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Abstract

The rolling of a ball on a horizontal deformable surface was investigated under the assump-
tions that the ball was a rigid sphere and the surface was elastic. Finite strain theory was
used to develop theoretical results which were found to match observations well in cases
where the ball and surface involved were such as to ensure no slipping at the region of
contact, including a lawn bowl rolling on a grass rink and a billiard ball rolling on carpet.
The theory did not match well the behaviour of a golf ball on a grass green because the ball
was too light to enforce the no-slipping condition.

1. Introduction

Experiments were performed with a billiard ball rolling on carpet, a lawn bow! rolling
on a grass rink, and a golf ball rolling on a grass putting green. In each case the
ball was launched from an inclined green. In each case the ball was launched from
an inclined ramp, and accurate measurements were made of a number of distances
travelled at measured times throughout each run.

In every case the rolling surface was plane and horizontal. Under the very rapidly
changing stresses induced by a rolling ball, the behaviour of the surface approximates
to that of an elastic solid. It is reasonable to assume that the rigidity u of the surface
is constant and that inertial forces induced in it are negligible. Calculations showed
that, in the situations considered, air resistance to the motion of the ball was small
enough to be neglected.

Finite strain theory of an elastic solid was found to be adequate to account for the
observed nonlinear nature of the deceleration of the ball as a function of time. The
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resulting theory was found to match closely the results observed for both a billiard
ball on carpet and a lawn bowl on grass. This was not so, however, for a golf ball on
grass; this was because the light golf ball did not enforce a no-slip condition over the
region of contact in the way that the heavier balls did.

The approach used here differs from that used by most investigators of this subject.
The relevant elasticity theory is shown to lead to a nonlinear differential equation
governing the deceleration of the ball. The problem is thus reduced to solving this
equation and evaluating the constants which occur in it and in its solution. (For other
approaches to the subject, see Bueche and Flom [4], which also contains a list of
sixteen other references.)

2. The experimental arrangements

It was necessary to measure the distances x travelled by the ball, and the corre-
sponding times ¢, at a number of locations spaced along the path, including the end
position. For the billiard ball on carpet this was achieved by recording the progress of
the ball by a video camera which was mounted on rails to enable it to move with the
ball. A zoom lens enabled accurate distance readings to be made every 0.04 seconds
from a metric tape laid beside the path of the ball. It was found that the distances
recorded every 0.08 seconds were adequate for analytic purposes.

For the golf ball and lawn bowl the outdoor situation made the use of a moving
video camera difficult. Instead, a multi-recording electronic stop-watch was used to
record the times for the ball to reach several measured locations, including the end

point, the distances being given by a metric tape laid beside the path.

Because only the distances travelled by the bowl along its path were needed in this
investigation, the bias causing a curved path was offset by two 20 cent coins taped to
the side of the bowl. This was found to be ideal for producing a straight path. (The
effect of bias on the path of a bowl has been described elsewhere, see for example
Brearley and Bolt (2], Brearley [1].)

All of the balls were launched down inclined ramps. For the billiard ball on carpet, a
short aluminium ramp was used, with a curve at the bottom to ensure smooth transition
to the carpet. The lawn bowl and golf ball were launched from a 2 metre long wooden
ramp of 30° angle of inclination. A curved steel plate at the foot of the ramp gave
smooth access to the grass surface. A number of different starting positions were
marked along the ramp to enable different velocities to be attained by the ball at the
foot of the ramp.

The vertical heights of the balls were measured at each starting position, and from
these their velocities at the bottom of the ramps could be determined. Calculations
showed that air resistance had a negligible effect on the motion, and that the lawn
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bowl was close enough to spherical for it to be treated as a sphere when applying the
principle of conservation of energy to its motion down the ramp. For the billiard ball
and lawn bowl, let

h = the vertical starting height of the ball on the ramp and
V = the velocity of the ball on reaching the foot of the ramp.

Then (in obvious notation) the mechanical energy conservation principle gives

1 1/2 A%

Using g = 9.8ms 2, with h expressed in metres, this gives
V =3.74166+/h ms™'. (2:2)

This formula was used to calculate the initial velocity of the bowl and billiard ball in
each experiment.

