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Abstract

The superbosonization identity of Littelmann, Sommers and Zirnbauer is a new tool for use in
studying universality of random matrix ensembles via supersymmetry, which is applicable to non-
Gaussian invariant distributions. We give a new conceptual interpretation of this formula, linking
it to harmonic superanalysis of Lie supergroups and symmetric superspaces, and in particular,
to a supergeneralization of the Riesz distributions. Using the super-Laplace transformation of
generalized superfunctions, the theory of which we develop, we reduce the proof to computing the
Gindikin gamma function of a Riemannian symmetric superspace, which we determine explicitly.

2010 Mathematics subject classification: primary 22E30, 58C50; secondary 17B81, 22E45, 46S60

1. Introduction

Supersymmetry was introduced in physics as a means for formulating Bose–
Fermi symmetry in quantum field theory. Since the advent of supergravity, it
has usually been connected to superstring theory. Although this relationship is
indeed intimate and fundamental, supersymmetry is also deeply rooted in the
physics of condensed matter. The so-called supersymmetry method, developed by
Efetov and Wegner [10], has been used to great effect in the study of disordered
systems, and in particular in connection to the metal–insulator transition; or in
other words, in the analysis of localization and delocalization for certain random
matrix ensembles [47, 48].
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In connection with the physics of thin wires, the subject was well-studied
in the 1990s; it has recently gained new interest, since the ‘symmetry classes’
investigated in this context [49, 5, 22] have been found to occur as ‘edge modes’
of certain 2D systems termed ‘topological insulators’ (and superconductors) [15].

Mathematically, several aspects of the method ask for justification. One both
subtle and salient point is the transformation of certain integrals over flat
superspace in high dimension N → ∞, which encode statistical quantities of
a given random matrix ensemble, into integrals over a curved superspace of fixed
rank and dimension, more amenable to saddle-point analysis.

This step relies on an integral transform, the so-called Hubbard–Stratonovich
transformation [39], which, in its traditional form, assumes a Gaussian
distribution for the initial data. Any generalization beyond this class of random
matrices is challenging analytically, severely limiting the range of the method:
questions such as that of universality for invariant ensembles prompted the
development of new, more robust and versatile tools.

Therefore, a new transform, dubbed ‘superbosonization’, was introduced
by Efetov et al. [11], on the basis of ideas of Lehmann et al. [30], and
of Hackenbroich and Weidenmüller [21]. Sommers [43] was the first to
consider it for arbitrary probability distributions with unitary symmetry. In
parallel, Guhr [19] and Guhr et al. [28] defined a generalized Hubbard–
Stratonovich transformation for non-Gaussian ensembles. Following the work of
Fyodorov [16] for the nonsupersymmetric situation, Littelmann, Sommers and
Zirnbauer in their seminal paper [32] extended superbosonization to include the
cases of orthogonal and symplectic symmetry. At the same time, they gave a
mathematically rigorous derivation of the superbosonization identity. Littelmann,
Sommers and Zirnbauer [32] also state that when both methods (the Hubbard–
Stratonovich method and superbosonization) are applicable, they are equivalent
to each other; this was proved in Ref. [29].

In general, the superbosonization identity holds in the unitary, orthogonal, and
unitary–symplectic symmetry cases. We consider only unitary symmetry here,
although neither our methods nor our results are restricted to this case.

One considers the space W = Cp|q×p|q of square supermatrices and a certain
subsupermanifold Ω of purely even codimension with underlying manifold

Ω0 = Herm+(p)× U(q),

the product of the positive Hermitian p × p matrices with the unitary q × q
matrices.

Let f be a superfunction defined and holomorphic on the tube domain based
on Herm+(p) × Herm(q). If f has sufficient decay at infinity along Ω0 (that is
along Herm+(p)), then the superbosonization identity states
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ˆ
Cp|q×n⊕Cn×p|q

|Dv| f (Q(v)) = C
ˆ
Ω

|Dy|Ber(y)n f (y), (1.1)

where C is some finite positive constant depending only on p, q , and n. Here, Q
is the quadratic map Q(v) = vv∗, |Dv| is the standard Berezinian density, and
|Dy| is a Berezinian density onΩ , invariant under a natural transitive supergroup
action.

The precise meaning of all the quantities involved will be made clear in
the course of the paper. However, let us remark that any unitary invariant
superfunction on Cp|q×n ⊕Cn×p|q may be written in the form f (Q(v)). A notable
feature of the formula is thus that it puts the ‘hidden supersymmetries’ (from
GL(p|q,C)) in evidence through the invariant integral over the homogeneous
superspace Ω , whereas the ‘manifest symmetries’ (from GL(n,C)) only enter
via some character (namely, Ber(y)n).

A remarkable special case of the identity occurs when p = 0. Then Equation
(1.1) reduces to

ˆ
C0|q×n⊕Cn×0|q

|Dv| f (Q(v)) = C
ˆ

U(q)
|Dy| det(y)−n f (y),

which is known as the bosonization identity in physics. Notice that the left-hand
side is a purely fermionic Berezin integral, whereas the right-hand side is purely
bosonic. Formally, it turns fermions ψψ̄ into bosons, eiϕ .

In this case, the identity can be proved by the use of the Schur orthogonality
relations: it expresses the fact that, up to a constant factor, the 2nth homogeneous
part of f equals its projection onto the Peter–Weyl component L2(U(q))n with
spherical vector detn . The doubling of degree is explained by viewing U(q) as the
symmetric space (U(q)×U(q))/U(q); for instance, L2(U(2))n is End(Vn), where
Vn is the U(2)-representation on polynomials p(z1, z2) homogeneous of degree n.
For the case of q = 1, the left-hand side is f (n)(0), up to some constant factor,
and we obtain the Cauchy integral formula.

On the other hand, if q = 0, then Ω = Herm+(p), and the right-hand side

〈Tn, f 〉 :=
ˆ

Herm+(p)
|Dy| det(y)n f (y)

is the so-called (unweighted) Riesz distribution. In this case, Equation (1.1) is
due to Ingham and Siegel [24, 42]. Its first use in the context that inspired
superbosonization was by Fyodorov [16]. Moreover, it is known to admit a far-
reaching generalization in the framework of Euclidean Jordan algebras [14].

This observation links the identity to equivariant geometry, Lie theory, and
harmonic analysis; and thus forms the starting point of the present paper. Our
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strategy is to exploit the transitive action of a certain supergroup on Ω to
compute the Laplace transform L (Tn) of the functionals Tn . The corresponding
transformed identity is easy to verify, since the Laplace transform of the left-hand
side is straightforward to evaluate.

Of course, since the geometry is more complicated for q > 0, the evaluation
of the right-hand side L (Tn) becomes more delicate. Also, a theory of Laplace
transforms for superdistributions had to be developed, because it was not available
in the literature. Here, a technical difficulty is that Tn is not obviously a
superdistribution (although a posteriori, Equation (1.1) shows that it is), but rather
a functional on a space of holomorphic superfunctions. Thus, we are obliged
to study the Laplace transformation on various different spaces of generalized
functions.

Besides providing a conceptual framework in which Equation (1.1) follows
with relative ease, our approach also establishes a connection to analytic
representation theory that previously went unnoticed. Namely, for a suitable
choice of normalization, the constant C in Equation (1.1) is

C = √π np
ΓΩ(n)−1,

where ΓΩ(n) is the evaluation at (n, . . . , n) of the meromorphic function of p+q
indeterminates, known as the Gindikin Γ function for q = 0. In Theorem 3.19,
we explicitly determine ΓΩ(m) for any m = (m1, . . . ,m p+q), as follows:

(2π)p(p−1)/2
p∏

j=1

Γ (m j − ( j − 1))
q∏

k=1

Γ (q − (k − 1))
Γ (m p+k + q − (k − 1))

Γ (m p+k + k)
Γ (m p+k − p + k)

.

This function has zeros and poles for q > 0, whereas for q = 0, it only has poles.
When q = 0, this function is closely related to the c-function of the Riemannian

symmetric space Ω = Herm+(p). Moreover, the renormalized Riesz distribution
Rn := ΓΩ(n)−1Tn defines the unitary structure on the holomorphic discrete
series representation of U(p, p) whose lowest U(p)-type is the character det(z)n

[13, 46].
The Gindikin Γ function ΓΩ also appears in the b-function equation for the

relatively invariant polynomial det(z), via

det
( ∂
∂z

)
det(z)n = n(n+1) · · · (n+p−1) det(z)n−1 = (−1)pΓΩ(1− n)

ΓΩ(−n)
det(z)n−1.

Here, det(∂/∂z) is the polynomial differential operator obtained by inserting the
matrix

(
∂/∂zi j

)
of coordinate derivations into the determinant.

This leads to a functional equation for Rn that can be exploited to give a
meromorphic extension of Rn as a distribution-valued function of n, a fact
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famously applied by Rossi and Vergne in their proof of the analytic extension
of the holomorphic discrete series [46]. The implications of these connections
for the representation theory of supergroups will be investigated in a forthcoming
paper.

Let us give a brief synopsis of the paper’s contents. In Section 2, we give
the basic set-up for the statement and proof of the superbosonization formula,
introducing the relevant supergroups and the functionals which define both sides
of the equation. We give a proof of the identity in Theorem 2.5, up to the
computation of the Laplace transform L (Tn) of the right-hand side, which is
deferred to Section 3. In that section, we actually discuss more generally the
so-called conical superfunctions attached to Ω , and determine their Laplace
transforms. The main step is the explicit determination of the Gindikin Γ function
ΓΩ , in Theorem 3.19.

The paper is complemented with an extensive appendix section. In
Appendix A.1, we discuss the language of (generalized) points, which will
be an indispensable tool. Appendix B covers the theory of Berezinian fibre
integrals, which is used throughout Section 3. Finally, the theory of generalized
superfunctions and their Laplace transforms is developed in Appendix C. These
techniques form the basis of our proof of the superbosonization identity in
Theorem 2.5.

2. The superbosonization identity

In this section, we set up the basic framework for formulating the
superbosonization identity. We reduce the proof to a ‘superversion’ of the theory
of the Laplace transform of generalized functions, as discussed in Appendix C,
and the explicit computation of certain Laplace transforms, which is performed
in Section 3.

2.1. Preliminaries. In this article, we will use the machinery of
supergeometry extensively. As general references the reader may consult, for
instance, Refs. [7, 8, 31, 34]. In this subsection, we review the basic definitions,
fixing our notation and highlighting points in which we deviate slightly from the
standard lore. We will introduce further notions as needed, referring the reader to
Appendix A and Appendix B for detailed summaries.

