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1. In this note we ask two questions and answer one. The questions can be
combined as follows:

Does there exist a polynomial of the form

which starts with prescribed complex coefficients c0, ..., cr_1; and satisfies

I: Rep(z)>0 for \ z \ ^ 1, z ^ 1?

II: | p{z) | < 1 for | z | ^ 1, z ^ 1 ?

These differ from the classical problems of Caratheodory in one essential
respect: the values of/) and its first r— 1 derivatives are given at the point z = 1
on the circumference of the unit circle, while in the original problem they were
given at z = 0. Caratheodory's own answer was in terms of his " moment
curve ", but the forms studied a few years later by Toeplitz yield a more con-
venient statement of the solution. Since we want to reduce question I to Cara-
theodory's first problem, we recall the classical result:

There exists a polynomial P(z) = la,*-' starting with prescribed coefficients
a0, ..., a9_! and satisfying ReP>0 for | z | ^ 1 if and only if the associated
Toeplitz form is positive definite: whenever v ^ 0,

" d9>0. (2)

It is easy to see why (2) is necessary. If there is such a polynomial P, then
for ii^O,

9 - 1fJ— ReP(e'8) I vke
ik

o

the other terms aqe
iq9+ ... + aQeiQ0 in P contribute nothing to the integral.

In stating the sufficiency of (2) we have taken some liberties with the more
delicate result derived by Grenander and Szego [1, p. 151]. They produce a

00

power series/(z) = £ a}z
} regular with R e / 2: 0 for | z | <1, whenever Tq-y

o
is a non-negative form. To construct our P, suppose r?_, is in fact positive
definite. Then it remains so if a3 is replaced by a) = a/ l+ey, 1 ^j<q and
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44 GILBERT STRANG

a'o = ao~£. for a suitably small e>0. Now [1] provides a power series/'(2')
starting with the a) and satisfying R e / ' ^ 0 for |z' | <1. Replacing z' by
z/(l +e), we have a power series/starting with the ajy regular in \z\ < 1 +£,
and satisfying R e / ^ e in this circle. Truncating the series/at sufficiently large
Q gives the polynomial P.

In short, one can decide after a fixed number of computations with the aj
whether or not the required polynomial P exists. It is an answer of this sort,
in terms of c0, ..., cr_i, that we want for our problems. We have elsewhere
investigated several special cases of questions I and II, in connection with
difference schemes for mixed initial-boundary value problems [2-4]. Our
methods of proof were very much ad hoc, however, and a more systematic
treatment seems justified.

One could also think of replacing (1) by

for points z0 other than 1 or 0. In case | z0 | = 1 or | z0 | <1, the obvious
conformal map of the unit circle onto itself transforms the problem to one of
the two problems already described. For | z0 | > 1, it is easy to show that the
required polynomial always exists.

2. We begin with the calculation on which our solution depends.
R

Lemma 1. The space of polynomials £ c;(e'9 —1)J coincides for r = 2s with
r

R-s

the space of functions of the form (1-cos 6)s £ ake'k0.
s

Proof. Both are (complex) vector spaces of dimension R—r+l. To prove
that they coincide, we have only to show that the second contains the first.
For r g / ^ R we have

(eiB-iy = (eiei2-e-w/2yeire/2(ew-iy-r

= (1 - cos 9)X - 2)VS V " - l)y"2s

and the right side lies in the second vector space. Therefore the same is true
for any linear combination of the powers (eie— 1)J, r ^ j ^ R, completing the
proof.

If r is even, this result almost reduces our question I to Caratheodory's
problem. We are looking for cr, ...,cR such that

Re I £ cj(ew-1)' + £ cj(eie- 1)J 1 >0 for 9 ¥= 0 (mod 2n). (3)

According to the lemma, this is equivalent to looking for as,..., aR_s such that

5 + Re Y ake
ik0>0 for 0 # 0 (mod 2n). (4)

( 1 — COS0)S s
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Admitting the possibility that a factor (1 — cos 0)' might cancel in the first term,
we need the following result.

Lemma 2. Suppose that f (9) is a real trigonometric polynomial, / (0)>0,
andO ^ t<s. Then there exist finitely many coefficients as, .... as such that

(l-cos0)s

if and only if the Toeplitz form

- +Re Y, ake
ikB>0for 0 ^ 0 (mod 2n)

d9

(5)

(6)

is positive definite. If t = 0 this condition is vacuous and (5) can always be
satisfied.

Proof. Suppose that (6) were not positive definite. Then for some
polynomial P = I,uke

ik0 of degree less than t (we shall always normalize to
S | uk |

2 = 1) we have
|2 d9 ^ 0.

For any choice of the ak, this implies

0 > f
' J ( 1 -cos 0)s"'

-, + R e E a* "l9"](l-cos0)s-' P\2d6 (7)

since (1 -cos 9)s~' \ P | 2 is of degree <s. Clearly (5) cannot hold if (7) does.
For the converse, suppose that the form (6) is positive definite; for all

(normalized) uk,
r - l

— (l-cos0) s - ' y uke
m d9>0.

