A VARIANT OF CARATHÉODORY'S PROBLEM*

by GILBERT STRANG

(Received 23rd May 1967)

1. In this note we ask two questions and answer one. The questions can be combined as follows:

Does there exist a polynomial of the form

$$
\begin{equation*}
p(z)=\Sigma c_{j}(z-1)^{j} \tag{1}
\end{equation*}
$$

which starts with prescribed complex coefficients c_{0}, \ldots, c_{r-1}, and satisfies

$$
\begin{aligned}
& \text { I: } \quad \operatorname{Re} p(z)>0 \text { for }|z| \leqq 1, z \neq 1 ? \\
& \text { II: }|p(z)|<1 \text { for }|z| \leqq 1, z \neq 1 ?
\end{aligned}
$$

These differ from the classical problems of Carathéodory in one essential respect: the values of p and its first $r-1$ derivatives are given at the point $z=1$ on the circumference of the unit circle, while in the original problem they were given at $z=0$. Carathéodory's own answer was in terms of his " moment curve ", but the forms studied a few years later by Toeplitz yield a more convenient statement of the solution. Since we want to reduce question I to Carathéodory's first problem, we recall the classical result:

There exists a polynomial $P(z)=\Sigma a_{j} z^{j}$ starting with prescribed coefficients a_{0}, \ldots, a_{q-1} and satisfying $\operatorname{Re} P>0$ for $|z| \leqq 1$ if and only if the associated Toeplitz form is positive definite: whenever $v \neq 0$,

$$
\begin{equation*}
\left(T_{q-1} v, v\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \operatorname{Re} \sum_{0}^{q-1} a_{j} e^{i j \theta}\left|\sum_{0}^{q-1} v_{k} e^{i k \theta}\right|^{2} d \theta>0 \tag{2}
\end{equation*}
$$

It is easy to see why (2) is necessary. If there is such a polynomial P, then for $v \neq 0$,

$$
0<\frac{1}{2 \pi} \int \operatorname{Re} P\left(e^{i \theta}\right)\left|\sum_{0}^{q-1} v_{k} e^{i k \theta}\right|^{2} d \theta=\left(T_{q-1} v, v\right) ;
$$

the other terms $a_{q} e^{i q \theta}+\ldots+a_{Q} e^{i Q \theta}$ in P contribute nothing to the integral.
In stating the sufficiency of (2) we have taken some liberties with the more delicate result derived by Grenander and Szegö [1, p. 151]. They produce a power series $f(z)=\sum_{0}^{\infty} a_{j} z^{j}$ regular with $\operatorname{Re} f \geqq 0$ for $|z|<1$, whenever T_{q-1} is a non-negative form. To construct our P, suppose T_{q-1} is in fact positive definite. Then it remains so if a_{j} is replaced by $a_{j}^{\prime}=a_{j}(1+\varepsilon)^{j}, 1 \leqq j<q$ and

[^0]$a_{0}^{\prime}=a_{0}-\varepsilon$, for a suitably small $\varepsilon>0$. Now [1] provides a power series $f^{\prime}\left(z^{\prime}\right)$ starting with the a_{j}^{\prime} and satisfying $\operatorname{Re} f^{\prime} \geqq 0$ for $\left|z^{\prime}\right|<1$. Replacing z^{\prime} by $z /(1+\varepsilon)$, we have a power series f starting with the a_{j}, regular in $|z|<1+\varepsilon$, and satisfying $\operatorname{Re} f \geqq \varepsilon$ in this circle. Truncating the series f at sufficiently large Q gives the polynomial P.

In short, one can decide after a fixed number of computations with the a_{j} whether or not the required polynomial P exists. It is an answer of this sort, in terms of c_{0}, \ldots, c_{r-1}, that we want for our problems. We have elsewhere investigated several special cases of questions I and II, in connection with difference schemes for mixed initial-boundary value problems [2-4]. Our methods of proof were very much ad hoc, however, and a more systematic treatment seems justified.

One could also think of replacing (1) by

$$
P(z)=\Sigma c_{j}\left(z-z_{0}\right)^{j}
$$

for points z_{0} other than 1 or 0 . In case $\left|z_{0}\right|=1$ or $\left|z_{0}\right|<1$, the obvious conformal map of the unit circle onto itself transforms the problem to one of the two problems already described. For $\left|z_{0}\right|>1$, it is easy to show that the required polynomial always exists.
2. We begin with the calculation on which our solution depends.

Lemma 1. The space of polynomials $\sum_{r}^{R} c_{j}\left(e^{i \theta}-1\right)^{j}$ coincides for $r=2 s$ with the space of functions of the form $(1-\cos \theta)^{s} \sum_{s}^{R-s} a_{k} e^{i k \theta}$.