Superspaces. We will work exclusively in the category of C-superspaces
and certain full subcategories thereof. By definition, a C-superspace is a pair
X = (X0,OX ); here, X0 is a topological space and OX is a sheaf of unital
supercommutative superalgebras over C, whose stalks OX,x are local rings.
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A morphism f : X → Y is by definition a pair ( f0, f ]) comprising a continuous
map f0 : X0 → Y0 and a sheaf map f ] : f −1

0 OY → OX , which is local in the
sense that f ](mY, f0(x)) ⊆ mX,x for any x .

Global sections f ∈ Γ (OX ) ofOX are called superfunctions. Due to the locality
condition, the value f (x) := f + mX,x ∈ OX,x/mX,x = C is defined for any
x . Open subspaces of a C-superspace X are given by (U,OX |U ), for any open
U ⊆ X0.

Model spaces. We consider two types of model spaces. Firstly, when V = V0̄⊕
V1̄ is a complex supervector space, we define

OV :=HV0̄
⊗C

∧
(V1̄)

∗

where H denotes the sheaf of holomorphic functions. The superspace

L(V ) := (V0̄,OV )

is called the complex affine superspace associated with V .
Secondly, if in addition, we are given a real form V0̄,R of V0̄, then the pair

(V, V0̄,R) is called a cs vector space, and we define

OV,V0̄,R
:= C∞V0̄,R

⊗C
∧
(V1̄)

∗,

where C∞ denotes the sheaf of complex-valued smooth functions. Here, by a real
form VR of a complex vector space V , we mean a real subspace such that the map
VR→ V induces an isomorphism VR ⊗ C→ V . The superspace

L(V, V0̄,R) := (V0̄,R,OV,V0̄,R
)

is called the cs affine superspace associated with (V, V0̄,R). (The cs terminology
is due to J. Bernstein.)

Complex supermanifolds and cs manifolds. Consider now a superspace X
whose underlying topological space X0 is Hausdorff and that admits a cover
by open subspaces, which are isomorphic to open subspaces of some L(V )
(respectively, L(V, V0̄,R)), where V (respectively, (V, V0̄,R)) may vary. Then X
is called a complex supermanifold (respectively, a cs manifold) of dimension

dim X = dimC V0̄| dimC V1̄ (respectively, dimcs X = dimR V0̄,R| dimC V1̄).

Both complex supermanifolds and cs manifolds form full subcategories of the
category of C-superspaces that admit finite products. Since cs manifolds and
complex supermanifolds belong to the same larger category of C-superspaces,
one can easily consider morphisms between such spaces. (In passing, note
that E. Witten (Notes on supermanifolds and integration, arxiv:1209.2199) has
recently advocated the study of cs submanifolds of complex supermanifolds; the
setting of functors on cs manifolds or slightly more general C-superspaces seems
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to be well-adapted to such a study.) A remarkable fact [4], generalizing the well-
known Leites theorem on morphisms, is that for a cs manifold S and complex
supermanifolds X and Y , there is a bijection

Hom(S, X × Y )→ Hom(S, X)× Hom(S, Y )

whose components are given by composition with the projections X × Y → X
and X × Y → Y , respectively. Here, X × Y is the direct product of complex
supermanifolds.

Supergroups and supergroup pairs. Group objects in the category of complex
supermanifolds (respectively, cs manifolds) are called complex Lie supergroups
(respectively, cs Lie supergroups). The category of complex Lie supergroups is
equivalent to the category of complex supergroup pairs; compare Ref. [7].

These are pairs (g,G0) consisting of a complex Lie superalgebra g and complex
Lie group G0 such that g0̄ is the Lie algebra of G0, endowed with an action
Ad of G0 on g by Lie superalgebra automorphisms that extends the adjoint
action of G0 on g0̄, and whose derivative coincides with the restriction of the
bracket of g. Morphisms (g,G0)→ (h, H0) of such pairs are given by pairs (dφ,
φ0) of a morphism φ0 of Lie groups and a φ0-equivariant morphism dφ of Lie
superalgebras.

By assuming instead that G0 be a real Lie group and that g0̄ is the
complexification of the Lie algebra of G0, and modifying all definitions
accordingly, one obtains the category of cs supergroup pairs, which is equivalent
to the category of cs Lie supergroups.

Forms of complex supergroups. Given a Lie supergroup (complex or cs), a
closed subsupergroup is a closed subsupermanifold that is a Lie supergroup such
that the embedding morphism is a morphism of supergroups.

More generally, one can consider morphisms ϕ : H → G of C-superspaces
from a cs supergroup H to a complex Lie supergroup G that are closed
embeddings, that is, ϕ0 is a closed topological embedding and dϕ is an injective
map. If now ϕ is a morphism of group objects in the sense that ϕ induces group
homomorphisms Hom(S, H)→ Hom(S,G) for any cs manifold S, then we say
that H is a closed cs subsupergroup of G. (The sets Hom(S,G) are groups by the
remarks on products made above.)

In particular, we say that H is a cs form of G if the Lie superalgebra g of G
coincides with that of H , and H0 is a real form of G0, or equivalently, that (g, H0)

is a cs supergroup pair.
Here, by a real form of a complex Lie group G0, we mean a closed subgroup

whose Lie algebra is a real form of the Lie algebra of G0 (considered as a complex
vector space). In view of the above remarks, to define a cs form of G, it suffices
to specify a real form H0 of G0.
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S-valued points. Superfunctions and morphisms are not determined by their
values at points. If the notion of points is extended, one can, however, work with
supergeometric objects largely as if they were ordinary manifolds.

A point of X contains the same information as a map ∗ → X from a singleton
space. Instead of the singleton space, one might actually take any other space S
of the same type as X . An S-valued point is then a map x : S → X , thought of
as a family of points parametrized by S. To stress this point of view, we use the
notation x ∈S X to indicate an S-valued point of X . The concept directly carries
over to superspaces (and indeed, to any category).

This idea is common in physics, where one treats ‘elements’ of supermanifolds
as quantities containing sufficiently general Grassmann variables. In the above
terminology, these are nothing but S-valued points for a ‘superpoint’ S, that is,
a superspace over the singleton set, with a Grassmann algebra as the (constant)
sheaf of superfunctions.

Technically, it is better to allow more general auxiliary superspaces S.
Following this approach indeed greatly simplifies practical computations. For
example, the S-valued points of GL(p|q,C) (for S a complex supermanifold
(or, a cs manifold)) are just the even p|q × p|q-matrices with entries in the set
Γ (OS) of superfunctions on S [31]. This makes it possible to perform calculations
with these supergroups in terms of matrices. More details on S-valued points are
summarized in Appendix A.1. See also Ref. [34].

2.2. The relevant supergroups. We now begin building the natural
framework for the superbosonization identity proper. Its right-hand side is
the integral over a homogeneous superspace. The integrand turns out to be
equivariant, that is, it transforms with respect to a character under a transitive
supergroup action. We now introduce the supergroups which are relevant to its
precise definition.

Consider the complex Lie supergroup G ′C := GL(2p|2q,C), with Lie
superalgebra g′ = gl(2p|2q,C). (The notation comes from the fact that G ′C
arises as the Howe dual partner of the Lie group GC := GL(n,C) in the oscillator
representation of spo(V ), where V := Cp|q×n ⊕ Cn×p|q .) The underlying Lie
group of G ′C is G ′C,0 = GL(2p,C) × GL(2q,C). We will write S-valued points
g ∈S G ′C in the nonstandard form

( p|q p|q
p|q A B
p|q C D

)
,

rather than in the more customary even–odd decomposition. Although this may
seem unnatural at first, it will bear fruit below.
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We define a Lie supergroup KC := GL(p|q,C)×GL(p|q,C), which is a closed
complex subsupergroup of G ′C, embedded as

( p|q p|q
p|q A 0
p|q 0 D

)
,

with A, D ∈S GL(p|q,C). Further, k := Lie(KC).
We now define a cs form H of KC that is of interest. We do so by specifying a

real form of KC,0 by

H0 := GL(p,C)× U(q)× U(q).

Here, the latter is embedded into KC,0 as the set of all matrices of the form


p q p q

p A
q D
p (A∗)−1

q D′


with A ∈ GL(p,C), D, D′ ∈ U(q).

To conclude this section, we define the homogeneous superspace Ω . To that
end, consider the complex supervector space

W := gl(p|q,C) = Cp|q×p|q .

We define a partial action of G ′C on the complex supermanifold L(W ): for

g′ =
(

A B
C D

)
∈S G ′C

and Z ∈S L(W ), the action is by fractional linear transformations

g′.Z = (AZ + B)(C Z + D)−1,

whenever C Z + D ∈S GL(p|q,C). Observe that if g ∈S KC, then this condition
is always satisfied, so KC acts on L(W ). This induces an action of the cs form H
of KC on L(W ).

We define Ω := H.1, the orbit through the ordinary point 1 ∈ L(W )0 = W0̄. It
is a cs manifold, whose underlying manifold is the homogeneous space

Ω0 = GL(p,C)/U(p)× (U(q)× U(q))/U(q) = Herm+(p)× U(q),

where Herm+(p) is the cone of positive definite Hermitian p × p matrices.
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2.3. The Q-morphism. The superbosonization identity describes the
transformation of an integral under a certain quadratic morphism Q. We introduce
it in a form convenient for our purposes.

Consider the complex supervector spaces

V := Cp|q×n ⊕ Cn×p|q and U := C(n+p|q)×(n+p|q).

We have an embedding V ↪→ U , given by

( n p|q
n 0 a′

p|q a 0

)
,

where (a, a′) ∈ V . Further, we have an embedding of W into U , given by

( n p|q
n 0 0

p|q 0 w

)
,

where w ∈ W . We obtain embeddings L(V ) → L(U ) and L(W ) → L(U ) as
closed complex subsupermanifolds.

A real form of U0̄ is given by U0̄,R = Herm(n + p)× Herm(q), that is, the set
of matrices 

n p q

n b1 b2 0
p b3 b4 0
q 0 0 b′


with

( b1 b2
b3 b4

) ∈ Herm(n + p), b′ ∈ Herm(q). We set

V0̄,R := V ∩U0̄,R and W0̄,R := W ∩U0̄,R.

These are real forms of V0̄ and W0̄, respectively. We obtain cs manifolds denoted
by L(U,U0̄,R), L(V, V0̄,R), and L(W,W0̄,R).

For x, y ∈ U , we define

P(x)y := xyx ∈ U.

Since this expression is polynomial in x and y, there is a unique morphism L(U )×
L(U )→ L(U ) given on S-valued points by (x, y) 7→ P(x)y. We let Q : L(V )→
L(W ) denote the morphism given by Q(x) = P(x)cn where

cn =
( n p|q

n 1 0
p|q 0 0

)
.
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For the remainder of the section, recall from Appendix C.1 that for any cs
vector space (E, E0̄,R), the Schwartz space S (E, E0̄,R) is defined to be the set of
superfunctions f ∈ Γ (OE,E0̄,R

) such that

∀N ∈ N, D ∈ S(E) : supx∈E0̄,R
(1+ ‖x‖)N | f (D; x)| <∞.

Here, S(E) is the supersymmetric algebra, considered as the set of constant
coefficient differential operators on L(E, E0̄,R), and f (D; x) is the value of the
superfunction D f at the point x .

