A VARIANT OF CARATHÉODORY'S PROBLEM*

by GILBERT STRANG

(Received 23rd May 1967)

1. In this note we ask two questions and answer one. The questions can be combined as follows:

Does there exist a polynomial of the form

$$p(z) = \Sigma c_j (z-1)^j \tag{1}$$

which starts with prescribed complex coefficients $c_0, ..., c_{r-1}$, and satisfies

I: Re
$$p(z) > 0$$
 for $|z| \le 1, z \ne 1$?
II: $|p(z)| < 1$ for $|z| \le 1, z \ne 1$?

These differ from the classical problems of Carathéodory in one essential respect: the values of p and its first r-1 derivatives are given at the point z = 1 on the circumference of the unit circle, while in the original problem they were given at z = 0. Carathéodory's own answer was in terms of his "moment curve", but the forms studied a few years later by Toeplitz yield a more convenient statement of the solution. Since we want to reduce question I to Carathéodory's first problem, we recall the classical result:

There exists a polynomial $P(z) = \sum a_j z^j$ starting with prescribed coefficients $a_0, ..., a_{q-1}$ and satisfying Re P > 0 for $|z| \leq 1$ if and only if the associated Toeplitz form is positive definite: whenever $v \neq 0$,

$$(T_{q-1}v, v) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Re} \sum_{0}^{q-1} a_{j} e^{ij\theta} \left| \sum_{0}^{q-1} v_{k} e^{ik\theta} \right|^{2} d\theta > 0.$$
(2)

It is easy to see why (2) is necessary. If there is such a polynomial P, then for $v \neq 0$,

$$0 < \frac{1}{2\pi} \int \operatorname{Re} P(e^{i\theta}) \left| \sum_{0}^{q-1} v_k e^{ik\theta} \right|^2 d\theta = (T_{q-1}v, v)$$

the other terms $a_q e^{iq\theta} + \ldots + a_Q e^{iQ\theta}$ in P contribute nothing to the integral.

In stating the sufficiency of (2) we have taken some liberties with the more delicate result derived by Grenander and Szegö [1, p. 151]. They produce a power series $f(z) = \sum_{0}^{\infty} a_j z^j$ regular with Re $f \ge 0$ for |z| < 1, whenever T_{q-1} is a non-negative form. To construct our *P*, suppose T_{q-1} is in fact positive definite. Then it remains so if a_j is replaced by $a'_j = a_j(1+\varepsilon)^j$, $1 \le j < q$ and

^{*} This research was supported by the Sloan Foundation, the National Science Foundation (GP 7477), and the Office of Naval Research.

 $a'_0 = a_0 - \varepsilon$, for a suitably small $\varepsilon > 0$. Now [1] provides a power series f'(z') starting with the a'_j and satisfying $\operatorname{Re} f' \ge 0$ for |z'| < 1. Replacing z' by $z/(1+\varepsilon)$, we have a power series f starting with the a_j , regular in $|z| < 1+\varepsilon$, and satisfying $\operatorname{Re} f \ge \varepsilon$ in this circle. Truncating the series f at sufficiently large Q gives the polynomial P.

In short, one can decide after a fixed number of computations with the a_j whether or not the required polynomial P exists. It is an answer of this sort, in terms of $c_0, ..., c_{r-1}$, that we want for our problems. We have elsewhere investigated several special cases of questions I and II, in connection with difference schemes for mixed initial-boundary value problems [2-4]. Our methods of proof were very much *ad hoc*, however, and a more systematic treatment seems justified.

One could also think of replacing (1) by

$$P(z) = \Sigma c_j (z - z_0)^j$$

for points z_0 other than 1 or 0. In case $|z_0| = 1$ or $|z_0| < 1$, the obvious conformal map of the unit circle onto itself transforms the problem to one of the two problems already described. For $|z_0| > 1$, it is easy to show that the required polynomial always exists.

2. We begin with the calculation on which our solution depends.

Lemma 1. The space of polynomials $\sum_{r}^{R} c_{j}(e^{i\theta}-1)^{j}$ coincides for r = 2s with the space of functions of the form $(1-\cos\theta)^{s}\sum_{s}^{R-s} a_{k}e^{ik\theta}$.