Proof. Both are (complex) vector spaces of dimension $R-r+1$. To prove that they coincide, we have only to show that the second contains the first. For $r \leqq j \leqq R$ we have

$$
\begin{aligned}
\left(e^{i \theta}-1\right)^{j} & =\left(e^{i \theta / 2}-e^{-i \theta / 2}\right)^{r} e^{i r \theta / 2}\left(e^{i \theta}-1\right)^{j-r} \\
& =(1-\cos \theta)^{s}(-2)^{s} e^{i s \theta}\left(e^{i \theta}-1\right)^{j-2 s}
\end{aligned}
$$

and the right side lies in the second vector space. Therefore the same is true for any linear combination of the powers $\left(e^{i \theta}-1\right)^{j}, r \leqq j \leqq R$, completing the proof.

If r is even, this result almost reduces our question I to Carathéodory's problem. We are looking for c_{r}, \ldots, c_{R} such that

$$
\begin{equation*}
\operatorname{Re}\left[\sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j}+\sum_{r}^{R} c_{j}\left(e^{i \theta}-1\right)^{j}\right]>0 \text { for } \theta \neq 0(\bmod 2 \pi) . \tag{3}
\end{equation*}
$$

According to the lemma, this is equivalent to looking for a_{s}, \ldots, a_{R-s} such that

$$
\begin{equation*}
\frac{\operatorname{Re} \sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j}}{(1-\cos \theta)^{s}}+\operatorname{Re} \sum_{s}^{R-s} a_{k} e^{i k \theta}>0 \text { for } \theta \neq 0(\bmod 2 \pi) \tag{4}
\end{equation*}
$$

Admitting the possibility that a factor $(1-\cos \theta)^{t}$ might cancel in the first term, we need the following result.

Lemma 2. Suppose that $f(\theta)$ is a real trigonometric polynomial, $f(0)>0$, and $0 \leqq t<s$. Then there exist finitely many coefficients a_{s}, \ldots, a_{s} such that

$$
\begin{equation*}
\frac{f(\theta)}{(1-\cos \theta)^{s-t}}+\operatorname{Re} \sum_{s}^{s} a_{k} e^{i k \theta}>0 \text { for } \theta \neq 0(\bmod 2 \pi) \tag{5}
\end{equation*}
$$

if and only if the Toeplitz form

$$
\begin{equation*}
\left(T_{t-1}(f) u, u\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)\left|\sum_{0}^{t-1} u_{k} e^{i k \theta}\right|^{2} d \theta \tag{6}
\end{equation*}
$$

is positive definite. If $t=0$ this condition is vacuous and (5) can always be satisfied.

Proof. Suppose that (6) were not positive definite. Then for some polynomial $P=\Sigma u_{k} e^{i k \theta}$ of degree less than t (we shall always normalize to $\Sigma\left|u_{k}\right|^{2}=1$) we have

$$
\int f(\theta)|P(\theta)|^{2} d \theta \leqq 0
$$

For any choice of the a_{k}, this implies

$$
\begin{align*}
& 0 \geqq \int \frac{f(\theta)}{(1-\cos \theta)^{s-t}}(1-\cos \theta)^{s-t}|P|^{2} d \theta \\
& \quad=\int\left[\frac{f(\theta)}{(1-\cos \theta)^{s-t}}+\operatorname{Re} \sum a_{k} e^{i k \theta}\right](1-\cos \theta)^{s-t}|P|^{2} d \theta \tag{7}
\end{align*}
$$

since $(1-\cos \theta)^{s-t}|P|^{2}$ is of degree $<s$. Clearly (5) cannot hold if (7) does.
For the converse, suppose that the form (6) is positive definite; for all (normalized) u_{k},

$$
\begin{equation*}
\int \frac{f(\theta)}{(1-\cos \theta)^{s-t}}(1-\cos \theta)^{s-t}\left|\sum_{0}^{t-1} u_{k} e^{i k \theta}\right|^{2} d \theta>0 \tag{8}
\end{equation*}
$$

We claim that there is a trigonometric polynomial g, such that

$$
g(\theta) \leqq f(\theta) /(1-\cos \theta)^{s-t} \text { for all } \theta
$$

for which the form

$$
\begin{equation*}
\int g(\theta)\left|\sum_{0}^{s-1} v_{k} e^{i k \theta}\right|^{2} d \theta \tag{9}
\end{equation*}
$$

is positive definite. Given such a g, Carathéodory's theorem yields coefficients a_{k} such that

$$
g(\theta)+\operatorname{Re} \sum_{s}^{S} a_{k} e^{i k \theta}>0
$$

which implies (5):

$$
\frac{f(\theta)}{(1-\cos \theta)^{s-t}}+\operatorname{Re} \sum_{s}^{S} a_{k} e^{i k \theta}>0 \text { for } \theta \neq 0(\bmod 2 \pi)
$$