Moreover, S ′(E, E0̄,R) denotes the space of continuous linear functionals on
S (E, E0̄,R); the elements thereof are called tempered superdistributions. For
more details, consult Appendix C.1.

PROPOSITION 2.1. The morphism Q induces a morphism L(V, V0̄,R) → L(W,
W0̄,R) of cs manifolds, and the pullback along this morphism induces a continuous
linear map Q] : S (W,W0̄,R)→ S (V, V0̄,R).

Proof. For a cs manifold S, let x ∈S L(V, V0̄,R). Then

x =
( n p|q

n 0 a′

p|q a 0

)
implies

x2 = P(x)1 =
( n p|q

n a′a 0
p|q 0 aa′

)
, Q(x) =

( n p|q
n 0 0

p|q 0 aa′

)
.

The underlying values of the entries of x satisfy a0 = (a′0)
∗, so Q(x)0 is an

S0-valued point of L(W,W0̄,R)0 = W0̄,R. Thus, Q descends to a morphism of cs
manifolds L(V, V0̄,R)→ L(W,W0̄,R), proving the first statement.

As for the second statement, the partial derivatives of the components of Q are
polynomials, so it is sufficient to prove that for any f ∈ S (W,W0̄,R), k ∈ N,

supx∈V0̄,R

∣∣(1+ ‖x‖2)k Q]( f )(x)
∣∣ <∞,

and that this quantity, as a function of f , is a continuous seminorm on
S (U,U0̄,R). Here, ‖x‖ denotes the operator norm of x ∈ V0̄,R.

Clearly, ‖x2‖ 6 ‖x‖2. Since x is a Hermitian matrix and therefore normal, we
have the spectral identity

‖x‖ = %(x) = inf
n
‖xn‖1/n 6 ‖x2‖1/2,
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where % denotes the spectral radius. Thus, with the notation above, it follows that

‖x‖2 = ‖x2‖ = ‖a′a‖‖aa′‖ = ‖aa′‖2,

where we have used the fact that a′ = a∗ and thus ‖a′a‖ = ‖aa′‖ = ‖a‖2 by the
same argument as for x . Therefore, the statement is immediate.

COROLLARY 2.2. There is a continuous linear map Q] : S ′(V, V0̄,R) →
S ′(W,W0̄,R), given by〈

Q](u), f
〉 := 〈u, Q]( f )

〉
for all u ∈ S ′(V, V0̄,R) , f ∈ S (W,W0̄,R).

2.4. Recollections on Berezin integration. Below, we make heavy use of
Berezin integration for noncompactly supported integrands. In this brief interlude,
we explain the formalism used to manipulate them.

Let us first recall some basic facts. For a cs manifold X of dimcs X = a|b, we
denote by BerX the Berezinian sheaf and by |Ber |X its twist by the orientation
sheaf on X0, called the sheaf of Berezinian densities.

If X has global coordinates (x, ξ), we have a distinguished basis |D(x, ξ)| of
|Ber |X . For ω = |D(x, ξ)| f with f =∑I f I ξ

I , we let

X0

 
X
ω := |dx0| f{1,...,b}. (2.1)

This is a density on X0, and the Berezin integral of ω is defined byˆ
X
ω :=

ˆ
X0

[
X0

 
X
ω

]
(2.2)

whenever this density is absolutely integrable.
Unless ω is compactly supported, the definition depends on the chosen

coordinates. Thus, to make sense of Berezin integrals for noncompactly supported
ω, one needs to fix some further information. As explained in Ref. [3], this extra
datum is that of a retraction. We briefly recollect the basics.

By definition, a retraction of X is a morphism r : X → X0 left inverse to the
canonical embedding X0→ X—that is, the value of r ]( f ) at any x ∈ X0 is f (x).
Then, if one restricts attention to coordinate systems adapted to r , the left-hand
side of Equation (2.2) depends only on r . Here, the coordinate system (x, ξ) is
called adapted to r if x = r ](x0).

We say that ω is absolutely integrable with respect to r if the density defined
locally by Equation (2.1) is absolutely integrable over X0. In this case, we define
the integral of ω, denoted as

´ r
X ω, by Equation (2.2).

The theory of such integrals is fully developed in Ref. [3]. We give some details
of the relative version thereof in Appendix B.
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2.5. Statement of the theorem. In this subsection, we state our main theorem
as an identity of two generalized superfunctions and give a proof, up to the explicit
computation of the Laplace transform of the right-hand side. For the reader’s
convenience, we give the necessary definitions here, but defer parts of the proofs
to later sections of the paper.

We begin by describing the left-hand side of the superbosonization identity. We
consider, on U and the subspaces V and W , the supertrace form str(uu ′), which
is positive definite on V0̄,R. We normalize the Lebesgue density |dv0| on V0̄,R by
fixing the volume of the unit cube with respect to an orthonormal basis to 1.

We choose an orientation on V1̄ and identify the dual space V ∗ with V via the
supertrace form. The standard Berezinian density |Dv| on L(V, V0̄,R), introduced
in Definition C.14, is then characterized byˆ

L(V,V0̄,R)

|Dv| f (v) =
ˆ

V0̄,R

|dv0| ∂
∂νm
· · · ∂

∂ν1
f for all f ∈ Γc(OV,V0̄,R

)

where ν1, . . . , νm is an oriented symplectic basis of V1̄. We consider |Dv| as a
tempered superdistribution in S ′(V, V0̄,R) via

〈|Dv|, f 〉 :=
ˆ

L(V,V0̄,R)

|Dv| f (v) for all f ∈ S (V, V0̄,R).

Here, the integral is taken with respect to the standard retraction r . This is given
by considering V ∗̄0 ⊆ V ∗ via the splitting V = V0̄ ⊕ V1̄ and letting

r ]( f ) := f ∈ V ∗ ⊆ Γ (OV,V0̄,R
)

for all f ∈ V ∗̄0 . Compare the beginning of Appendix C.3 for further details.
The following proposition is immediate from the definitions and Corollary 2.2.

PROPOSITION 2.3. We have Q](|Dv|) ∈ S ′(W,W0̄,R) and

supp Q](|Dv|) ⊆ Herm+(p)× {0}.

The tempered superdistribution thus defined is the left-hand side of the
superbosonization identity. We now describe the right-hand side.

On general grounds [2, 1], the homogeneous superspace Ω = H.1 admits
a nonzero H -invariant Berezinian density, unique up to a constant. Due to the
special features of this example, we can give an explicit formula.

Indeed, observe that Ω is a locally closed cs submanifold of L(W ) with purely
even codimension. Consider the standard coordinates

Z =
( p q

p z ζ

q ω w

)
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on L(W ). For any choice of even coordinates x among the components of z, w
that define a local coordinate system onΩ0, (x, ζ, ω) is a local coordinate system
on Ω . This defines a retraction of Ω , which we also call standard, and a system
of adapted coordinates for this retraction.

In particular, D(ζ, ω) is a well-defined relative Berezinian (density) on Ω over
Ω0, with respect to the standard retraction. Denote by |dz| the Lebesgue density
on Herm(p), and by |dw| the normalized invariant density on U(q). We set

Dµ(Z) := |dz| |dw|
|det z|p D(ζ, ω) det(z − ζw−1ω)q det(w − ωz−1ζ )p. (2.3)

Then µ is H -invariant; the proof is deferred to Proposition 3.8 below. In what
follows, we write y for S-valued points of Ω , and set |Dy| := Dµ(Z).

In what follows, let n > p. We define Tn by

〈Tn, f 〉 :=
ˆ
Ω

|Dy|Ber(y)n f (y)

for any (holomorphic) superfunction f on the open subspace T (γ ) of L(W )

whose underlying set is the tube

T (γ0) :=
(
Herm+(p)× Herm(q)

)+ iW0̄,R = T (Herm+(p))× Cq×q (2.4)

with Paley–Wiener estimates along T (Herm+(p)) := Herm+(p) + i Herm(p),
that is,

supz∈T (Herm+(p))
∣∣e−R‖=z‖(1+ ‖z‖)N f (D; z, w)∣∣ <∞ (2.5)

for any D ∈ S(W ), N ∈ N, w ∈ Cq×q , and some R > 0. Here, 2i=z := z − z∗.
The following proposition is a direct consequence of Proposition 3.14, whose

proof is given below in Section 3.

PROPOSITION 2.4. When n > p, the functional Tn is well-defined and continuous
on the space of all f ∈ Γ (OT (γ )) satisfying the estimate in Equation (2.5) for
some R > 0 and any D ∈ S(W ), w ∈ Cq×q , and N ∈ N.

In particular, Tn may be considered as an element of Z ′(W,W0̄,R),
the topological dual space of the Paley–Wiener space Z (W,W0̄,R). By
Definition C.24 below, the latter is given as the set of superfunctions f ∈ Γ (OW )

holomorphic on all of L(W ), satisfying estimates

supy∈W0̄

∣∣e−R‖=y‖(1+ ‖y‖)N f (D; y)
∣∣ <∞ (2.6)

for any D ∈ S(W ), N ∈ N, and some R > 0. Here, 2i=y := y − y∗.
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The functional Tn is the right-hand side of the superbosonization identity. For
q = 0, it coincides with the unweighted Riesz distribution for the parameter n;
see Ref. [14]. Thus, it may also be called the Riesz superdistribution.

We now state the functional analytic version of the superbosonization identity.

THEOREM 2.5 (Superbosonization identity). Assume that n > p. Then we have
that Tn ∈ S ′(W,W0̄,R), and

Q](|Dv|) =
√
π

np

ΓΩ(n1)
· Tn,

where the finite constant ΓΩ(n1) > 0 is determined in Theorem 3.19.
Moreover, these generalized superfunctions extend as continuous functionals

to the space of all superfunctions f ∈ Γ (OW,W0̄,R
) that satisfy Schwartz estimates

along Herm+(p), that is,

supz∈Herm+(p)
∣∣(1+ ‖z‖)N f (D; z, w)∣∣ <∞

for all w ∈ Herm(q), N ∈ N, and D ∈ S(W ).

The first assertion of the theorem means that Tn lies in the image of
the continuous injection S ′(W,W0̄,R) → Z ′(W,W0̄,R). Such an injection
exists, since the Paley–Wiener space Z (W,W0̄,R) is a dense subspace of
the Schwartz space S (W,W0̄,R), as follows from the Paley–Wiener theorem
(Proposition C.25).

Theorem 2.5 immediately implies the following explicit formula, which is a
precise statement of the identity proved in Ref. [32].

COROLLARY 2.6. Let f be a (holomorphic) superfunction on the open subspace
of L(W ) whose underlying set is the tube T (γ0) from Equation (2.4), satisfying
the estimate in Equation (2.6) for some R > 0 and any D ∈ S(W ), w ∈ Cq×q ,
and N ∈ N. Then

ˆ
L(V,V0̄,R)

|Dv| Q]( f )(v) =
√
π

np

ΓΩ(n1)

ˆ
Ω

|Dy|Ber(y)n f (y).

