
THE SYSTEM SPORA

S. Lavrov
Institute of Theoretical Astronomy
Leningrad - U.R.S.S.

"SPORA" is an abbreviation for "Software Package Oriented to
Research in Astronomy" (in Russian - "Specializirowannoie Programmnoie
Obespechniie Rabot po Astronomii").

The system is designed for the wide range for users who are not
inclined to call themselves computer programmers. We assume that most
of them only wish to state their problems as simply as possible - just
to say which information they have and what they want to get. On the
other hand some of these users have rich programming experience and
they are fond of using sophisticated languages, like PL/1 or ALGOL 68,
and writing complicated programs.

The system SPORA must respond to interests of all this range of
users.

We have to deal with some difficulties arising in our area (as well
as in other theoretical and applied sciences) :

- a variety of physical representations (measurement methods) of
most quantities,'

- a variety of programming implementations of a given physical re
presentation in common programming languages,

- very different forms of existing information sets and program
modules (lack of standards),

- low actual level of existing universal (so called "high level")
programming languages and usually lower level of input languages of
data base control systems, operating systems and other programming tools.

We do not yet consider some very important features, such a distri
buted data bases, telecommunication and a variety of computer types.

One of the starting points in developing the system SPORA was that

135

C. Jaschek and W. Heintz (eds.j, Automated Data Retrieval in Astronomy, 135-143.
Copyright © 1982 by D. Reidel Publishing Company.

*

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

136 S. LAVROV

common programming languages (CPL), such as FORTRAN and ALGOL 60 or
even PL/I, ALGOL 68 and PASCAL, have had their golden age about ten
years ago. During the last decade programming practice has brought in
use new programming tools - namely data bases (DB) and application pro
gram packages (APP) - both with appropriate control systems and input
languages. These languages are often not compatible with CPL which are
still more appropriate for writing new algorithms. On the other hand DB
and APP are more suitable for storing and using previously accumulated
information and knowledge.

In the system SPORA all these means - DB, APP and CPL - are tied together
and form a (hopefully) balanced integrity.

One more concept of the 70-ies is that of abstract data types (ADT). In
contrast with DB and APP this concept has come not from practice, but
rather from the intention of language designers to raise the level of
programming languages, to make these languages closer to natural langua
ges and simpler for use and understanding. Therefore this concept was
accepted and widely used in the system SPORA and in its input language
"Descartes".

There are two kinds of abstract objects in the system : an abstract
type and an abstract map (or mapping). An abstract type may be either
a primary one or a relation.

A primary type is introduced by a declaration, an example of which is
given on fig. 1. The declaration contains the name of the type, the
names and types of operations that can be performed on values of the
type, and the axiomes expressing the properties of these operations. In
the example identifiers calend and Julian are names of so called repre
sentations. Each representation is bound with a method of physical mea-
surment of a value of the type. Each physical representation may in its
turn allow different implementations in various programming languages.
The properties of a representation can be described, e.g., as in fig. 2.

We cannot go into details of the programming implementation description
which tell the system how to denote a value of the type, to duplicate it
and to convert it from one physical representation into another. This
part of the type declaration is denoted by "..." in the figure.

An example of a map declaration is shown on fig. 3. Again the implemen
tation details of this declaration are omitted.

We distinguish between relations of a data base, which are called
tables, and relations of an application program package, which may have
more complex (hierarchical) structure. Let us consider closely only
the first kind of relations.

The typical example of a table declaration is given in fig. 4. It con
tains a table name, names and types of columns, a unique key of the
table, and possibly some indications of more efficient ways of access

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

THE SYSTEM SPORA 137

to the table.

The next concept is that of a data base schema (fig. 5). A data base
schema describes tables that are stored permanently in this data base.
For each specific program it is possible or even necessary to describe
a subschema of the schema (fig. 6). The names of tables and the names
and types of their columns must be the same as in the data base schema.
The number and order of the columns may however be different.

One possibly feels that the language of such declarations is too com
plicated, especially in the part dealing with representations. It may
be, but these declarations have to be written only once for a relatively
long period. This has to be done by an advanced user. We call him (or
her) a designer in contrast with the broader range of users. Their
task is to describe a specific problem by means of one or more Descartes
statements.

The main part of a statement is a request, which consists of a projection,
a line description and a condition. Only the line description is obliga
tory. In a request, presented on fig. 7, we ask for an intermediate
table, containing observations of Mercury at third contacts made du
ring an eclipse in 1973 having the maximum value of 0-C.

Each statement is to be placed in a program, written in some host
(base) programming language. In the case of the examples given in
fig. 8 and 9 this language is ALGOL 60.

The part of a program presented in fig. 8, calculates the average va
lue of 0-C for all observations contained in the personal archive of
a user. The fragment, exemplified on fig. 9, recalculates those values
of 0-C, which do not lie within interval LCU > Dlj . The construction
r.oc --? cvt Julian (A) bounds for each line r of the table personal-
archive the value of the attribute oc in the representation Julian
with the host language variable A. During the execution of the sta
tement B : = B + A (fig. 8) this variable assumes that value.