Golf balls are not homogeneous as they have dense inner cores surrounded by less
dense cores and light urethane covers, making (2.1) and (2.2) inappropriate. The
matter will be discussed further in Section 11.

For the experiments on grass, every run from each height h was performed several
times, the results compared, and the means of the observed times calculated, with
the object of reducing experimental errors. Between each run the ramp was moved
sideways by several centimetres so as to prevent the ball from running over a track
which had been compressed by a previous run.

3. The response of the deformable surface

The ball is assumed to be rigid, its retardation being caused by its deformation of
the elastic rolling surface. It is assumed that there is no slipping between the ball and
the rolling surface.

The retarding force provided by the surface consists of two parts. One is the result
of the ball being in a shallow depression caused by its weight; it is virtually constant,
and will be denoted by F,. The other part, denoted by F, is induced by the elastic
strain caused in the surface by contact with the ball. Since air resistance is neglected,
the equation of motion of the ball in the forward direction is

mv=—F — F, (3.1)

where m is the mass of the ball and v is the velocity of its centre of mass G. The form
of F, will be determined on the assumption that the rolling surface obeys the laws of
elastic finite strain theory.
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Because there is no slipping between the ball and the surface at any point of the
region S of contact between them, and the displacements of the surface caused by the
ball are very small, the path of every point P on the ball is very nearly cycloidal, as
shown in Figure 1 (a).

The position of the ball will be referred to rectangular axes Oxy, with Ox in the
direction of motion and lying in the surface on which the ball is rolling, as in Figure 1.

y A y A
G
P P _ .
0 /. V /s x 0 x
(@) (b)

FIGURE 1. Cycloidal paths and velocity components of points of the rolling ball.

The cycloidal path of P has horizontal and vertical components of velocity as shown
in Figure 1 (b). When P is in contact with the surface on which the ball is rolling, it
induces in it a shear strain which is very nearly horizontal because the depression is
small, and a compression strain which is very nearly vertical. In the following section
the horizontal strain will be calculated. From this the associated stress can be found,
and when summed over all points of § it will be the reverse of the force F, acting on
the ball.

At the end of the travel of the ball, the forces F; and F, drop to zero, as they are
caused purely by the motion of the ball. This will not occur as finite discontinuities
of the forces, but as very sharp declines accompanying relaxation of the strains of the
deformed surface.

4. The stress-strain relations for the surface

Every vertical “slice” of the ball parallel to the plane Oxy in Figure 1, which has
a circumference making contact with the region S, is moving only in a direction
parallel to Oxy. Each such slice can therefore reasonably be expected to cause stresses
and strains which have no components perpendicular to Oxy. The elasticity problem
involved is thus one known as “plane strain”, with no dependence on a third space
dimension perpendicular to Oxy.

https://doi.org/10.1017/51446181100013821 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013821

[5] Rolling of a rigid ball on a horizontal deformable surface 253
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FIGURE 2. Movements of points P, Q to P’, ' during strain.

It is convenient to rename the axes Oxy as Ox;x;. The general form of the stress-
strain relations is (Sokolnikoff [6])

pij = A08; + 2uey, “.1)

where A, p are Lamé parameters and 6 is the dilatation. There are grounds for believing
that finite strain theory is appropriate, for which the form of the strain tensor is

1 [0y ou; 10u; duy
i ==+ —=} - =——, 42
=3 (Bxi + ax,-) 2 9x; 3x; @2)

where the u; are displacements, and summation over k is intended in the last term.
The shear stress of interest in (4.1) is py; = 2uey;, since this is responsible for the

shear force
F2=// P21dS=2Mf/ endsS, 4.3)
s s

where the integration is over the whole region S of contact.

5. Consideration of the surface displacements

It is necessary to consider separately the cases when the points under strain are
ahead of and behind the lowest point of the ball, as shown in Figure 2.-

Figure 2 depicts the movement of the bottom of the ball during a small time interval
8t, in the course of which the centre moves a distance véz. The displacements P P’
and Q (¥ experienced by points P and Q during &¢ are shown for the cases in which
the points are ahead of and behind the lowest point of the ball.