The proof of Theorem 2.5 relies on the theory of the Laplace transform of
generalized superfunctions, which is developed in Appendix C. Before we embark
upon the proof, let us briefly summarize the key features.

The Laplace transform is defined for functionals on either of the supervector
spaces S =S (W,W0̄,R) and Z = Z (W,W0̄,R). We call these E =S ,Z test
spaces and their topological duals E ′ spaces of generalized superfunctions.
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As is the case classically, the Laplace transform of µ ∈ E ′ at x + iy is the
Fourier transform of e−〈x,·〉µ, as a generalized superfunction of y. That is, we set

L (µ)(x) := F
(
e−〈x,·〉µ

)
.

In the Appendix, we make sense of this for S-valued points x .
The Laplace transform at x is a holomorphic superfunction of x + iy on the

tube T (γ ) := γ + i L(W,W0̄,R) where γ = γ ◦S (µ) is the maximal domain on
which e−〈x,·〉µ is a superfunction of x with values in S ′, that is

e−〈x,·〉µ ∈ Γ (OS) ⊗̂π S ′(W,W0̄,R)

for every S-valued point of γ . Compare Appendix C.2, Equation (C.1), and the
surrounding remarks for details. The thus defined holomorphic superfunction is
called the Laplace transform of µ and denoted by L (µ). It entirely determines µ
(Theorem C.34).

If µ is already tempered and supported in a pointed cone γ , then the domain
γ ◦S (µ) contains the open dual cone γ̌ (Corollary C.38).

Proof of Theorem 2.5. The idea of the proof is to compute the Laplace transforms
of both sides of the equation and to compare the results. In view of the injectivity
of the Laplace transform (Theorem C.34), this will show the equality of the two
functionals. To make this argument rigorous, we have to show that the domains of
holomorphy for the Laplace transforms intersect. Throughout the proof, we will
consider the cs manifolds L(V, V0̄,R) and L(W,W0̄,R) as embedded in L(U,U0̄,R).

We start by considering the left-hand side. Since the cone Herm+(p) is self-
dual, it is immediate from Proposition 2.3 and Corollary C.38 that

γ ◦S
(
Q](|Dv|)

)
0 ⊇ γ0 = Herm+(p)× Herm(q).

Therefore, the Laplace transform of Q](|Dv|) is defined and holomorphic on
T (γ ), where γ is the open subspace of L(W,W0̄,R) whose underlying set is γ0.
For x ∈S T (γ )cs , we compute

L (Q](|Dv|)(x) =
ˆ

L(V,V0̄,R)

|Dv| Q](e− str(x ·))(v) =
ˆ

L(V,V0̄,R)

|Dv| e− str(x Q(v)),

arguing that if the integral converges absolutely, it must equal the Laplace
transform.

For each x ∈ W , we define a linear map φx : V → V by

φx

(
0 a′

a 0

)
:=
(

0 a′x
xa 0

)
,
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for v = ( 0 a′
a 0

) ∈ V . By the cyclicity of the supertrace, notice that

2 str(x Q(v)) = 2 str(xaa′) = str(a′xa)+ str(aa′x) = str(vφx(v)).

Now, let γ + ⊆ γ be the open subspace corresponding to

γ +0 := Herm+(p)× Herm+(q)

and let x ∈S γ
+. Then we may choose x1/2 ∈S γ

+ such that (x1/2)2 = x and
make a change of coordinates v 7→ φx−1/2(v). The Berezinian of this coordinate
transformation is given by Ber(x)−n and str(vφx(v)) 7→ str(v2). So,

L (Q](|Dv|))(x) = Ber(x)−n
ˆ

L(V,V0̄,R)

|Dv| e− 1
2 str(v2).

By holomorphicity, the two sides of this equation coincide on T (γ )∩GL(p|q,C).
To determine the Gaussian integral, pick coordinates (x, ξ, η) on L(V, V0̄,R):


n p q

n 0 x j i η j i

p xi j 0 0
q ξi j 0 0

,
such that

−1
2

str(v2) = − tr(xx∗)+ tr(ξη) = −
p∑

i=1

n∑
j=1

|xi j |2 +
q∑

k=1

n∑
j=1

ξk jη jk .

The Berezin integral is performed by picking the degree nq term in the expansion
of the exponential function for etr(ξη), which is just 1 (for a suitable choice of
signs).

Further, the remaining integral is just np copies of the Gaussian integral, which
contributes

√
π

np. Therefore, we find

L (Q](|Dv|))(x) =
√
π

np
Ber(x)−n,

for any x ∈S T (γ ) ∩ GL(p|q,C).
On the other hand, from the definition of γ ◦S (Tn) and Proposition 2.4, we see

that γ ⊆ γ ◦S (Tn). Hence, the Laplace transform of Tn is defined and holomorphic
on T (γ ), by Theorem C.34. Moreover, by Corollary C.35, Tn is already a
tempered superdistribution. It remains to compute L (Tn).

As a consequence of Corollary 3.18, whose proof is deferred to Section 3, we
have the identity

L (Tn)(x) =
ˆ
Ω

|Dy|Ber(y)ne− str(xy) = ΓΩ(n1)Ber(x)−n,
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for all x ∈S T (γ ) with all principal minors of x invertible. Here, 1 = (1, . . . ,
1) and ΓΩ is a meromorphic function of p + q indeterminates. It is explicitly
computed in Theorem 3.19, whose proof is also deferred. In particular, for n > p,
one sees that the constant ΓΩ(n1) is a nonzero positive number.

Comparing the outcome of the two computations and the domains of
holomorphy, the result follows from the injectivity of the Laplace transform
as stated in Theorem C.34.

3. Laplace transforms of conical superfunctions

As we have seen in Section 2, the superbosonization identity reduces to
computing the Laplace transform of both sides. Whereas for the left-hand side,
this amounts to the evaluation of a standard Gaussian integral, the computation
on the right-hand side is more intricate.

Following the procedure from the classical case, where q = 0, we compute the
Laplace transform of certain, more general conical superfunctions. The outcome
for q > 0 is more complicated than in the classical case, where the Laplace
transform has poles, but no zeros; this is quite different for q > 0.

3.1. The conical superfunctions. We introduce the basic objects of this
section: the conical superfunctions. These are a natural generalization, to
the superspace Ω , of the conical polynomials encountered in the theory of
Riemannian symmetric spaces. Our main reference to the subject will be the
book of Faraut and Korányi [14], which contains a beautiful, elementary, and
self-contained account of the theory for the special class of such spaces consisting
of the symmetric cones.

Let N+ be the closed subsupergroup of KC whose functor of points is defined
by

N+(S) :=


(

A 0
0 D

)
∈S KC

∣∣∣∣∣∣∣∣A =


1 0 0
∗

0
∗ ∗ 1

 , D =


1 ∗ ∗
0

∗
0 0 1


 .

That this functor is represented by a closed, connected complex analytic
subsupergroup of KC is immediate from the implicit function theorem.

Similarly, we define TC to be the complex supergroup representing the functor

TC(S) :=
{(

A 0
0 D

)
∈S KC

∣∣∣∣ A = diag(a), D = diag(d), a, d ∈S (C×)p+q

}
.

Then TC normalizes N+, and the subsupergroup B := TCN+ of KC generated by
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TC and N+ is again closed and connected. Its complex superdimension is

dimC B = (p + q)|0+ dimC W.

As a direct consequence of these definitions, we obtain the following lemma.

LEMMA 3.1. The orbit KC.1 = GL(p|q,C) is open in W , and the action of B on
KC also admits an open orbit, namely, B.1. Here, 1 denotes the identity matrix,
considered as an ordinary point of W .

Let Bp and Bq denote the Borel subgroups of GL(p,C) and GL(q,C),
respectively, given by lower triangular matrices. Denote their opposite Borels with
bars. Then the underlying Lie group of B is B0 = Bp × Bq × B p × Bq . Hence,
B.1 is the open subspace of W corresponding to the open set Bp B p× Bq Bq . This
justifies calling B.1 the big cell of KC.1 = GL(p|q,C); it also shows that (B.1)0
is Zariski open, so it makes sense to speak of regular superfunctions on B.1.

We will now define a family of rational superfunctions ∆1, . . . , ∆p+q which in
some sense are fundamental (relative) invariants. Here, the superalgebra C(W ) of
rational superfunctions is defined to be C(W0̄)[W1̄] := C(W0̄)⊗

∧
(W1̄)

∗, where
C(W0̄) is the algebra of rational superfunctions on W0̄. Each f ∈ C(W ) may
be considered as a superfunction on an open subspace of L(W ) in an obvious
fashion.

For any Z = (Z i j) ∈S W = gl(p|q,C) and 1 6 k, ` 6 p + q , we consider

[Z ]k` := (Z i j)16i6k,16 j6` and [Z ]k := [Z ]kk,

so [Z ]k is the kth principal minor of Z . Whenever [Z ]k is invertible, we define

∆k(Z) := Ber([Z ]k).
This uniquely determines a rational superfunction ∆k ∈ C(W ). We also consider
the (even) characters χk : TC→ C×, defined by

χk(t) :=
∏min(k,p)

j=1 a−1
j d j∏min(k,p+q)

j=p+1 a−1
j d j

for all t =
(

diag(a) 0
0 diag(d)

)
∈S TC.

Note that χk(t) = ∆k(t−1.1). In view of the isomorphism TC ∼= B/N+, we may
consider χk as a character of B.

PROPOSITION 3.2. Let 1 6 k 6 p + q. Then the rational superfunction ∆k is
regular and invertible on the big cell B.1, and

∆k(b−1.Z) = χk(b)∆k(Z), (3.1)

for any b ∈S B and Z ∈S B.1.
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In the proof of the proposition, we will need the following lemma.

LEMMA 3.3. Let Z ∈S W . Then Z ∈S B.1 if and only if [Z ]k is invertible for
every 1 6 k 6 p + q.

Proof. We write

Z =
(p+q−1 1

p+q−1 A B
1 C D

)
,

where A = [Z ]p+q−1. If A is invertible, we may perform a block decomposition
of Z as follows:

Z =
(

1 0
C A−1 1

)(
A 0
0 D − C A−1 B

)(
1 A−1 B
0 1

)
.

In this decomposition, D − C A−1 B is automatically an invertible element of
Γ (OS,0̄) whenever Z = [Z ]p+q is invertible.

Provided that all principal minors are invertible, we may, by replacing Z by A,
continue with this procedure to arrive at a decomposition of the form Z = ldu
where l is strictly lower triangular, d is diagonal, and u is strictly upper triangular.
Then b := (ld, u−1) ∈S B, and b.1 = Z . This shows that the set of all Z ∈S W
such that all principal minor are invertible is contained in (B.1)(S).

