effect
parameter is defined in the range 5 ≤ λ < ∞. Physically, a greater value of λ will result
in smaller particles in the micropolar fluid. Moreover, as λ→ ∞ for constant L, the
angular viscosity coefficient γ decreases, which indicates smaller values of fluid–particle
resistance.

In the same manner as in the previous subsection, figure 4 illustrates the velocity and
microrotation profiles for λ = 5, 9 and 13, when ε = 0.1 and Ha = 1, for the cases of
σm = 0 and 1. It is obvious that as λ increases, both velocity and microrotation appear to
have a small growth, which is more noticeable for the microrotation. The MMR term has
a smaller effect on the flow for growing values of λ, compared with the corresponding
effect for increasing values of ε. Again, the magnetization effect on the microrotation is
stronger compared with on the velocity. This situation can be explained by the impact of
λ on the micropolar flow. When λ increases, there is smaller resistance between the rigid
particles and the fluid, which enhances their independent rotation, i.e. the microrotation
field. As a result, the MMR term has a stronger effect on the microrotation with growing λ,
while it affects the velocity indirectly, via the microrotation. When σm = 1, both velocity
and microrotation are reduced. The braking effect of the flow, owing to the dual energy of
the magnetic field, is more intense for the microrotation field because of the MMR effect,
when σm = 1 is considered.

Figure 5 presents the relative differences for the velocity and microrotation when
λ = 5, 9 and 13, for σm = 0 and 1. The difference in both profiles for λ are similar to
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Figure 4. Effect of σm on velocity (left) and microrotation (right) for ε = 0.1, Ha = 1 and λ equal to: (a) 5
(top), (b) 9 (middle), and (c) 13 (bottom).

the corresponding ones for ε. As λ grows, the relative differences are increased. Again,
both�υ and�Ω grow smoothly across the channel, while they have a maximum value at
the centre of the channel, i.e. x = 0. These values are −2.3 % for �υ and −51 % for �Ω ,
when λ = 13. It is obvious that the MMR term is associated with a faster rotation of the
suspended bodies in the fluid with increasing λ, which leads to a faster dissipation of the
kinetic energy.
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Figure 5. Relative difference in (a) velocity �υ, and (b) microrotation, �Ω , between σm = 0 and 1, for
λ = 5, 9 and 13, for ε = 0.1 and Ha = 1.

3.1.3. Effect of MMR on the flow for various values of Hartmann number Ha
The Hartmann number Ha is a dimensionless parameter associated with the MHD effect
and the strength of the applied magnetic field. It can take any value in the range 0 ≤
Ha < ∞. For Ha = 0, no magnetic field is applied to the flow, while as Ha increases, the
applied magnetic field becomes stronger. In this manner, the effect of the applied magnetic
field on the velocity and microrotation is depicted in figure 6, for Ha = 0.1, 1.5, 3 and
20, when ε = 0.4 and λ = 5, for the cases of σm = 0 and 1. Similarly to the classical
MHD Poiseuille flow (Takashima 1996), the increase of Ha leads to a significant decrease
of the fluid velocity and microrotation. An important result here is that for Ha values
greater than 3, both velocity and microrotation decrease rapidly. When Ha = 20, the order
of magnitude of the velocity and microrotation is 10−3, which is practically zero. The
decrease in the velocity of the micropolar flow with increasing Ha is greater compared
with the corresponding velocity decrease of a Newtonian flow.

When the MMR effect is considered, both velocity and microrotation are further
reduced. This situation confirms that the MMR term acts in a similar way as the Lorentz
force by having a braking effect on the flow. The Lorentz force has a direct influence
on the fluid velocity, while it affects the microrotation via the velocity. However, the
MMR diminishes the microrotation directly, which further reduces the fluid velocity. The
phenomenon associated with the ‘freezing’ of an MHD flow is called Hartmann braking
and it is observed in various industrial applications that involve magnetic fields, such as
the liquid metal blankets of nuclear fusion reactors (Aslani et al. 2020).