Proof. Both are (complex) vector spaces of dimension R-r+1. To prove that they coincide, we have only to show that the second contains the first. For $r \leq j \leq R$ we have

$$(e^{i\theta} - 1)^{j} = (e^{i\theta/2} - e^{-i\theta/2})^{r} e^{ir\theta/2} (e^{i\theta} - 1)^{j-r}$$

= $(1 - \cos \theta)^{s} (-2)^{s} e^{is\theta} (e^{i\theta} - 1)^{j-2s}$

and the right side lies in the second vector space. Therefore the same is true for any linear combination of the powers $(e^{i\theta}-1)^j$, $r \leq j \leq R$, completing the proof.

If r is even, this result almost reduces our question I to Carathéodory's problem. We are looking for $c_r, ..., c_R$ such that

$$\operatorname{Re}\left[\sum_{0}^{r-1} c_{j}(e^{i\theta}-1)^{j}+\sum_{r}^{R} c_{j}(e^{i\theta}-1)^{j}\right] > 0 \text{ for } \theta \neq 0 \pmod{2\pi}.$$
(3)

According to the lemma, this is equivalent to looking for $a_s, ..., a_{R-s}$ such that

$$\frac{\operatorname{Re}\sum_{0}^{r-1} c_{j}(e^{i\theta}-1)^{j}}{(1-\cos\theta)^{s}} + \operatorname{Re}\sum_{s}^{R-s} a_{k}e^{ik\theta} > 0 \text{ for } \theta \neq 0 \pmod{2\pi}.$$
(4)

Admitting the possibility that a factor $(1 - \cos \theta)'$ might cancel in the first term, we need the following result.

Lemma 2. Suppose that $f(\theta)$ is a real trigonometric polynomial, f(0)>0, and $0 \le t < s$. Then there exist finitely many coefficients $a_s, ..., a_s$ such that

$$\frac{f(\theta)}{(1-\cos\theta)^{s-t}} + \operatorname{Re}\sum_{s}^{s} a_{k}e^{ik\theta} > 0 \text{ for } \theta \neq 0 \pmod{2\pi}$$
(5)

if and only if the Toeplitz form

$$(T_{t-1}(f)u, u) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \left| \sum_{0}^{t-1} u_k e^{ik\theta} \right|^2 d\theta$$
(6)

is positive definite. If t = 0 this condition is vacuous and (5) can always be satisfied.

Proof. Suppose that (6) were not positive definite. Then for some polynomial $P = \sum u_k e^{ik\theta}$ of degree less than t (we shall always normalize to $\sum |u_k|^2 = 1$) we have

$$\int f(\theta) | P(\theta) |^2 d\theta \leq 0.$$

For any choice of the a_k , this implies

$$0 \ge \int \frac{f(\theta)}{(1 - \cos \theta)^{s-t}} (1 - \cos \theta)^{s-t} |P|^2 d\theta$$
$$= \int \left[\frac{f(\theta)}{(1 - \cos \theta)^{s-t}} + \operatorname{Re} \sum a_k e^{ik\theta} \right] (1 - \cos \theta)^{s-t} |P|^2 d\theta \qquad (7)$$

since $(1 - \cos \theta)^{s-t} |P|^2$ is of degree $\langle s$. Clearly (5) cannot hold if (7) does.

For the converse, suppose that the form (6) is positive definite; for all (normalized) u_k ,

$$\int \frac{f(\theta)}{(1-\cos\theta)^{s-t}} (1-\cos\theta)^{s-t} \left| \sum_{0}^{t-1} u_k e^{ik\theta} \right|^2 d\theta > 0.$$
(8)

We claim that there is a trigonometric polynomial g, such that

$$g(\theta) \leq f(\theta)/(1-\cos\theta)^{s-t}$$
 for all θ ,

for which the form

$$\int g(\theta) \left| \sum_{0}^{s-1} v_k e^{ik\theta} \right|^2 d\theta \tag{9}$$

is positive definite. Given such a g, Carathéodory's theorem yields coefficients a_k such that

$$g(\theta) + \operatorname{Re} \sum_{s}^{S} a_{k} e^{ik\theta} > 0,$$

which implies (5):

$$\frac{f(\theta)}{(1-\cos\theta)^{s-t}} + \operatorname{Re}\sum_{s}^{s} a_{k}e^{ik\theta} > 0 \text{ for } \theta \neq 0 \pmod{2\pi}.$$