Before considering these displacements in detail it can be shown that they are
proportional to the ball velocity v. Writing vét = d for brevity, the situation involved
may be represented by Figure 3.
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FIGURE 3. Two successive ball positions a distance d apart.

Let the equations with respect to the axes Oxy of the circular cross-sections of the
ball shown in Figure 3 be

x2+y2=r2, (X—d)2+y2=72.
The two circles intersect the vertical line with equation x = k at values of y given by
y = (r2 _ k2)1/2, y = [r2 _ (k _ d)2]1/2

respectively. Although not shown in Figure 3, it is intended thatd < k < r. Itis
easily seen that the difference between the values of y given by the last two equations
is approximately kd/r = kvét/r. When interpreted in the context of Figure 2 this
" means that the small displacements P P’ and Q( are proportional to v.

To consider these displacements it is desirable to enlarge the relevant parts of
Figure 2, as shown in Figure 4.

X2
T u 0
' P P
u 4' u+8u
| u “
Q o
Behind P P Ahead
(o] Xy

FIGURE 4. Displacements at points P, Q ahead of and behind the lowest point of the ball.

The displacements of P and Q are shown in vector notation in Figure 4. The
components of u with respect to the axes Oxx, are denoted as du = (Su;, Su,).
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If the coordinates of P are (x|, x;), and those of Q are (x; + x,, x + 8x;), then
PQ = (6x,, 8x;). From Figure 4 it can be seen that [dx,| > |8x,| for points within
the small region S of contact. It is also clear that:

behind the ball: du; > 0,8u; > 0,8x; <0, 8x; > 0;
ahead of the ball: 8u; > 0,6u; <0,6x; > 0, 6x, > 0.

6. The surface strain and stress

From (4.2) we have

1 3u| 3u2 1 8u| 314] Buz Buz
==l—+=—})--{——+——. 6.1
e 2 (8x2 + Bxl) 2 <3x2 ax) + dx, 0x; 6.1)

From the work in Section 5 it follows that the magnitudes of all the partial derivatives
in (6.1) are proportional to v. Also in the first term on the right-hand side of (6.1), the
derivative du;/dx, is the dominant one, and this term is positive both ahead of and
behind the ball. Hence

1 aul auz
-— — — —_ 3 6-2
2(3x2+8x1> fv (©.2)

where f is a function of position in the contact area S which is positive throughout §.

From Section 5 it also follows that the magnitude of the second term on the right-
hand side of (6.1) is proportional to v?, and that its sign changes on moving from
behind the ball to ahead of it. So

1 au, 3u1 8u2 8u2> 2
—_—— ——_—— —_— = :t v, 63
2 (ax2 ox: | 3x; 3% /2 ©3)
where f is a positive function of position in S, and the sign is + behind the ball and
— ahead of it.

The form of (6.3) suggests that its contributions to the strain e;; would annul one
another when summed over the whole of S. The deformations in the rolling surface
are, however, not symmetrical about the lowest point of the ball. The ball compresses
the region ahead of it, increasing the magnitudes of all four positive derivatives in
the last term in (6.1); and behind the ball the strain is reduced by the ball’s progress,
thus reducing in this region the magnitudes of both negative products in the last
term in (6.1). The net result is a negative value when the last term (including its
coefficient —1/2) is integrated over the whole of the region S.

On using (6.1)+6.3), (4.3) yields

F=2u /f (f1v £ f201)dS = Ajv — A2, (6.4)
S
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where A, and A, are positive constants. Their values will, of course, depend on the
size and weight of the ball and on the character of the rolling surface. Substitution
from (6.4) in (3.1) yields md = —F; — (A,v — A,v?), whence

V= —a-bv+ cv? (6.5)

where a, b, c are positive constants. This is the equation governing the deceleration
of the ball.