Figure 7 illustrates the relative differences for the velocity and microrotation fields,
when σm = 0 and 1, for the cases of Ha = 0.1, 1.5, 3 and 20. It is obvious that as Ha
increases and the velocity decreases, the effect of magnetization on the velocity field
is reduced. When Ha = 0.1, the velocity relative difference �υ has a maximum value
of − 10 % at x = 0. For the case of Ha = 20, �υ is almost zero across the channel.
Similarly, when Ha increases from 0.1 to 3, the MMR effect decreases slightly. For
Ha = 0.1, 1, 1.5 and 3, the microrotation relative difference �Ω has a maximum value
of approximately −50 %. This situation indicates that the intense velocity decrease has
a small impact on �Ω . Interestingly, for Ha = 20, the microrotation relative difference
increases rapidly, reaching the value of −89 % at x = 0. In this case, the MMR effect on
the microrotation field is so strong that it prevails over the ‘freezing’ of the flow velocity.
Thus, the microrotation relative difference is maximized.
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Figure 6. Effect of σm on velocity (left) and microrotation (right) for ε = 0.4, λ = 5 and Ha equal to: (a) 0.1,
(b) 1.5, (c) 3, and (d) 20.
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Figure 7. Relative difference in (a) velocity �υ, and (b) microrotation, �Ω , between σm = 0 and 1 for
Ha = 0.1, 1.5, 3 and 20, for ε = 0.4 and λ = 5.

3.1.4. Effect of MMR on skin friction coefficient Cf
In this study, the skin friction coefficient Cf has been calculated at the lower plate
of the MHD micropolar Poiseuille flow for various values of the Reynolds number
Re. Consequently, the derived Cf values are compared with the corresponding ones of
the classical Newtonian Poiseuille flow, the classical Newtonian MHD Poiseuille flow,
the simple micropolar Poiseuille flow and the MHD micropolar Poiseuille flow by ignoring
the MMR term, i.e., for σm = 0. The Cf for the classical Newtonian Poiseuille flow
is C fNewt. = 1/Re. The steady-state solution for the velocity profile of the Newtonian
Poiseuille flow is derived from Drazin & Riley (2006). The velocity profile for the
Newtonian MHD Poiseuille flow was obtained from Takashima (1993) and the skin friction
coefficient of this case is found to be C fMHD = Re−1Ha−1[(−1 + e2Ha)/(1 + e2Ha)]. It
should be noted that the same dimensionless parameters defined in (2.34) are used for
the calculation of all skin friction coefficients. For the simple micropolar Poiseuille flow
and the classical MHD micropolar Poiseuille flow, the solutions of Shiwada–Tanahashi’s
MHD micropolar fluid model are used, which are equivalent to the solutions of Eringen’s
micropolar fluid model when the applied magnetic field and the MMR term are zero, i.e.
Ha = 0 and σm = 0.

The skin friction coefficient Cf for the five different Poiseuille flow cases mentioned
above is presented in table 1. In the cases of the MHD flows (Newtonian and micropolar),
Ha = 1 is assumed, while in the cases of the micropolar flows, ε = 0.5 and λ = 5 are
considered. It is obvious that the skin friction coefficient for the micropolar flow has
approximately a 5 % reduction compared with that of the Newtonian flow. This finding
has been confirmed by many other studies, such as that of Khonsari & Brewe (1989). In
the same manner, the skin friction coefficient is reduced by approximately 20 % for both
the Newtonian and the micropolar flows when a magnetic field is applied. Jaiswal & Yadav
(2019), in their study of a micropolar MHD blood flow, confirmed that the shear stress,
which is directly related to the skin friction coefficient, was greatly reduced by an applied
magnetic field.

The skin friction coefficient of an MHD micropolar Poiseuille flow, where the effect
of the MMR term is considered, is approximately 2.2 % higher compared with a
corresponding flow where the MMR term is ignored. This phenomenon was also noticed
by Aslani et al. (2020), where the skin friction coefficient of an MHD micropolar Couette
flow for σm = 1 was found to be approximately 15 % higher than for σm = 0.
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Cf

Re Newtonian MHD Micropolar σm = 0 σm = 1

10 0.1000 0.0762 0.0998 0.0788 0.0805
50 0.0200 0.0152 0.0199 0.0158 0.0161
100 0.0100 0.0076 0.0099 0.0079 0.0081
200 0.0050 0.0038 0.0049 0.0039 0.0040
300 0.0033 0.0025 0.0033 0.0026 0.0027
400 0.0025 0.0019 0.0025 0.0019 0.0020
500 0.0020 0.0015 0.0019 0.0016 0.0016
600 0.0017 0.0013 0.0017 0.0013 0.0013
700 0.0014 0.0011 0.0014 0.0011 0.0011
800 0.0013 0.0009 0.0012 0.0009 0.0010
900 0.0011 0.0008 0.0011 0.0008 0.0009
1000 0.0010 0.0007 0.0009 0.0007 0.0008

Table 1. Cf for various Re numbers.