Given any Z ∈S W = gl(p|q,C) such that [Z ]k is invertible, write

Z =
( k p+q−k

k A ∗
p+q−k ∗ ∗

)
,

where A = [Z ]k . Define integers

m := min(p, k) and n := min(0, p + q − k),

and let α, δ ∈S GL(m|n,C). Then(
α 0
∗ ∗

)(
A ∗
∗ ∗

)(
δ ∗
0 ∗

)
=
(
αAδ ∗
∗ ∗

)
, (3.2)

where the upper left block of the latter matrix is invertible.
In particular, the open subspace of W whose S-valued points are the Z ∈S W

with all principal minors invertible is invariant under the action of B. But this
already shows the equality.
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Proof of Proposition 3.2. Lemma 3.3 shows that the functions ∆k are regular on
B.1. We have already noted the identity

∆k(t−1.1) = χk(t)

for t ∈S TC. Since, as we have shown in the course of the proof of Lemma 3.3,
every Z ∈S B.1 may be written as Z = b.1 for some b ∈S B, it will be sufficient
to show that ∆k is N+-invariant.

So, let n = ( n′ 0
0 n′′

) ∈S N+ and 1 6 k 6 p+q . Denote the upper left k×k blocks
of n′ and n′′ by α and δ, respectively. Then α and δ are invertible. Moreover,
Equation (3.2) shows that

[n−1.Z ]k = α−1[Z ]kδ,

and hence, that

∆k(n−1.Z) = Ber(α)−1∆k(Z)Ber(δ) = ∆k(Z),

due to the tridiagonal nature of α and δ. This proves the claim.

REMARK 3.4. In the case q = 0, the functions ∆1, . . . , ∆p are known from the
theory of Jordan algebras. The statement corresponding to Proposition 3.2 is to
be found, for example, in [14, Proposition VI.3.10]. In this case, the ∆k are all
polynomials.

In general, this continues to hold for∆k , 1 6 k 6 p. As for the other∆k , k > p,
they are certainly regular on the larger domain where only [Z ]p+1, . . . , [Z ]p+q are
invertible. By the density of the big cell in W , Equation (3.1) continues to hold
there.

The rational characters of B (or equivalently, of TC) are given exactly by the
superfunctions

χm := χm1−m2
1 · · ·χm p+q−1−m p+q

p+q−1 · χm p+q
p+q ,

where m = (m1, . . . ,m p+q) ∈ Zp+q . Explicitly, for t = (diag(a), diag(d)) ∈S TC,

χm(t) =
∏p

j=1(a
−1
j d j)

m j∏q
j=1(a

−1
p+ j dp+ j)

m p+ j
.

If we define ∆m by

∆m := ∆m1−m2
1 · · ·∆m p+q−1−m p+q

p+q−1 ∆
m p+q
p+q ,
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then ∆m is a regular superfunction on the big cell by Proposition 3.2, and by the
same token, we have

∆m(b−1.Z) = χm(b)∆m(Z)

for all b ∈S B and Z ∈S B.1.

DEFINITION 3.5 (Conical superfunctions). A rational function f ∈ C(W ) is
conical if its domain of definition is B-invariant and there exists m ∈ Zp+q such
that

f (b−1.Z) = χm(b) f (Z)

for all b ∈S B and all S-valued points Z of the domain of definition of f .

LEMMA 3.6. Let f be a conical superfunction. Then f is proportional to ∆m for
some multi-index m ∈ Zp+q .

Proof. The domain of definition of f is Zariski open and dense, as is the big cell
B.1. Hence, f is regular on B.1 and uniquely determined by its values f (Z) for
any Z ∈S B.1 (and any S). Then

f (b.1) = χm(b−1) f (1) = f (1)∆m(b.1)

for any b ∈S B, which already shows that f = f (1)∆m.

In one instance below, it will be useful to have an alternative parametrization
of the ‘boson–boson sector’ of B. To that end, define

τ j(u) :=


j−1 1 p− j

j−1 0 0 0
1 0 0 u

p− j 0 0 0


for any 1 6 j 6 p and u ∈ C1×(p− j). Then

eτ j (u) =


j−1 1 p− j

j−1 1 0 0
1 0 1 u

p− j 0 0 1

 ∈ B p.

Let u be a Hermitian matrix. We denote the diagonal entries by u j = u j j and
the rows of the upper triangle by

u( j) := (u j, j+1, . . . , u j p) for all 1 6 j < p.
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If u1, . . . , u p > 0, the we define

t (u) := δ1(u1)eτ1(u(1))∗δ2(u2)eτ2(u(2))∗ · · · eτp−1(u(p−1))∗δp(u p) ∈ GL(p,C),

where we set
δ j(λ) := (1, . . . , 1︸ ︷︷ ︸

j−1

, λ, 1, . . . , 1︸ ︷︷ ︸
p− j

).

Considering as usual GL(p,C) as a subgroup of H , via the map

a 7→
( a 0 0 0

0 1 0 0
0 0 (a∗)−1 0
0 0 0 1

)
,

we see immediately that for any Z ∈S B.1 and m ∈ Zp+q , we have

∆m(t (u).Z) = ∆m(Z).

On the other hand, we obtain coordinates on Herm+(p) in this fashion, as
explained in the proposition below, which translates [14, Proposition VI.3.8] to
this special case. We give the direct proof using matrices both for the reader’s
convenience, and because we will need to refer to it later on.

PROPOSITION 3.7. Let z ∈ Herm+(p). There is a unique u ∈ Herm+(p), with
diagonal entries u1, . . . , u p > 0, such that z = t (u).1, and it is determined by

z j j = u2
j +

j−1∑
k=1

|uk j |2 and z jk = u j u jk +
j−1∑
`=1

u j`u`k

for all 1 6 j 6 p and j < k, k 6 p.

Proof. The proof is by induction on p. For p = 1, the statement is trivial. For
general p,

z = δ1(u1)eτ1(u(1))∗
(

1 0
0 z′

)
=
(

u2
1 u1u(1)

∗ z′ + (u(1))∗u(1)
)
,

where u1 and u(1) are determined by

z11 = u2
1 and z1k = u1u1k

for all k > 1. By the inductive hypothesis, we have z′ = t (u ′).1 = (z jk)26 j,k6p

for u ′ = (u jk)26 j,k6p, where z′ and u ′ are related by

z′j j = u2
j +

j−1∑
k=2

|uk j |2 and z′jk = u j u jk +
j−1∑
`=2

u j`u`k

https://doi.org/10.1017/fms.2014.5 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.5


A. Alldridge and Z. Shaikh 24

for all 2 6 j 6 p and j < k, k 6 p. The assertion follows by noting simply that(
(u(1))∗u(1)

)
jk = u1 j u1k = u j1u1k,

where we take the entries of this matrix to be indexed over the set {2, . . . , p}.

3.2. The invariant Berezinian. Recall the definition of the homogeneous
superspace Ω = H.1 from Section 2. The underlying manifold is

Ω0 = Herm+(p)× U(q),

where
Herm+(p) = GL(p,C)/U(p)

is the cone of positive definite Hermitian p × p matrices. We observe that the
dimension of the cs manifold Ω coincides with the graded dimension of the
complex supermanifold L(W ). In particular, since Ω0 is contained in (B.1)0,
it follows that Ω is a subspace of the cs manifold associated with the complex
supermanifold B.1.

Recall the definition of the Berezinian density µ from Equation (2.3).

PROPOSITION 3.8. The Berezinian density µ is H-invariant.

We divide the proof of this statement into several lemmata which will also be
useful below when computing Laplace transforms. Recall the notion of nilpotent
shifts from Appendix A.3.

LEMMA 3.9. Let n be a nilpotent shift for U(q) = (U(q)×U(q))/ diag ⊆ Cq×q .
Then ˆ

U(q)
|dw| f (w + n) =

ˆ
U(q)
|dw| f (w)

det(w)q

det(w − n)q

for any smooth function f on U(q).

Proof. The invariant density on U(q) coincides, due to the invariance, with
the Riemannian density for any invariant Riemannian metric. An application of
Lemma B.1 shows that we haveˆ

U(q)
|dw| f (w + n) =

ˆ
U(q)
|dw| f J1

where J1 is determined by J0 = 1 and

d
dt

log Jt(w) = − div vn(w − tn) = 1
2 trgl(q) R(w−tn)−1w = q tr((w − tn)−1w),
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for w ∈ U(q), since for u ∈ u(q) and w ∈ Cq×q , we have

Rw(u) = d
dt

exp(tu)w exp(tu)
∣∣∣
t=0
= uw + wu.

Setting

Jt(w) := det(w)q

det(w − tn)q

manifestly solves the equation.

LEMMA 3.10. Let n be a nilpotent shift for Herm+(p) = GL(p,C)/U (p) ⊆
Cp×p. Thenˆ

Herm+(p)

|dz|
|det z|p f (z + n) =

ˆ
Herm+(p)

|dz|
|det z|p f (z)

det(z)p

det(z − n)p

for any compactly supported smooth function f on Herm+(p).

Proof. Again Lemma B.1 applies, since the invariant density is the Riemannian
density, and we have

ˆ
Herm+(p)

|dz|
|det z|p f (z + n) =

ˆ
Herm+(p)

|dz|
|det z|p f J1

where J1 is determined by J0 = 1 and

d
dt

log Jt(z) = − div vn(z − tn) = 1
2 trgl(p) R(z−tn)−1/2z(z−tn)−1/2

= p tr((z − tn)−1/2z(z − tn)−1/2) = p tr((z − tn)−1z),

for z ∈ Herm+(p), since for u ∈ Herm(p) and z ∈ Cp×p, we have

Rw(u) = d
dt

exp(tu)w exp(tu)
∣∣∣
t=0
= uw + wu.

Hence, all we have to do is to solve the same initial value problem as in the proof
of Lemma 3.9, with q replaced by p.

Now, for Z ∈S KC.1, set

%(Z) := det(z − ζw−1ω)q det(w − ωz−1ζ )p.

Observe that

%(Z) = Ber(Z)q−p det(z)p det(w)q = ∆q1′+(q−p)1′′(Z) det(w)q, (3.3)
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where we define

1′ := (1p, 0q) = (1, . . . , 1, 0, . . . , 0), 1′′ := (0p, 1q) = (0, . . . , 0, 1, . . . , 1).

For h ∈S KC, we define

I f
h (z, w) :=

ˆ
C0|p×q⊕C0|q×p

D(ζ, ω) %(Z) f (h.Z)

whenever f (h.Z) is defined. Here, observe that for a purely odd supervector space
V (say), the C-superspaces L(V ) and L(V, 0) (where 0 is the unique real form of
V0̄ = 0) coincide. For this reason, when integrating over such a superspace, we
will simply write V , instead of using the more cumbersome notation.