GILBERT STRANG

Thus the only problem is one of regularization at $\theta = 0$, by constructing g. Consider the truncated function g_n :

$$\begin{cases} g_n(\theta) = 0 \text{ for } |\theta| < 1/n, \\ g_n(\theta) = f(\theta)/(1 - \cos \theta)^{s-t} \text{ for } 1/n \le |\theta| \le \pi. \end{cases}$$

Then we assert that the form (9), with g replaced by g_n , is positive definite for large enough n. Otherwise we should have normalized trigonometric polynomials $P_n(\theta)$ of degree s-1 such that

$$\int g_n |P_n|^2 \le 0. \tag{10}$$

Some subsequence of the P_n converges to a (normalized) limit P_{∞} of degree s-1. Since s>t, it is easy to see that $P_{\infty}(0) = 0$; otherwise the left side of (10) would approach $+\infty$, because f(0)>0. In fact, the left side will diverge unless $|P_{\infty}|^2 = (1-\cos\theta)^{s-t} |Q|^2$ for some Q of degree t-1. (Thus our assertion is already proved in the case t = 0, where degree (Q) = -1 implies Q = 0, contradicting the normalization of P_{∞} .)

For arbitrarily large N, we have:

$$\int g_N |P_n|^2 \leq 0 \text{ for } n \geq N,$$

by comparison with (10), since $g_N \leq g_n$. As $n \to \infty$ through the subsequence, we arrive at the following result:

$$\int g_N (1 - \cos \theta)^{s-t} |Q|^2 \leq 0.$$

If now we let $N \to \infty$, we have a contradiction to (8). Therefore (9) is indeed positive definite, if we replace g by g_n with n large enough. Then we may finally choose a trigonometric polynomial g, lying just below g_n , for which (9) remains positive definite. This proves Lemma 2.

3. We can now state, in rather a cumbrous form, the answer to our original question I. Let us suppose that θ^m is the first non-vanishing power in the expansion

Re
$$\sum_{0}^{r-1} c_j (e^{i\theta} - 1)^j = b_m \theta^m + b_{m+1} \theta^{m+1} + \dots$$
 (11)

Theorem. The answer to question I is affirmative if and only if the relevant one of the following three conditions is satisfied:

(1) If m < r, then m = 2t must be even, $b_m > 0$, and $(T_{t-1}(g)u, u)$ positive definite (if t > 0), where g is the polynomial

$$g = \operatorname{Re} \sum_{0}^{2t-1} c_j (e^{i\theta} - 1)^j / (1 - \cos \theta)^t;$$

(2) if $m \ge r$ and r = 2s is even, then $(T_{s-1}(h)u, u)$ must be positive definite, where

$$h = \operatorname{Re} \sum_{0}^{r-1} c_j (e^{i\theta} - 1)^j / (1 - \cos \theta)^s;$$

(3) if $m \ge r$ and r = 2s - 1, the form

$$(T_{s-1}(l)u, u) + \alpha \mid \Sigma u_k \mid^2$$

must be positive definite for large α , where

$$l = \operatorname{Re} \frac{\sum_{0}^{r-1} c_j (e^{i\theta} - 1)^j + ib_r (-1)^s (e^{i\theta} - 1)^r}{(1 - \cos \theta)^s}.$$

Proof. (1) m < r; Obviously the terms $\sum_{r} c_j (e^{i\theta} - 1)^j$ which we are free to choose in (1) will be $o(\theta^m)$ as $\theta \to 0$. Therefore Re $p(e^{i\theta}) \sim b_m \theta^m$ and we must have $b_m > 0$ and m = 2t even, if we are to achieve Re $p(e^{i\theta}) > 0$ on both sides of $\theta = 0$. Let

$$f(\theta) = \operatorname{Re} \sum_{0}^{r-1} c_j (e^{i\theta} - 1)^j / (1 - \cos \theta)^t.$$

Then f is a real trigonometric polynomial with $f(0) = 2^t b_m > 0$, so we may apply Lemma 2: (5) can be satisfied if and only if $(T_{t-1}(f)u, u)$ is positive definite. We want to convert this assertion into: condition I can be satisfied if and only if $(T_{t-1}(g)u, u)$ is positive definite.