3.2. Stability analysis
In this subsection, the linear stability of the MHD micropolar Poiseuille flow is considered
when the micromagnetorotation effect is included. For a complete examination of the
MMR stability effect on the planar micropolar flow, the neutral stability curves are derived
for different values of the associated dimensionless parameters, i.e. the micropolar effect
parameter ε, the size effect parameter λ, the Hartmann number Ha and the magnetization
effect parameter σm. First, the neutral stability curves are obtained for Ha = 0 and σm = 0,
i.e. when no magnetic field is applied on the micropolar flow. Then, the neutral stability
curves are presented for Ha = 1 and σm = 0, i.e. when the MMR effect is ignored. Finally,
the same stability calculations are made for Ha = 1 and σm = 1. In the same manner as
in the steady-state solutions, when the magnetization effect parameter σm = ζ(1 − h) is
zero, then the parameters ζ and h are also zero, whereas for σm = 1, ζ = 2 and h = 0.5
are considered.

The validity of the numerical ‘Chebop’ code is first checked with the use of a different
stability analysis problem, being that of Shankar et al. (2017), who examined the stability
of natural convection in a vertical layer of Brinkman porous medium. Their study includes
a modified Orr–Sommerfeld equation that consists of a sixth-order linear perturbed
two-equation system, much like that derived in the present work (see (2.59) and (2.60)).
Moreover, in the paper of Shankar et al. (2017), the Chebyshev collocation method
along with the QZ algorithm were used for the solution of the stability problem. After
the linear perturbed equations of Shankar et al. (2017) are compiled in ‘Chebop’ code,
the disturbance wave propagation speed cr and the temporal amplification coefficient
ci are calculated. For N = 60 collocation points, the study of Shankar et al. (2017)
reports values cr = −2.35768364 and ci = −236.02636150. The ‘Chebop’ code found
that cr = − 2.35768067 and ci = −236.02678944. It is obvious that the two results are in
good agreement. Hence, with the use of the same ‘Chebop’ code, (2.59) and (2.60) are
used for the derivation of the neutral stability curves.

3.2.1. Effect of MMR on stability for various values of micropolar effect parameter ε
Figure 8 illustrates the neutral stability curves (ci = 0) on the Re − α plane for
ε = 0.2, 0.5 and 0.8 when λ = 5. In the cases of Ha = 0 and σm = 0, i.e. when no
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Figure 8. Effect of σm and Ha on micropolar neutral curves for λ = 5 and ε equal to: (a) 0.2, (b) 0.5, and
(c) 0.8.

magnetic field is applied on the flow, the stability curves have the same form as the
corresponding ones in the study of Kuemmerer (1978). It should be noted that there
are differences in the Re and α ranges between the present neutral stability curves
and those of Kuemmerer (1978), because of the different non-dimensionalization of the
governing equations. It seems that higher values of the micropolar effect parameter ε
enhance instabilities. This situation can be explained by the increasing effect that ε has
on microrotation. An increase of ε will result in an increase in microrotation, which leads
to a chaotic rotating motion of the micropolar fluid that enhances destabilization. These
findings are in agreement with those of Kuemmerer (1978).

When a magnetic field is applied on the flow without consideration of the magnetization
effect, i.e. Ha = 1 and σm = 0, a stabilization is observed for all ε values considered.
The applied magnetic field stabilizes the micropolar flow in the same manner that a
magnetic field stabilizes the classical Newtonian Poiseuille flow (see Takashima 1996).
This observation agrees with the damping effect that an applied magnetic field has on
a Newtonian or micropolar flow; the Lorentz force adds dissipation to the flow, which
leads to the decay of instabilities or turbulent fluctuation suppression. It should be noted
that as ε increases, the stability effect gets weaker; the strong destabilization that occurs
for high ε values influences the stabilization of the Lorentz force, but is not sufficient to
overcome it.