(l-cos0)s~' o

We claim that there is a trigonometric polynomial g, such that

g(9) ^ /(0)/(l-cos 0)S~' for all 0,

(8)

for which the form

9(9)
s - l

jke d9 (9)

is positive definite. Given such a g, Caratheodory's theorem yields coefficients

s
ak such that

which implies (5):

(l-cos0)3— +Re Y, ake
M>0 for 0 # 0 (mod 2n).
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Thus the only problem is one of regularization at 9 = 0, by constructing g.
Consider the truncated function gn:

(0) = 0 for | 0 | <l /«,

(0) =/(0)/(i-cos ey-< for i/« g 101 ̂  n.
Then we assert that the form (9), with g replaced by gn, is positive definite for
large enough n. Otherwise we should have normalized trigonometric poly-
nomials Pn{9) of degree s—l such that

i9n\P«\2^0. (10)

Some subsequence of the Pn converges to a (normalized) limit Pm of degree
s-\. Sincej>/, itiseasy to see that P«,(0) = 0; otherwise the left side of (10)
would approach + oo, because/(0)>0. In fact, the left side will diverge unless
| Pm |2 = (1 -cos 0)s~' | Q |2 for some Q of degree t-\. (Thus our assertion
is already proved in the case t = 0, where degree ( 0 = — 1 implies Q = 0,
contradicting the normalization of Px.)

For arbitrarily large N, we have:

Sgtl\PH\2ZOforn*N,

by comparison with (10), since gN :£ gn. As «-»oo through the subsequence,
we arrive at the following result:

j^a-coser'iei^o.
If now we let JV->OO, we have a contradiction to (8). Therefore (9) is indeed
positive definite, if we replace g by gn with n large enough. Then we may finally
choose a trigonometric polynomial g, lying just below gn, for which (9) remains
positive definite. This proves Lemma 2.

3. We can now state, in rather a cumbrous form, the answer to our original
question I. Let us suppose that 6m is the first non-vanishing power in the expan-
sion

Re ' ^ c ^ - i y = bm6m+bm+16
m+i + ... . (11)

o
Theorem. The answer to question I is affirmative if and only if the relevant

one of the following three conditions is satisfied:

(1) If m<r, then m = 2t must be even, bm>0, a«fi?(71
<_1(0)i/, u)positive definite

(ift>0), where g is the polynomial

g = Re "J1 c/ei9-iy/(l-cos 6)';
o

(2) if m ̂  r and r = 2s is even, then {Ts_i{K)u, u) must be positive definite,
where

h = Re £ c/e"-iy/(l-cos 6)s;

https://doi.org/10.1017/S0013091500012165 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500012165


A VARIANT OF CARATHEODORY'S PROBLEM 47

(3) if m ^ r and r = 2s—1, the form

(r5_1(/)M,«)+a|zMj2

must be positive definite for large a, where

I = Re
(1-COS0)*

Proof. (1) m<r; Obviously the terms £ c,(e'8 —ly which we are free to
r

choose in (1) will be o(6m) as 0->O. Therefore Re/>(el8)~&m0m and we must
have bm>0 and m = 2t even, if we are to achieve Rep(ew)>0 on both sides of
0 = 0. Let

f(9) = Re ' £ cj(eio-iyia -cos 0)'.
o

Then / is a real trigonometric polynomial with / (0) = 2'bm > 0, so we may
apply Lemma 2: (5) can be satisfied if and only if (T, .^/)! / , w) is positive
definite. We want to convert this assertion into: condition I can be satisfied
if and only if CT,_ !(#)«, u) is positive definite.

r - l

According to Lemma 1, the real part of £ c,(e'8 — iy'/(l — cos 0)' is the real
21

r-l-r

part of a polynomial of the form £ flAe''9. But the first description exactly

fits f—g. Since a polynomial fitting the second description has no effect on the
(t- l)-th Toeplitz form,

(r ,_1(/)«,«)s(r ,_1to)«,i i) . (12)

We pointed out, after the proof of Lemma 1, that satisfying (5) was equi-
valent to achieving /, when r = 2s is even. Suppose now that r = 2s— 1;
then the answer to / is affirmative if and only if we can prescribe cls-i in such
a way that the resulting problem with r = 2s has an affirmative answer. Since
m < 2s — 1, the choice of c2s-1 has no effect on the values of m, bm, or (r,_ i(g)u,u).
Thus the answer for r = 2s— 1 is identical with that for r = 2s.

(2) m ^ r and r = 2s even: In this case the reduction from question I, i.e.,
from (3) to (4), goes through. Furthermore h(9), the first term in (7), is a trigono-
metric polynomial. Therefore we may use Caratheodory's solution directly;
the positive definiteness of (Ts-X(h)u, u) is the only test.

(3) m ^ r and r = 2s— 1: Again the question is whether c2s-i can be
prescribed so that the answer with r = 2s becomes affirmative. For the imagin-
ary part of c2s_! we have no option; it must equal the coefficient (— l)s+1br

2s-1

which we have put into /, to cancel the coefficient of 92s~l in Re £ c/e'8—1 )•'.
o
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Now according to case (2), we have to ask whether the real part A of c2s-i can
be chosen to make the form

J_ ( /
2 J A

\ 2 s - l

(1-COS0)S

positive definite. Given the identity

s - 1
JkS dd (13)

eCe"-!)2*-1 = {-If y .,,
(l-cos0)s 2 ft '

the second integral in this form is just
"JI s - l

i
s - 1

0E «* kO

where a = (— 2)sA/2. Thus the answer to I is affirmative if and only if a can
be chosen so that the form

(rf_1(Oa,«)+a|I«4 (13')

is positive definite, completing the proof.
All the tests demanded in our Theorem can be carried out on the prescribed

coefficients Cj with a fixed number of computations (depending only on r).
Question II remains open.
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