7. The solution of the deceleration equation

In terms of the distance x travelled in time ¢, (6.5) is
X =—a-bx +ci’ (7.1)

The solution of (7.1) is needed under the initial conditions

and is shown in Appendix A to be

x =Kt —c'In[l 4+ Fe ]+ G, (7.2)
where '
cK? - bK -a=0, (7.3)
D =b-2Kec, (7.4)
c(V—-K)
F=—-———D_C(V_K), (7.5)
G=c"'In(F +1). (7.6)

These equations show that the values of K and D are the same for all initial velocities V,
but that the values of F and G vary with V.

A method of calculating the values of the constants in the equation of motion (7.1)
and in the solution (7.2) from the results of experimental runs of the ball is described
in detail in Appendix B. It requires knowing the values of the initial velocity V and
the total time T and distance X for three different runs. Experience shows that more
accurate results are obtained by using results from a single run to calculate the values
of the constants, rather than from three entirely different runs. To obtain the three data
triples V, T, X necessary for evaluation of the constants, the following device is used.

The longest run is chosen because any errors in measuring its parameters will be
proportionally smaller than for shorter runs. Let V;, T}, X; denote its measured initial
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velocity and observed total time and distance. A graph can be drawn carefully through
all corresponding time and distance pairs (¢, x) observed during the run, including
(0,0) and (T;, X ).

An intermediate point on this graph is selected, at which the coordinates, (#,, x;)
say, can be read off. The slope of the graph at this point is determined carefully; its
magnitude represents the initial velocity V, of an intermediate “run”, for which the
total time and distance are T, = T, — , and X3 = X — x,.

The process is then repeated for another selected intermediate point on the graph,
having measured coordinates (#;, x3). The measured slope there represents the initial
velocity V5 of another intermediate “run”, for which the total time and distance are
Th=T —tsand X3 = X, — x3.

In this way the magnitudes V, T, X for three “runs” are obtained, enabling the
values of the constants in the solution to be found. The process will be illustrated in
the following sections.

8. Lawn bowl rolling on a grass rink

Experiments were performed with a lawn bowl of diameter S inches (= 0.127 m)
on a grass rink. The mass of the bowl (including the two 20 cent coins taped to its side
to counteract the bias and make it run straight) was 1.573 kg. This is large enough
to ensure that no slipping could occur between the bowl and the grass, so the theory
expounded in the previous sections should be applicable. The rink was dry, with
newly mown grass, and was classed as one of medium speed.

Runs were made from four different starting heights on the ramp. Equation (2.2)
enabled the initial velocity V on the grass to be calculated in each case. Table 1 shows
some of the data, including the intermediate times #, and distances x,, total times T
and total distances X recorded by stop-watch and measuring tape. The times and
total distances are the averages of those recorded over several trials. The intermediate
distances x, were indicated by pieces of wooden dowel laid on the grass at right angles
to the measuring tape. The run numbers are those marked on the ramp at the different
starting heights k. The times are in seconds and the distances in metres.

In all of the numerical work, the units are metric and will usually not be stated.
The number of figures carried in many parameters is for purposes of calculation only,
and is not indicative of the accuracy with which their values are known.

Three sets of data were obtained from Run 1 by the method described in Sec-
tion 7, using (2, x;) and (14, x4) as the intermediate points. The results obtained were
K = —1.08372, ¢ = 0.03748 and D = 0.23351.

The values of F and G for each run were then calculated from (7.5) and (7.6). The
results are as shown in Table 2.
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TABLE 1. Lawn bowl experimental results.

Run no. 1 2 3 4
h(m) 0.867 0.681 0.491 0.281

V(ims™') 3.484 3.088 2.622 2.018
4 1.935 226 119 1.014
X 6.00 6.00 3.00 200
L 3.075 3.27 2256 1.76
X3 9.00 8.00 500 3.00
L 4.4175 4436 3.548 2.637
X3 12.00 10.00 7.00 4.00
A 6.215 6.032 5.534 3.805
X4 15.00 12.00 9.00 5.00
ts 9.5625
Xs 18.00
T 11.02 9.81 831 6.1
X 18.33 13.82 991 585

TABLE 2. Values of F and G for the lawn bowl.