LEMMA 3.11. Let f ∈ Γ (OΩ) and h = ( A 0
0 D−1

)
, where A = ( 1 0

α 1

) ∈S GL(p|q,
C) and D = ( 1 δ

0 1

) ∈S GL(p|q,C). Then for any smooth function ϕ on U(q), we
have
ˆ

U(q)
|dw|ϕ(w)I f

h (z, w)=
ˆ

U(q)
|dw|

ˆ
D(ζ, ω) %(Z) f (Z)ϕ(w−αζ−ωδ−αzδ).

Here, the inner integral on the right-hand side is over C0|p×q ⊕ C0|q×p.

Proof. Firstly, note that the conditions set out above imply that h ∈S H , so the
statement of the lemma is meaningful. We have

h.Z = AZ D =
(

z ζ + zδ
ω + αz w + αζ + ωδ + αzδ

)
.

By the use of the coordinate change ζ 7→ ζ + zδ, ω 7→ ω + αz, we find

I f
h (z, w) =

ˆ
D(ζ, ω) %

(
z ζ − zδ

ω − αz w

)
f
(

z ζ

ω w + αζ + ωδ + αzδ

)
.

Applying Lemma 3.9 with the nilpotent shift n = αζ +ωδ+αzδ, we see that the
left-hand side

´ |dw|ϕ(w)I f
h (z, w) equals

ˆ
D(ζ, ω)

ˆ
U(q)
|dw| %(h−1.Z) f (Z)

ϕ(w − αζ − ωδ − αzδ) det(w)q

det(w − αζ − ωδ − αzδ)q
.

On appealing to Equation (3.3), the claim follows.
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LEMMA 3.12. Let f ∈ Γc(OΩ) and h = ( A 0
0 D−1

)
, where A = ( 1 α

0 1

) ∈S GL(p|q,
C) and D = ( 1 0

δ 1

) ∈S GL(p|q,C). For any smooth function ϕ on Herm+(p), we
have ˆ

Herm+(p)

|dz|
|det z|p ϕ(z)I

f
h (z, w)

=
ˆ |dz|
|det z|p

ˆ
D(ζ, ω) %(Z) f (Z)ϕ(z − αω − ζ δ − αwδ).

Here, on the right-hand side, the outer integral is over Herm+(p) and the inner
one is over C0|p×q ⊕ C0|q×p.

Proof. We may proceed as in the proof of Lemma 3.11. Indeed,

h.Z = AZ D =
(

z + αω + ζ δ + αwδ ζ + αw
ω + wδ w

)
.

The coordinate change ζ 7→ ζ + αw, ω 7→ ω + wδ leads to

I f
h (z, w) =

ˆ
D(ζ, ω) %

(
z ζ − αw

ω − wδ w

)
f
(

z + αω + ζ δ + αwδ ζ

ω w

)
.

Applying Lemma 3.10 with the nilpotent shift n = αω + ζ δ + αwδ, we find that
the left-hand side

´
Herm+(p)

|dz|
|det(z)|p ϕ(z)I

f
h (z) equals

ˆ
D(ζ, ω)

ˆ |dz|
|det(z)p| %(h

−1.Z) f (Z)
ϕ(z − αω − ζ δ − αwδ) det(z)p

det(z − αω − ζ δ − αwδ)p
.

As above, this proves the claim, by the use of Equation (3.3).

REMARK 3.13. Observe that the Borel supergroups used in Lemma 3.11 and
Lemma 3.12 are opposite.

Proof of Proposition 3.8. If h ∈S H , h = (
A 0
0 D−1

)
, is of the form set out in

Lemma 3.11 or Lemma 3.12, then by the token of these, µ is invariant under
the action of h. Decomposing A and D in the general case into elements of block
diagonal and block triangular form, we may thus assume

A =
(

a1 0
0 a2

)
and D =

(
d1 0
0 d2

)
.

Then

h.Z = AZ D =
(

a1zd1 a1ζd2

a2ωd1 a2wd2

)
.
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The coordinate changes ζ 7→ a1ζd2 and ω 7→ a2ωd1 show that I f
h (z, w) equals

det(a1d1)
q det(a2d2)

p
ˆ

D(ζ, ω) %
(

z a−1
1 ζd−1

2
a−1

2 ωd−1
1 w

)
f
(

a1zd1 ζ

ω a2wd2

)
,

where as above, the integral is over C0|p×q ⊕ C0|q×p. Since

%(A−1 Z D−1) = Ber(A−1 Z D−1)q−p det(a−1
1 zd−1

1 )p det(a−1
2 wd−1

2 )q

= det(a1d1)
p−q det((a1d1)

−1)p det(a2d2)
q−p det((a2d2)

−1)q%(Z)
= det(a1d1)

−q det(a2d2)
−p%(Z),

it follows, on applying the invariance of the densities on Herm+(p) and U(q), that
µ is invariant under the action of h. This proves the proposition.

3.3. The Laplace transform of conical superfunctions. We now come
finally to the core of our paper, the explicit computation of the Laplace transforms
of conical superfunctions. We will make heavy use of the facts and definitions laid
down in Appendix B.

Fix a superfunction f ∈ Γ (OΩ) and x ∈S L(W ). Whenever the integral
converges, we define the Laplace transform of f at x by

L ( f )(x) :=
ˆ
Ω

|Dy| e− str(xy) f (y),

where we write |Dy| for the invariant Berezinian µ on Ω . All integrals will be
taken with respect to the standard retraction on Ω .

PROPOSITION 3.14. For x ∈S B.1, the integral

L (∆m)(x−1) =
ˆ
Ω

|Dy| e− str(x−1 y)∆m(y)

converges absolutely if and only if m j > j − 1 for j = 1, . . . , p.

We make use of the following lemma.

LEMMA 3.15. Define

Ix
(

z 0
0 w

) := ˆ
C0|p×q⊕C0|q×p

D(ζ, ω) %(y)e− str(x−1 y)∆m(y)

for x ∈S GL(p|q,C). Let h ∈S B0. Then

Ih.x
(

z 0
0 w

) = χm(h−1)Ix
(
h−1.

(
z 0
0 w

))
.
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Proof. If h = ( A 0
0 D

) ∈S KC, then

str((h.x)−1 y) = str((Ax D−1)−1 y) = str(x−1 A−1 y D) = str(x−1(h−1.y)). (3.4)

Assume now that h ∈S B0, where A = ( a1 0
0 a2

)
and D = ( d1 0

0 d2

)
. Arguing as in the

proof of Proposition 3.8 and using Equation (3.3), we obtain

Ih.x
(

z 0
0 w

) = det(a1)
q det(a2)

p

det(d1)q det(d2)p

ˆ
D(ζ, ω) e− str(x−1 y)∆m+q1′+(q−p)1′′(h.y′) det(w)q

with

y′ := h−1.

(
z a1ζd−1

2
a2ωd−1

1 w

)
=
(

a−1
1 zd2 ζ

ω a−1
2 wd2

)
.

In view of
χq1′−p1′′(h−1) = det(a−1

1 d1)
q det(a2d−1

2 )p,

this leads to the desired conclusion immediately.

Proof of Proposition 3.14. Let us first show that the condition stated in the
proposition is sufficient for the convergence of the integral.

To that end, we perform the coordinate change u 7→ z = z(u) = t (u).1
by the aid of Proposition 3.7. The pullback of |dz| is 2p ∏p

j=1 u2(p− j)+1
j |du|,

where, using the shorthand |du jk | = |d<u jk ||d=u jk |, we write |du| for the
Lebesgue density

∏p
j=1|du j |

∏
16 j<k6p|du jk |. Hence, |det z|−p |dz| pulls back to

2p ∏p
j=1 u−2 j+1

j |du|.
Now, let x denote the generic point of B.1∩G ′.0. Writing x−1 = ( a b

c d

)
, we see

that

(t (u)−1.x)−1 =
(

t (u)∗at (u) t (u)∗b
ct (u) d

)
.

From Lemma 3.15, we obtain

Ix
(

z 0
0 w

) = χm(t (u)−1)It (u)−1.x(1, w) =
p∏

j=1

u2m j
j e− tr(t (u)at (u)∗) f (u, w), (3.5)

where

f (u, w) := etr(dw) det(w)q
ˆ

D(ζ, ω)∆m+q1′+(q−p)1′′
(

1 ζ
ω w

)
e− tr(t (u)∗bζ )+tr(ct (u)ω).

Here and in the following, unless otherwise stated, it will be understood that
C0|p×q ⊕ C0|q×p is the domain of integration for the fermionic integral

´
D(ζ,

ω). Observe that f ∈ Γ (OU(q))[u]. Here, for any locally convex vector space E ,
we denote by E[u] the set of polynomials in u j , u jk, u jk with values in E .
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Moreover,

tr
(
t (u)∗at (u)

) = tr
(
at (u)t (u)∗

) = tr(az).

To see that the integral
´
Ω
|Dy| e− str(x−1 y)∆m(y) converges absolutely, it will thus

be sufficient to show that

Jm( f, a) :=
ˆ

Herm+(p)
|du|

p∏
j=1

u2(m j− j+1)−1
j f (u)e− tr(az(u))

converges absolutely for any f ∈ C[u], uniformly on compact subsets with all
derivatives in a ∈ Herm+(p) + i Herm(p). Since taking derivatives with respect
to a only introduces polynomials in u into the integrand, it will be sufficient to
show uniform convergence on compact subsets with respect to a.

Thus, let α = (α j)16 j6p ∪ (α jk, ᾱ jk)16 j<k6p, α j , α jk ∈ N, and consider

f (u) = uα :=
∏

j

uα j
j

∏
j<k

(u jk)
α jk (u jk)

ᾱ jk .

Below, we will use the notation α( j) = (α jk, ᾱ jk) j<k6p for any 1 6 j < p.
We prove the convergence of the integral J αm(a) := Jm(uα, a) by induction on

p. For p = 1, we have

J α1
m1
(a1) =

ˆ ∞
0
|du1| u2m1+α1−1

1 e−<(a1)u2
1 = Γ

(
m1 + α1

2

)
2<(a1)m1+α1/2

,

with uniform convergence on compact subsets of <a1 > 0, provided that m1 > 0.
For p > 2, by the proof of Proposition 3.7, we may decompose a, u, and z(u):

a =
( 1 p−1

1 a1 a(1)

p−1 (a(1))∗ a′

)
, u =

( 1 p−1

1 u1 u(1)

p−1 (u(1))∗ u ′

)
,

and

z(u) =
( 1 p−1

1 u2
1 u1u(1)

p−1 u1(u(1))∗ z′(u ′)+ (u(1))∗u(1)
)
.