According to Lemma 1, the real part of $\sum_{2t}^{r-1} c_j (e^{i\theta} - 1)^j / (1 - \cos \theta)^t$ is the real part of a polynomial of the form $\sum_{t}^{r-1-t} a_k e^{ik\theta}$. But the first description exactly fits f-g. Since a polynomial fitting the second description has no effect on the (t-1)-th Toeplitz form,

$$(T_{t-1}(f)u, u) \equiv (T_{t-1}(g)u, u).$$
(12)

We pointed out, after the proof of Lemma 1, that satisfying (5) was equivalent to achieving *I*, when r = 2s is even. Suppose now that r = 2s-1; then the answer to *I* is affirmative if and only if we can prescribe c_{2s-1} in such a way that the resulting problem with r = 2s has an affirmative answer. Since m < 2s-1, the choice of c_{2s-1} has no effect on the values of m, b_m , or $(T_{t-1}(g)u, u)$. Thus the answer for r = 2s-1 is identical with that for r = 2s.

(2) $m \ge r$ and r = 2s even: In this case the reduction from question I, i.e., from (3) to (4), goes through. Furthermore $h(\theta)$, the first term in (7), is a trigonometric polynomial. Therefore we may use Carathéodory's solution directly; the positive definiteness of $(T_{s-1}(h)u, u)$ is the only test.

(3) $m \ge r$ and r = 2s - 1: Again the question is whether c_{2s-1} can be prescribed so that the answer with r = 2s becomes affirmative. For the imaginary part of c_{2s-1} we have no option; it must equal the coefficient $(-1)^{s+1}b_r$ which we have put into *l*, to cancel the coefficient of θ^{2s-1} in Re $\sum_{0}^{2s-1} c_j(e^{i\theta}-1)^j$.

https://doi.org/10.1017/S0013091500012165 Published online by Cambridge University Press

GILBERT STRANG

Now according to case (2), we have to ask whether the real part A of c_{2s-1} can be chosen to make the form

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(l + \frac{A \operatorname{Re} \left(e^{i\theta} - 1 \right)^{2s-1}}{(1 - \cos \theta)^s} \right) \left| \sum_{0}^{s-1} u_k e^{ik\theta} \right|^2 d\theta$$
(13)

positive definite. Given the identity

$$\frac{\operatorname{Re} (e^{i\theta} - 1)^{2s-1}}{(1 - \cos \theta)^s} = \frac{(-2)^s}{2} \sum_{1-s}^{s-1} e^{ij\theta},$$

the second integral in this form is just

$$\frac{\alpha}{2\pi}\int_{-\pi}^{\pi}\sum_{1-s}^{s-1}e^{ij\theta}\left|\sum_{0}^{s-1}u_{k}e^{ik\theta}\right|^{2}d\theta=\alpha|\Sigma u_{k}|^{2},$$

where $\alpha = (-2)^{s} A/2$. Thus the answer to I is affirmative if and only if α can be chosen so that the form

$$(T_{s-1}(l)u, u) + \alpha | \Sigma u_k |^2$$
(13')

is positive definite, completing the proof.

All the tests demanded in our Theorem can be carried out on the prescribed coefficients c_j with a fixed number of computations (depending only on r). Question II remains open.

REFERENCES

(1) U. GRENANDER and G. SZEGÖ, *Toeplitz Forms and their Applications* (University of California Press, Berkeley and Los Angeles, 1958).

(2) G. STRANG, Accurate partial difference methods II: Non-linear problems, Numerische Math. 6 (1964), 37-46.

(3) G. STRANG, Unbalanced polynomials and difference methods for mixed problems, SIAM J. Numer. Anal. 2 (1964), 46-51.

(4) G. STRANG, Implicit difference methods for initial boundary value problems, J. Math. Anal. and Applications, 16 (1966), 188-198.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

48