Thus the only problem is one of regularization at $\theta=0$, by constructing g. Consider the truncated function g_{n} :

$$
\left\{\begin{array}{l}
g_{n}(\theta)=0 \text { for }|\theta|<1 / n \\
g_{n}(\theta)=f(\theta) /(1-\cos \theta)^{s-t} \text { for } 1 / n \leqq|\theta| \leqq \pi
\end{array}\right.
$$

Then we assert that the form (9), with g replaced by g_{n}, is positive definite for large enough n. Otherwise we should have normalized trigonometric polynomials $P_{n}(\theta)$ of degree $s-1$ such that

$$
\begin{equation*}
\int g_{n}\left|P_{n}\right|^{2} \leqq 0 \tag{10}
\end{equation*}
$$

Some subsequence of the P_{n} converges to a (normalized) limit P_{∞} of degree $s-1$. Since $s>t$, it is easy to see that $P_{\infty}(0)=0$; otherwise the left side of (10) would approach $+\infty$, because $f(0)>0$. In fact, the left side will diverge unless $\left|P_{\infty}\right|^{2}=(1-\cos \theta)^{s t}|Q|^{2}$ for some Q of degree $t-1$. (Thus our assertion is already proved in the case $t=0$, where degree $(Q)=-1$ implies $Q=0$, contradicting the normalization of P_{∞}.)

For arbitrarily large N, we have:

$$
\int g_{N}\left|P_{n}\right|^{2} \leqq 0 \text { for } n \geqq N
$$

by comparison with (10), since $g_{N} \leqq g_{n}$. As $n \rightarrow \infty$ through the subsequence, we arrive at the following result:

$$
\int g_{N}(1-\cos \theta)^{s-t}|Q|^{2} \leqq 0
$$

If now we let $N \rightarrow \infty$, we have a contradiction to (8). Therefore (9) is indeed positive definite, if we replace g by g_{n} with n large enough. Then we may finally choose a trigonometric polynomial g, lying just below g_{n}, for which (9) remains positive definite. This proves Lemma 2.
3. We can now state, in rather a cumbrous form, the answer to our original question I. Let us suppose that θ^{m} is the first non-vanishing power in the expansion

$$
\begin{equation*}
\operatorname{Re} \sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j}=b_{m} \theta^{m}+b_{m+1} \theta^{m+1}+\ldots \tag{11}
\end{equation*}
$$

Theorem. The answer to question I is affirmative if and only if the relevant one of the following three conditions is satisfied:
(1) If $m<r$, then $m=2 t$ must be even, $b_{m}>0$, and $\left(T_{t-1}(g) u, u\right)$ positive definite (if $t>0$), where g is the polynomial

$$
g=\operatorname{Re} \sum_{0}^{2 t-1} c_{j}\left(e^{i \theta}-1\right)^{j} /(1-\cos \theta)^{t}
$$

(2) if $m \geqq r$ and $r=2 s$ is even, then $\left(T_{s-1}(h) u, u\right)$ must be positive definite, where

$$
h=\operatorname{Re} \sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j} /(1-\cos \theta)^{s}
$$

(3) if $m \geqq r$ and $r=2 s-1$, the form

$$
\left(T_{s-1}(l) u, u\right)+\alpha\left|\Sigma u_{k}\right|^{2}
$$

must be positive definite for large α, where

$$
l=\operatorname{Re} \frac{\sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j}+i b_{r}(-1)^{s}\left(e^{i \theta}-1\right)^{r}}{(1-\cos \theta)^{s}}
$$

Proof. (1) $m<r$; Obviously the terms $\sum_{r} c_{j}\left(e^{i \theta}-1\right)^{j}$ which we are free to choose in (1) will be $o\left(\theta^{m}\right)$ as $\theta \rightarrow 0$. Therefore $\operatorname{Re} p\left(e^{1 \theta}\right) \sim b_{m} \theta^{m}$ and we must have $b_{m}>0$ and $m=2 t$ even, if we are to achieve $\operatorname{Re} p\left(e^{i \theta}\right)>0$ on both sides of $\theta=0$. Let

$$
f(\theta)=\operatorname{Re} \sum_{0}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j} /(1-\cos \theta)^{z}
$$

Then f is a real trigonometric polynomial with $f(0)=2^{t} b_{m}>0$, so we may apply Lemma 2: (5) can be satisfied if and only if ($\left.T_{t-1}(f) u, u\right)$ is positive definite. We want to convert this assertion into: condition I can be satisfied if and only if ($\left.T_{t-1}(g) u, u\right)$ is positive definite.