Then, with u1 running over (0,∞) and u(1) over C1×(p−1), we have

J αm(a) = J α
′

m′(a
′)
ˆ
|du(1)||du1||u(1)|α(1)u2m1+α1−1

1 e−a1u2
1−2u1<a(1)u(1)∗−<u(1)a′u(1)∗ .
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We now write <a′ for the Hermitian part of the matrix a′, which is positive
definite by assumption. Setting ã(1) := (<a′)−1/2a(1), we findˆ

|du(1)||u(1)|α(1)e−2u1<a(1)u(1)∗−<u(1)a′u(1)∗

= (det<a′)−1
ˆ
|du(1)| ∣∣(<a′)−1/2u(1)

∣∣α(1)e‖u(1)−ã(1)‖2−u2
1‖ã(1)‖2

= e−u2
1‖ã(1)‖2

det<a′

p∏
j=2

ˆ
d|u1 j |

∣∣((<a′)−1/2u(1)
)

1 j

∣∣α1 j+ᾱ1 j e−|u1 j−(ã(1))1 j |2,

with the u1 j running over C. The latter integral converges, uniformly on compact
subsets as a function of a′ and a(1), since

´∞
−∞|dt | |t |2β−1e−t2 = Γ (β) for β > 0.

Using the formula from the case p = 1, we see that J αm(a) converges uniformly
on compact subsets as a function of a for any α, provided that m j > j − 1 for all
j = 1, . . . , p. This completes the proof of sufficiency.

Necessity follows from [14, Theorem VII.1.1] on setting x = 1 in the
expression for the integral derived at the beginning of the proof.

Having established convergence, we may study the behaviour of L (∆m)(x−1)

as a function of x .

PROPOSITION 3.16. Assume that m j > j − 1 for all j = 1, . . . , p. Then the
function F defined on S-valued points as F(x) := L (∆m)(x−1) is conical.

Proof. Let v ∈ b be an element of the Lie superalgebra of B. Denote by the same
letter the vector field induced by v on B.1. Following the exposition in Appendix
A.2, we may consider v as an S-valued point of B.1 for S := (B.1)[ε, τ ]; namely,
after identifying b with the ∗[ε, τ ]-valued points of B along 1B : ∗ → B, it is
induced from v ∈ b by the action of B.

Recall from Equation (3.4) that we have str((h−1.x)−1 y) = str(x−1(h.y)) for
any h ∈S B. So we compute, with h = v understood as above, that for x ∈S B.1

Lv(F)(x) = L (∆m)((v
−1.x)−1) =

ˆ
Ω

|Dy| e− str(x−1(v.y))∆m(y)

= −
ˆ
Ω

|Dy|Lv(e− str(x−1·))(y)∆m(y),

where we have used Equation (B.1).
By Proposition 3.8, |Dy| is H -invariant, so Lu(|Dy|) = 0 for u ∈ h. But b ⊆ h,

so Lv(|Dy|) = 0, and we compute

Lv

(|Dy| e− str(x−1·)∆m
) = |Dy| (Lv(e− str(x−1·))∆m + e− str(x−1·)Lv(∆m)

)
. (3.6)
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Since

Lv(∆m)(y) = ∆m(v
−1.y) = χm(v)∆m(y) = dχm(v)∆m(y),

we see that the right-hand side of Equation (3.6) is absolutely integrable, and
hence, so is the left-hand side. It follows that

Lv(F) = dχm(v)F.

The differential equation
γ̇ = dχm(v)γ

with initial condition γ (0) = F(x), of which γ (t) = F(exp(−tv)x) is a solution,
has values in the Fréchet space Γ (OS). In general, the solutions of linear ODE
with values in Fréchet spaces are not unique (see K.-H. Neeb (2009), Monastir
Summer School: Infinite-dimensional Lie groups). However, dχm(v) is a scalar,
so it induces a continuous endomorphism in the topology on Γ (OS) generated by
any fixed continuous norm from a defining set, and we may apply the uniqueness
theorem from the Banach case.

Using the facts that exp : b→ B is a local isomorphism and B is connected, we
deduce as in the Lie group case that F(b−1x) = χm(b)F(x) for any b ∈S B.

DEFINITION 3.17 (Gamma function). The gamma function of Ω is defined as

ΓΩ(m) := L (∆m)(1) =
ˆ
Ω

|Dy|e− str(y)∆m(y),

whenever m j > j − 1 for all j = 1, . . . , p.

With this notation, the following is immediate.

COROLLARY 3.18. Assume m j > j − 1 for all j = 1, . . . , p. Then for all x ∈S

B.1, we have
L (∆m)(x−1) = ΓΩ(m)∆m(x).

Of course, the value of this corollary depends on the extent to which we have
control over ΓΩ . In fact, we can give an entirely explicit expression, as follows.

THEOREM 3.19. Let m j > j − 1 for all j = 1, . . . , p. We have

ΓΩ(m) = (2π)p(p−1)/2
p∏

j=1

Γ (m j − ( j − 1))

×
q∏

k=1

Γ (q − (k − 1))
Γ (m p+k + q − (k − 1))

Γ (m p+k + k)
Γ (m p+k − p + k)

.
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In particular, ΓΩ(m) extends uniquely as a meromorphic function of m ∈ Cp+q ,
and it has neither zeros nor poles if

m j > j − 1 j = 1, . . . , p,
m p+k > p − k k = 1, . . . , q.

If, under this assumption, m is a double partition, then it is a hook partition.

Proof. Our strategy of proof is to reduce the computation to three separate
computations, which take place on the fermionic part C0|p×q ⊕ C0|q×p, the
‘fermion–fermion sector’ U(q), and on the ‘boson–boson sector’ Herm+(p),
respectively.

Let us decompose m = (m′,m′′) where

m′ = (m1, . . . ,m p) and m′′ = (m p+1, . . . ,m p+q).

Then from Equation (3.5), we have
ˆ

D(ζ, ω) e− str(y)∆m+q1′+(q−p)1′(y) det(w)q = e− tr(z)+tr(w)∆m′(z)ψ(w),

where

ψ(w) :=
ˆ

D(ζ, ω)∆m+q1′+(q−p)1′′

(
1 ζ

ω w

)
det(w)q . (3.7)

Appealing to [14, Theorem VII.1.1], we see that

ΓΩ(m) = (2π)p(p−1)/2
p∏

j=1

Γ (m j − ( j − 1))
ˆ

U(q)
|dw| etr(w)ψ(w).

The final statement now follows from Lemma 3.20 and Lemma 3.21 below.

LEMMA 3.20. In the notation from Equation (3.7), we have

ψ(w) = (∆m′′(w))
−1

q∏
k=1

Γ (m p+k + k)
Γ (m p+k − p + k)

,

where m′′ := (m p+1, . . . ,m p+q).

Proof. Notice that ψ(w) is well-defined for w in the open subset Bq Bq ⊆ Cq×q ,
in view of Lemma 3.3. On applying Lemma 3.15 for x = 0, we see that

ψ(h−1.w) = χm(h)ψ(w)
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for any h = ( A 0
0 D

) ∈ U(q) ⊆ B0, A = ( 1 0
0 a

)
, D = ( 1 0

0 d

)
. Applying Lemma 3.6

for the case of p = 0, we find

ψ(w) = ∆m
(

1 0
0 w

)
ψ(1) = (∆m′′(w))

−1ψ(1).

We have (
1 ζ

ω 1

)
=
(

1 0
ω 1

)(
1 0
0 1− ωζ

)(
1 ζ

0 1

)
,

so

∆m+q1′+(q−p)1′′

(
1 ζ

ω 1

)
= (∆m′′+(q−p)1′′(1− ωζ))−1.

To calculate the resulting Berezin integral ψ(1) = γ−(m′′+(q−p)1′′), where

γ−m′′ :=
ˆ

D(ζ, ω) (∆m′′(1− ωζ))−1,

we decompose the matrices as

ω =
( p

1 ω1

q−1 ω′

)
and ζ = ( 1 q−1

p ζ1 ζ ′
)
.

So, 1− ωζ can be decomposed as(
1 0

ω′ζ1(1− ω1ζ1)
−1 1

)(
1− ω1ζ1 0

0 1− ω′(1+ N )ζ ′
)(

1 (1− ω1ζ1)
−1ω1ζ

′
0 1

)
,

where N = ζ1(1− ω1ζ1)
−1ω1. Then γ−(m′′+(q−p)1′′) becomes

ˆ
D(ζ1, ω1)

ˆ
D(ζ ′, ω′)∆m′′+(q−p)1′′

(
1− ω1ζ1 0

0 1− ω′(1+ N )ζ ′

)−1

.

Of these Berezin integrals, the outer is over C0|p×1 ⊕ C0|1×p, while the inner is
over the space C0|p×(q−1) ⊕ C0|(q−1)×p.

Observe that tr N = −(1− ω1ζ1)
−1ω1ζ1 and hence

N 2 = ζ1(1− ω1ζ1)
−1ω1ζ1(1− ω1ζ1)

−1ω1 = − tr N · N .
This implies

tr(N k+1) = − tr N tr(N k) = · · · = −(− tr N )k+1,

and so

tr log(1+ N ) =
∞∑

k=1

(−1)k−1

k
tr
(
N k
) = − log(1− tr N ).
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Then

det(1+ N )−1 = exp(− tr log(1+ N )) = 1− tr N

= 1+ (1− ω1ζ1)
−1ω1ζ1 = (1− ω1ζ1)

−1,

and making a change of odd coordinates ζ ′ 7→ (1 + N )ζ ′, the Berezin integral
over D(ζ ′, ω′) simplifies to

(1− ω1ζ1)
q−1

ˆ
D(ζ ′, ω′)∆m′′+(q−p)1′′

(
1− ω1ζ1 0

0 1− ω′ζ ′
)−1

.

We obtain

γ−(m′′+(q−p)1′′) = γ−m p+1−1+pγ−(m p+2+q−p,...,m p+q+q−p) = · · · =
q∏

j=1

γ−m p+ j− j+p.

Finally, writing a := 1−∑p
j=2 ω1 jζ j1, we compute

(1− ω1ζ1)
−m = a−m(1− a−1ω11ζ11)

−m = a−m−1(1+ mω11ζ11)

which recursively gives

γ−m = m(m + 1) · · · (m + p − 1) = Γ (m + p)
Γ (m)

,

and hence, our claim.

LEMMA 3.21. We have
ˆ

U (q)
|Dw|etr(w)(∆m′′(w))

−1 =
q∏

k=1

Γ (q − (k − 1))
Γ (m p+k + q − (k − 1))

,

where m′′ := (m p+1, . . . ,m p+q).

Proof. We use spherical polynomials for this computation. They are defined as

Φr(x) :=
ˆ

U (q)
|Dw|∆r(wx),

where r is an arbitrary multi-index of length q .
Thanks to [14, Proposition XII.1.3.(i)] we can write the exponential in this

integral as an absolutely convergent series of spherical functions:

etr(w) =
∑
n>0

dn

qn
Φn(w),
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where dn is the dimension of the finite-dimensional irreducible U(q)-module of
highest weight n, and

qn :=
q∏

k=1

Γ (nk + q − (k − 1))
Γ (q − (k − 1))

.

Therefore, we can write our integral as∑
n>0

dn

qn

ˆ
U(q)
|Dw|Φn(w)(∆m′′(w))

−1.