When considering the MMR effect on the flow, i.e. Ha = 1 and σm = 1, the micropolar
flow is further stabilized. In fact, the MMR term seems to have a strong stabilizing effect

920 A25-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

43
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.437


Effect of micromagnetorotation on magnetohydrodynamic

15 000

0.72

0.84

0.96α

α

1.08

1.20

0.72

0.84

0.96

1.08

1.20

0.72

0.84

0.96

1.08

1.20

Ha = 0, σm = 0

Ha = 1, σm = 0

Ha = 1, σm = 1

30 000 45 000 60 000

Re

Re

Re
75 000 90 000

13 000 26 000 39 000 52 000 65 000 78 000

13 000 26 000 39 000 52 000 65 000

(b)(a)

(c)

Figure 9. Effect of σm and Ha on micropolar neutral curves for ε = 0.1 and λ equal to: (a) 5, (b) 9, and (c) 13.

for all ε values. Physically, the MMR term affects the microrotation directly and the latter is
decreased when the magnetization is considered. As mentioned in the steady-state results,
the dual action of the applied magnetic field, both via the Lorentz force and the MMR
term, which directly affect the velocity and microrotation, adds extra dissipation to the
flow. As a result, the micropolar MHD flow is overall stabilized.

3.2.2. Effect of MMR on stability for various values of size effect parameter λ
Figure 9 shows the neutral stability curves (ci = 0) on the Re − α plane for λ = 5, 9, 13
and ε = 0.1. In the same manner as before, for Ha = 0 and σm = 0, the stability curves
have the same form as the corresponding ones in the study of Kuemmerer (1978). Similar
to the flow destabilizing effect of the micropolar effect parameter ε, higher values of
the size effect parameter λ enhance the instability. Physically, an increase of λ results
in a decrease of the angular viscosity coefficient γ , which means that there is smaller
resistance between the suspended particles and the viscous fluid. This situation intensifies
the chaotic rotating motion of the particles, i.e. the microrotation, which inevitably leads
to the formation of instabilities.

For Ha = 1 and σm = 0, i.e. when a magnetic field is applied to the flow but the MMR
effect is ignored, stabilization occurs. The magnetic field, much like before, exhibits a
stabilizing effect, owing to the braking effect of the Lorentz force on the flow. Interestingly,
in this case, the stabilizing effect of the applied magnetic field is stronger compared with
that discussed previously (ε variation). The destabilization is stronger for higher values
of ε compared with higher values of λ because the effect of λ on microrotation is not as
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Figure 10. Effect of σm and on micropolar neutral curves for ε = 0.4, λ = 5 and Hα equal to: (a) 0.1, (b) 1,
and (c) 1.5.

strong as that of ε (see figures 2 and 4). Therefore, the stabilizing effect of the Lorentz
force is more pronounced for growing values of λ.

In the case where the magnetization effect is considered (Ha = 1 and σm = 1), the flow
becomes more stable. The MMR term acts similar to the Lorentz force in terms of the flow
stabilization; the increase of λ results in a stronger stabilizing effect. Both Lorentz force
and the MMR term add dissipation to the flow, via the linear and angular momentums,
respectively; the phenomenon is further enhanced for higher values of λ.

3.2.3. Effect of MMR on stability for various values of Hartmann number Ha
The neutral stability curves for Hartmann number Ha = 0.1, 1 and 1.5, when ε = 0.4,
λ = 5 and σm = 0 and 1, are presented in Figure 10. The intense braking effect of the
magnetic field on the micropolar flow, as is shown in the steady-state results, does not
allow us to illustrate the stability curves for higher Ha values, because the ‘Chebop’
code becomes unstable as the critical Reynolds number becomes infinite. As is expected,
when Ha increases, the flow is stabilized. Increased Hartmann number is associated with a
stronger applied magnetic field, i.e. stronger Lorentz forces, which break any instabilities
on the flow.

When the effect of the magnetization is considered (σm = 1), the flow becomes more
stable. Additionally, as Ha grows, the stabilizing effect of the MMR term is enhanced.
The dual magnetic energy braking both via the Lorentz force and the MMR term is more
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intense when the Hartmann number is increased, which further stabilizes the flow. This
situation agrees with the steady-state results, where both velocity and microrotation are
‘frozen’ when higher Ha values and σm = 1 are assumed.