According to Lemma 1 , the real part of $\sum_{2 t}^{r-1} c_{j}\left(e^{i \theta}-1\right)^{j} /(1-\cos \theta)^{t}$ is the real part of a polynomial of the form $\sum_{t}^{r-t} a_{k} e^{i k \theta}$. But the first description exactly fits $f-g$. Since a polynomial fitting the second description has no effect on the ($t-1$)-th Toeplitz form,

$$
\begin{equation*}
\left(T_{t-1}(f) u, u\right) \equiv\left(T_{t-1}(g) u, u\right) \tag{12}
\end{equation*}
$$

We pointed out, after the proof of Lemma 1 , that satisfying (5) was equivalent to achieving I, when $r=2 s$ is even. Suppose now that $r=2 s-1$; then the answer to I is affirmative if and only if we can prescribe $c_{2 s-1}$ in such a way that the resulting problem with $r=2 s$ has an affirmative answer. Since $m<2 s-1$, the choice of $c_{2 s-1}$ has no effect on the values of m, b_{m}, or $\left(T_{t-1}(g) u, u\right)$. Thus the answer for $r=2 s-1$ is identical with that for $r=2 s$.
(2) $m \geqq r$ and $r=2 s$ even: In this case the reduction from question I, i.e., from (3) to (4), goes through. Furthermore $h(\theta)$, the first term in (7), is a trigonometric polynomial. Therefore we may use Carathéodory's solution directly; the positive definiteness of $\left(T_{s-1}(h) u, u\right)$ is the only test.
(3) $m \geqq r$ and $r=2 s-1$: Again the question is whether $c_{2 s-1}$ can be prescribed so that the answer with $r=2 s$ becomes affirmative. For the imaginary part of $c_{2 s-1}$ we have no option; it must equal the coefficient $(-1)^{s+1} b_{r}$ which we have put into l, to cancel the coefficient of $\theta^{2 s-1}$ in $\operatorname{Re} \sum_{0}^{2 s-1} c_{j}\left(e^{i \theta}-1\right)^{j}$.

Now according to case (2), we have to ask whether the real part A of $c_{2 s-1}$ can be chosen to make the form

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(l+\frac{A \operatorname{Re}\left(e^{i \theta}-1\right)^{2 s-1}}{(1-\cos \theta)^{s}}\right)\left|\sum_{0}^{s-1} u_{k} e^{i k \theta}\right|^{2} d \theta \tag{13}
\end{equation*}
$$

positive definite. Given the identity

$$
\frac{\operatorname{Re}\left(e^{i \theta}-1\right)^{2 s-1}}{(1-\cos \theta)^{s}}=\frac{(-2)^{s}}{2} \sum_{1-s}^{s-1} e^{i j \theta}
$$

the second integral in this form is just

$$
\frac{\alpha}{2 \pi} \int_{-\pi}^{\pi} \sum_{1-s}^{s-1} e^{i j \theta}\left|\sum_{0}^{s-1} u_{k} e^{i k \theta}\right|^{2} d \theta=\alpha\left|\Sigma u_{k}\right|^{2}
$$

where $\alpha=(-2)^{s} A / 2$. Thus the answer to I is affirmative if and only if α can be chosen so that the form

$$
\begin{equation*}
\left(T_{s-1}(l) u, u\right)+\alpha\left|\Sigma u_{k}\right|^{2} \tag{13'}
\end{equation*}
$$

is positive definite, completing the proof.
All the tests demanded in our Theorem can be carried out on the prescribed coefficients c_{j} with a fixed number of computations (depending only on r). Question II remains open.

REFERENCES

(1) U. Grenander and G. Szegö, Toeplitz Forms and their Applications (University of California Press, Berkeley and Los Angeles, 1958).
(2) G. Strang, Accurate partial difference methods II: Non-linear problems, Numerische Math. 6 (1964), 37-46.
(3) G. Strang, Unbalanced polynomials and difference methods for mixed problems, SIAM J. Numer. Anal. 2 (1964), 46-51.
(4) G. Strang, Implicit difference methods for initial boundary value problems, J. Math. Anal. and Applications, 16 (1966), 188-198.

Massachusetts Institute of Technology.

[^0]: * This research was supported by the Sloan Foundation, the National Science Foundation (GP 7477), and the Office of Naval Research.