A user must have only a basic knowledge of host programming language -
how to declare variables and to describe the simplest calculation.

We have not mentioned here another part of the language "Descartes"
that deals with application program packages. Using this part a pro
blem can be stated even more simply and on a more abstract level.

The general structure of the system is shown on fig. 10. The model of
an application area is created by designer. The user specifies his
problem.

A problem is always stated in one specific area model. There may be
many models in the system and many problems per model. A model defines
terms used in its area and their connections and properties. All the

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

138 S. LAVROV

type time : calend, Julian

op same year X. : (time, time) > (boolean) ;

+ : (time, time) —-?> (time) ;

abs : (time) —-?> (time) ;

axiom same year (t, t) ;

(same year (t, tl) impl same year (tl, t)

((same year (t, tl) and same year (tl, t2))

impl same year (t, t2))

order (^) ;

endtype

Fig. 1

calend : representation algol /fortran

declaration day : "REAL" / REAL

month : "STRING" / CHARACTER (5)

year : "INTEGER" / INTEGER

endrepr

Fig. 2

map^, : (time, time) ;? (boolean) infix

endmap

Fig. 3

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

THE SYSTEM SPORA

Table mercury transit

(nobs : observation number ; nc : contact number ;

lambda, phi : angle ; h : distance ;

dc : contact description ; cond : observation condition ;

o minus c : time ; reduced time : time) ;

key (nobs) : index (reduced time, nc),...

endtab

Fig. 4

schema observations ;

primary

type observation number, contact description, ...

...., time a£ Julian

map within interval

table mercury transit endtab ;

table transit definition

(nobs : observation number ; obs observatory ; name : name ;

telescope : instrument ; meth : method ;

method description, source, notes : text) ;

key (nobs)

endtab ;

table personal archive

(nobs : observation number ; dc : contact description ; oc : time)

key (nobs) ; order (nobs ::^)
endtab
endschema

Fig. 5

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

140 S. LAVROV

db observations ;

dbtab mercury transit

(nobs : observation number ; nc : contact number ;

dc : contact description ; o minus c, reduced time : time) ;

personel archive

(nobs : observation number ; oc : time ;

dc : contact description) ;

worktab wt

(nobs : observation number ;

dc : contact description ; oc : time)

enddb

Fig. 6

r in mercury transit ::

((same year (r : reduced time, dnt calend (1973))

and (r.nc. = dnt contact number (3)))

and (all t in mercury transit

((same year (t. reduced time, dnt calend (1973))

and (t.nc. = dnt contact number (3)))

impl (abs (r.o. minus c)^ abs (t.o. minus c)))))

Fig. 7

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

THE SYSTEM SPORA 141

"INTEGER" N ; "REAL" A, B ; ...

B : = 0 ; N : = 0 ;

fofeach f in personal archive

with r. oc. ^ cvt Julian (A) do

B : = B + A ; N : = N + 1

eiiddo ;

"IF" N f 0 "THEN" B : = B/N ;

Fig. 8

"REAL" A, CI, Dl ; "INTEGER" K ;

"REAL" "PROCEDURE" F (X, I) ; ...

update r in personal archive ::

not ((cvt Julian (Cl)^, r. oc) and (r.oc/ cvt Julian (Dl)))

with r. oc. < y cvt Julian (A),

r. nobs ^ cvt observation number (K) do

... ; A : = F (A, K) ; ...

enddo ;

Fig. 9

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

142 S. LAVROV

Model of an
application

area

Data
base

X

Problem
specification

Abstract
program

Host language
program

*j Appl ication
programs

\A
Object
program

Input
data

Results

Fig. 10

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

THE SYSTEM SPORA 143

primitive types and maps used in a model must be declared beforehand.

From a model and a problem specification the system synthetizes an
abstract program, expressed in terms of abstract types and maps. The
system uses here properties of abstract objects, contained in their
declarations.

Then the abstract program is translated into a host language. This is
performed using properties of physical representations and their pro
gramming implementations.

At the next stage the host language program is compiled into an object
code. The compilation is done by a serial host language compiler.

The object program accepts input data prepared by the user and returns
to him the results of its execution. It may also get information from
the data base related to the supporting area model and put some part
of its results there. It may also use application programs (modules)
from the package and deliver new ones to it.

The sources of the underlying ideas used in SPORA are :

- relational model of data bases (E. F. Codd)
- the language UTOPIST (E. H. Tyugu)
- abstract data types (B. Liskov, E. Moss)
- abstraction levels (E. W. Dijkstra)
and others.

REFERENCE

1.0. Babaiev, F. A. Novikov, T. I. Petrushina. Iazyk Dekart - vhodnoj
iazyk sistemy SPORA : - In "Prikladnaia informatika", vyp. 1, 1981,
"Finansy i statistika", p.p. 35-73

https://doi.org/10.1017/S025292110008283X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110008283X