Run no. 1 2 3 4
F 2.74752 2.02655 1.46788 0.99372
G 35.247 29.547 24.102 18.410

The value of b was then found from (7.4), and that of a from (7.3); they are
a=0.209 ms?and b = 0.152 s~

The numerical forms of the solution (7.2) are now known for all of the four runs
investigated. They enable the graphs of x versus ¢ shown in Figure 5 to be plotted.
This figure also shows the observed points (¢, x) found during the experiments. The
agreement between calculated and observed results is excellent, lending support to the
theory on which the calculations were based.

9. The velocity and acceleration of the lawn bowl

So far it has been tacitly assumed that the acceleration formula (7.1) applies through-
out the whole run of the bowl. The acceleration actually undergoes very sharp changes
at the start and finish of a run, their durations being so brief that their influences on the
path of the bowl are imperceptible. These changes will now be considered, together
with the velocity of the bowl, using Run 1 as an illustrative example.

The velocity at any instant is easily found by differentiating the solution (7.2). This
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FIGURE 7. Acceleration of lawn bowl versus ¢, Run 1.
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gives the velocity as

i=K+c'D[1+F P ©.1)
After insertion of the values of the constants found in Section 8, this equation enables
the graph of x versus ¢ for Run 1 to be drawn in the relevant interval 0 < 7 < 11.02.
It is shown in Figure 6.

During its travel down the launching ramp the acceleration of the bowl is constant.
The curved metal piece at the foot of the ramp is horizontal at its lower end, which
rests on the grass, so the acceleration of the bowl reduces to zero at this point.

On leaving the metal piece the bowl sinks into the grass to a very small depth. It
is not hard to show that, if this small depth is estimated to be 1 mm, the duration of
the transition of the bowl from metal piece to grass is about 3 milliseconds in the case
of Run 1, for which the initial bowl velocity V is 3.484ms™'. During this time the
acceleration of the bowl decreases sharply from zero to a negative value.

On the grass the deceleration is given by the derivative of (9.1), namely

. P! D 2
=T [T] . 62

and this governs the motion of the bowl for most of its run. Very near the end of
the run, the horizontal displacements of the surface, which have been induced by the
motion of the bowl, are decreasing to zero. The force F, described in Section 6 is
therefore decreasing to zero, and the same is true of the force F, which vanishes when
the forward movement of the bowl ceases. The acceleration is therefore tending to
zero rapidly, rather than undergoing a finite discontinuity where x = 0 as suggested
by (7.1). Calculations suggest that the duration of this end phase is of the order of
30 milliseconds. '

When the values of the constants appropriate for Run 1 of the bowl are inserted
in (9.2) this equation enables the graph of X versus ¢ shown in Figure 7 to be drawn.
The slopes of the graph at the start and end have been reduced to make the terminal
features visible.

10. Billiard ball rolling on carpet

The experimental arrangements described in Section 2 were used for the billiard
ball rolling on loop pile carpet. A run was made over only one distance of 241 cm.
Because of the shortness of this run, the observations and calculations were all made
in centimetre units rather than metric.

Analysis of the results showed that the billiard ball on carpet behaved in the same
way as the lawn bowl on grass, in the sense that its deceleration is given by (7.1), so
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FIGURE 8. Billiard ball on loop pile carpet.

that the solution (7.2) is relevant. With an initial velocity of V = 120.0cms™!, the
form of the solution was found to be

x = —135.49t — 701.70In [1 + 4.1799¢™>*"""] + 1154.2.

The associated values of the constants in the deceleration equation were found to
bea =34.4cms 2, b= 0.0610s"" and ¢ = 0.00143cm™".

Figure 8 shows the calculated form of the path of the billiard ball predicted by the
above solution, and also some of the observed points (¢, x). The agreement between
calculated and observed results is exceedingly close, lending support to the theory on
which the solution was based.

11. Golf ball rolling on grass

It is well known that golf balls are not homogeneous but consist of a dense inner
core, a less dense outer core and a thin plastic cover. They cannot be treated as
homogeneous spheres. Equations (2.1) and (2.2) are therefore inappropriate for a golf
ball.