4. Conclusions

In the present study, the effect of MMR on an MHD micropolar Poiseuille flow has
been investigated. Micromagnetorotation is associated with the effect of magnetization
on micropolar flows when a magnetic field is applied to the latter. In the classical MHD
micropolar fluid model, magnetization is assumed to be parallel to the applied magnetic
field and it is negated. Here, the MHD micropolar fluid theory of Shizawa and Tanahashi
has been used, which includes a constitutive equation for magnetization. The governing
equations obtained from this theory have been solved analytically and the effect of the
associated dimensionless parameters on the velocity and microrotation fields has been
examined. Additionally, the instability of the MHD micropolar flow has been investigated,
by deriving a modified Orr–Sommerfeld equation, which focuses on the stabilizing effect
of the MMR. The neutral stability curves have been obtained with the use of the ‘Chebfun’
open-source numerical software.

Results reveal that the MMR has an intense braking effect on the flow, both for
the velocity and microrotation fields. Moreover, the relative velocity and microrotation
differences, when the magnetization is considered, are enhanced for higher ε and λ
values. However, the same relative differences are diminished when Ha is increased.
Subsequently, the skin friction coefficient of a micropolar Poiseuille flow is found to be
smaller, compared with that of a Newtonian flow. Similarly, the application of a magnetic
field on a micropolar or a Newtonian Poiseuille flow also decreases the skin friction
coefficient. When the magnetization effect is considered, the skin friction coefficient
slightly increases, and shows a difference of approximately 2.2 %.

Considering the instability of the MHD micropolar Poiseuille flow, it has been
confirmed that the microstructure of the flow has a destabilizing effect. Moreover, it
has also been verified that the magnetic field stabilizes the micropolar flow in a similar
manner to Newtonian flows. When the micromagnetorotation is included, the flow is
further stabilized. This phenomenon proves that MMR acts like the Lorentz force; MMR
dissipates magnetic energy in the flow directly via microrotation, while the Lorentz force
does similarly via the velocity. Both behave like braking mechanisms on the micropolar
flow and any instabilities or fluctuations are weakened.

In conclusion, it has been revealed that the MMR term in MHD micropolar flows,
which is associated with the influence of the magnetization on the flow, is an important
factor that has been neglected so far. In the future, this crucial effect should be considered
for industrial and bioengineering applications that involve micropolar flows and magnetic
fields.
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Appendix A

The constants used in (2.40)–(2.43) are defined as follows:

ξ1 = 4ελ2(1 + σm)+ Ha2 − 4ε2λ2

1 + ε
, (A1)

ξ2 = 4ελ2(1 + σm)Ha2

1 + ε
, (A2)

ξ3 = 2ελ2(1 + σm)

1 + ε
, (A3)

K = Ha2 − 4ε2λ2

2ε2λ2(1 + σm)
, (A4)

Λ = 1 + ε

2ε2λ2(1 + σm)
, (A5)

A =
√
ξ1 +

√
ξ1

2 − 4ξ2√
2

, (A6)

B =
√
ξ1 −

√
ξ1

2 − 4ξ2√
2

, (A7)

M = −1 + e2B, (A8)

N = −1 + e2A, (A9)

Γ = e−A+B

(−1 + e4B)ξ2
, (A10)

E = (e2A − e2B)ξ2, (A11)

Z = (−1 + e2(A+B))ξ2, (A12)

H = eAMξ3, (A13)

C1 = AeA+BΓ (−K + A2Λ)MNξ3

−BeAΓ (E − Z)(−K + B2Λ)M + AeBKN − A3eBΛN
, (A14)

C2 = AeA+BΓ (−K + A2Λ)MNξ3

−BeAΓ (E − Z)(−K + B2Λ)M + AeBKN − A3eBΛN
, (A15)

C3 = − Be2AΓ (−K + B2Λ)M2ξ3

−BeAΓ (E − Z)(−K + B2Λ)M + AeBKN − A3eBΛN
, (A16)

C4 = − Be2AΓ (−K + B2Λ)M2ξ3

−BeAΓ (E − Z)(−K + B2Λ)M + AeBKN − A3eBΛN
. (A17)
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