It is possible to calculate by suitable experiments the moment of inertia of the golf
ball, and to use it in a conservation equation similar to (2.1). This leads to an equation
for the initial velocity V to replace (2.2).

A set of experiments similar to those described in Section 8 for the lawn bowl was
carried out with the golf ball on a horizontal putting green of medium speed. The
results were used as in Section 8 to calculate theoretical paths for all four runs. The
details of the experiments and calculations are shown in an earlier paper (Brearley and
de Mestre [3]).
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The agreement between the calculated and observed results was poor, the calculated
value of X being 9% less than the observed value in Run 1, and this deficit increases
to 16% in Run 4. The reason for this is that the golf ball is too light to ensure the
condition of non-slip between it and the surface, on which the theory is based. The
light ball skips along on the blades of grass in a way that the massive bowl did not.

The experiments with a golf ball were repeated on the medium speed bowling rink
which was used earlier for the lawn bowl (see Section 8). The results were similar
to those found on the putting green, though the distances travelled by the ball were
greater by about 30% than those on the green. ‘

12. Summary and conclusions

The rolling of a ball on a plane horizontal surface was investigated by treating the
ball as rigid and the surface as deformable. Experiments were performed by launching
from ramps a lawn bowl on a grass bowling rink, a golf ball on a grass putting green,
and a billiard ball on a loop pile carpet.

It was adequate to treat the bowl and billiard ball as homogeneous spheres, but
investigations showed that the density of the golf ball varied internally to a degree that
required its moment of inertia being evaluated experimentally.

The plane surface was treated as elastic, and finite strain theory was used to derive
the form of the retarding force on the rolling ball, on the assumption that there was no
slipping at the region of contact with the surface. This enabled the equation of motion
of the ball to be formed, and its solution led to a prediction of the distance travelled

~ as a function of time, for any known initial velocity.

For the lawn bowl and billiard ball the agreement between calculated and observed
results was excellent, indicating the appropriateness of the theory. Because the golf
ball is too light to ensure the no-slip condition on grass, accurate predictions could
not be made about its travel distances on this surface.

Appendix A. The solution of the equation of motion

The equation of motion is
¥ = —a - bx + cx?, (A.1)

which is a form of the Riccati equétion (Murphy, [5]).
On substituting y = x — Kt, where

cK*—bK —a=0 (A.2)

https://doi.org/10.1017/51446181100013821 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013821

[15) Rolling of a rigid ball on a horizontal deformable surface 263

and then putting w = y it is found that w = cw? — Dw, where
D=b-2Kc. (A3)

Solving by separation of variables yields
Dc™!
YT T Fiep

where F is constant.
Since w(0) = V — K, where V = x(0), we find that
V—
FeV-K (Ad)
D—c(V-K)

Integrating again to find x leads to

x =Kt—c'Inl+ Fe ) + G, (A5)
where G is a constant. Since x(0) = 0, we have

G=c'In(F+1). (A6)
Appendix B. Evaluation of the constants

Differentiating the solution (A.5) for x gives

c'FDe P

1+ Fed

This result, and the form (A.4) for F, enable In(1 + Fe~P") to be eliminated from x,
giving

x=K+

(Kc+D)t=cx —In(x — K) +In(V - K).
Attheendofarun,wehavet = T,x = X, x =0, and so
(Kc+D)T=cX +In(1 - VK.

Using data (Ty, V1), (T2, V3), (T3, V3) from three runs gives three equations for the
three unknowns K, ¢, D. By eliminating K c+ D between two pairs of these equations,
and then ¢ between the two resulting equations, an equation for K is obtained. This
can be solved numerically by Newton’s method.

The constants ¢ and D can then be found, after which (A.3) yields the value of b,
and then (A.2) gives a. These constants depend only on the properties of the ball and
the surface.

For a given run, the constants F and G can be found from (A.4) and (A.6), their
values depending on the initial velocity V. The function x () then gives values which
can be compared with experimental results for selected values of ¢.
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