Notice that since w ∈ U(q), we have (∆m′′(w))
−1 = ∆m′′(w

−1). Due to the U(q)-
invariance of Φn, we haveˆ

U(q)
|Du|Φn(xu) = Φn(x),

so we obtainˆ
U(q)
|Dw|Φn(w)∆m′′(w

−1) =
ˆ

U(q)×U(q)
|Dw||Du|Φn(wu)∆m′′(w

−1)

=
ˆ

U(q)×U(q)
|Dw||Du|Φn(w)∆m′′(uw−1)

=
ˆ

U(q)
|Dw|Φn(w)Φm′′(w

−1).

Further, it is easy to see that Φm′′(w
−1) = Φm′′(w

∗) = Φm′′(w).
By the classical Schur orthogonality relations, this integral is only nonzero

when m′′ = n, in which case the answer is 1/dm′′ . Therefore,ˆ
U (q)
|Dw| etr(w)(∆m′′(w))

−1 = 1/qm′′,

which gives the claim.
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Appendix A. The functor of points

A.1. The language of S-valued points. For a manifold X , a point can be
thought of as a morphism ∗ → X , and this completely determines X . However,
for a supermanifold X , such a morphism ∗ → X is again only a point of
the underlying manifold X0, and therefore does not capture the supergeometric
features of X . To deal with this, the notion of points has to be extended.

This idea is familiar in algebraic geometry. Here, it is common to talk about the
K -rational points of a scheme X , which are nothing but morphisms Spec(K )→
X . Grothendieck extended this idea and considered the scheme along with its
A-points, for all commutative rings A. Then X is completely recaptured by
its collection of A-points, for all commutative rings A, along with admissible
morphisms.

More generally, if C is any category, and X is an object of C, then an S-valued
point (where S is another object of C) is defined to be a morphism x : S → X .
One may view this as a ‘deformed’ or ‘parametrized’ point. Suggestively, one
writes x ∈S X in this case, and denotes the set of all x ∈S X by X (S).

For any morphism f : X → Y , one may define a map fS : X (S)→ Y (S) by

fS(x) := f (x) := f ◦ x ∈S Y for all x ∈S X.

Clearly, the values f (x) completely determine f , as can be seen by evaluating at
the generic point x = idX ∈X X .

In fact, more is true. The following statement is known as Yoneda’s lemma [33].
Given a collection of set maps fS : X (S) → Y (S), there exists a morphism f :
X → Y such that fS(x) = f (x) for all x ∈S X if and only if

fT (x(t)) = fS(x)(t) for all t : T → S.

The points x(t) are called specializations of x , so the condition states that the
collection ( fS) is invariant under specialization.

The above facts are usually stated in the following more abstract form. For any
object X , we have a set-valued functor X (−) : Cop → Sets, and the set of natural
transformations X (−) → Y (−) is naturally bijective to the set of morphisms
X → Y . Thus, the functor X 7→ X (−) from C to [Cop,Sets], called the Yoneda
embedding, is fully faithful.

The Yoneda embedding preserves products [33], so if C admits finite products,
it induces a fully faithful embedding of the category of group objects in C into
the category [Cop,Grp] of group-valued functors.

In other words, we have the following. Let X be an object in C. Then X is a
group object if and only if for any S, X (S) admits a group law, which is invariant
under specialization. We will assiduously apply this point of view to the categories
of complex supermanifolds and of cs manifolds.
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A.2. Vector fields and generalized points. We now show how vector fields
can be understood in terms of generalized points. Among other things, this is
a framework enabling us to exchange superintegration and differentiation under
suitable assumptions.

Let X and S be cs manifolds. Then X is called a cs manifold over S, written as
X/S, if supplied with some morphism X → S, which on some open cover Uα of
X fits into a commutative diagram

Uα S × Y

Vα S

p1

where the rows are open embeddings. Usually, we will consider only products,
but the general language will be efficient nonetheless. There is an obvious notion
of morphisms over S, which we denote as X/S→ Y/S.

A system of (local) fibre coordinates is given by the system (xa) = (x, ξ) of
superfunctions on some trivializing open subspace U ⊆ X obtained by pullback
along a trivialization from a coordinate system in the fibre Y .

If X/S is a cs manifold over S, then the relative tangent sheaf is defined by

TX/S := Der p−1
0 OS

(OX ,OX ),

the sheaf of superderivations of OX which are linear over OS . Here, p denotes the
morphism X → S. It is a basic fact that TX/S is a locally free OX -module, with
rank equal to the fibre dimension of X/S.

More generally, let ϕ : X/S→ Y/S be a morphisms over S. We let

TX/S→Y/S := Der p−1
0 OS

(ϕ−1
0 OY ,OX )

and call this the tangent sheaf along ϕ over S. Written out explicitly, the derivation
property of a homogeneous element δ ∈ TX/S→Y/S(U ) is

δ( f g) = δ( f )ϕ](g)+ (−1)| f ||δ|ϕ]( f )δ(g)

for all homogeneous f, g ∈ OY (V ), with V ⊆ Y0 an open neighbourhood of
ϕ0(U ). The usual relative tangent bundle corresponds to ϕ = idX .

We denote by S[ε, τ ] the C-superspace (S0,OS[ε, τ ]), where we define OS[ε,
τ ] := OS ⊗C A, with A denoting the superalgebra C[ε, τ ]/(ε2, ετ ), and ε and
τ being understood to be even and odd indeterminates, respectively. If X/S and
Y/S are cs manifolds over S and ϕ : X/S → Y/S is a morphism over S, then
there is a natural bijection{

γ ∈ HomS
(
X [ε, τ ], Y

) ∣∣ γ |ε=τ=0 = ϕ
}→ Γ (TX/S→Y/S) : γ 7→ δ
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given by the equation γ ]( f ) = ϕ]( f ) + εδ0̄( f ) + τδ1̄( f ) for local sections f
of OY .

In particular, consider the case of a cs Lie supergroup G. The Lie superalgebra
g is by definition the fibre over 1 of the tangent bundle. Equivalently, elements
of g may be seen as vector fields along the morphism 1G : 1 → G, that is, as
∗[τ, ε]-valued points of G along 1G .

A.3. Nilpotent shifts of cycles in middle dimension. We will now show how
the technique of nilpotent shifts common in physics can be understood in terms
of S-valued points.

Let W ∼= Cq be a complex vector space. Its associated q-dimensional complex
manifold is naturally a complex supermanifold with sheaf OW of complex
analytic functions.

Abusing notation, we write N for the cs manifold associated with C0|N . (This
is also a complex supermanifold.) Assume that

n ∈ Γ (NN ,0̄)
q = Γ (NN ,0̄ ⊗W ),

where NN =
∧+

(CN )∗ is the ideal of ON =
∧
(CN )∗ generated by ON ,1̄.

The generic pointw = idW ∈W W of W corresponds by the Leites theorem [31]
to the element w =∑i ei ⊗ ei ∈ Γ (OW ⊗ W ) where ei , i = 1, . . . , 2q , is a real
basis of W , and ei is its dual basis. The sum

w + n ∈ Γ ((OW,0̄ ⊗ 1⊕ 1⊗ON ,0̄)⊗W ) ⊆ Γ (OW×N ,0̄ ⊗W )

corresponds by the Leites theorem to a unique morphism φ : W × N → W of
complex supermanifolds.

In particular, this gives a definite meaning to f (w+n)= φ]( f ) for any complex
analytic function f defined on an open subset of W . It is known that

f (w + n) = f (w)+
N∑

k=1

1
k!d

k f (w)(n, . . . , n)

where the derivatives are extended multilinearly over NN ,0̄.
Let now X be a closed real submanifold of W of dimension q . We call such an

X a mid-dimensional cycle. In this case, we call n a nilpotent shift for X .
By the use of the embedding j : X → W , the real tangent space at any point of

X is naturally identified with a q-dimensional real subspace of W , and this gives
a real vector bundle map T j : T X → X ×W . Thus, the complex tangent space at
any point is naturally identified with W , which gives an isomorphism of complex
vector bundles T C j : T CX → X ×W .
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For any superfunction f ∈OX (U0), where U ⊆ X is open, and for any y ∈S U ,
we define

f (y + n) := f (y)+
N∑

k=1

1
k!T

k f (y)((T C j)−1(y, n), . . . , (T C j)−1(y, n))

by multilinear extension of the higher order tangent maps.
Here, the left-hand side lies in Γ (OS×N ). In particular, this defines a unique

morphism X×N → X , which sends f to f (x+n), with x = idX ∈X X denoting
the generic point of X .

Appendix B. Integration on supermanifolds

We will need to consider superintegrals depending on some parameters. An
appropriate framework for this is that of relative Berezinians, paired with the
understanding of parameter dependence in terms of S-valued points.

B.1. Relative Berezinians and fibre integrals. Let X be a cs manifold over
S, and Ω1

X/S be the module of relative 1-forms, by definition dual to TX/S . Then
we define the sheaf of relative Berezinians BerX/S to be the Berezinian sheaf
associated with the locally free OX -module ΠΩ1

X/S obtained by parity reversal.
Furthermore, the sheaf of relative Berezinian densities |Ber |X/S is the twist by the
relative orientation sheaf, that is,

|Ber |X/S := BerX/S ⊗Z orX0/S0 .

Given a system of local fibre coordinates (xa) = (x, ξ) on U , their coordinate
derivations ∂/∂xa form an OX |U0 -module basis of TX/S|U0 , with dual basis dxa of
Ω1

X/S|U0 . One may thus consider the distinguished basis

|D(xa)| = |D(x, ξ)| = dx1 . . . dx p
∂Π

∂ξ 1
. . .

∂Π

∂ξ q

of the module of Berezinian densities |Ber |X/S; see Ref. [34].
If X/S is a direct product X = S × Y , then

|Ber |X/S = p∗2
(|Ber |Y

) = OX ⊗p−1
2,0OY

p−1
2,0|Ber |Y .

In particular, the integral over Y of compactly supported Berezinian densities
defines the integral over X of a section of (p0)!|Ber |X/S , where (−)! denotes the
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functor of the direct image with compact supports [26]. We denote the quantity
thus obtained by

S

 
X
ω ∈ Γ (OS) for all ω ∈ Γ ((p0)!|Ber |X/S

)
,

and call this the fibre integral of ω.
We will, however, have to consider fibre integrals in a more general setting,

beyond compact supports. Henceforth, we assume for simplicity that X = S× Y .
A fibre retraction for X is a morphism r : Y → Y0 which is left inverse to the
canonical embedding j : Y0 → Y , where Y0 is the underlying manifold of Y .

A system of fibre coordinates (x, ξ) of X/S is called adapted to r if x = r ](x0).
Given an adapted system of fibre coordinates, we may write ω = |D(x, ξ)| f and

f =
∑

I⊆{1,...,q}
(id× r)]( f I ) ξ

I

for unique coefficients f I ∈ Γ (OS×Y0), where dim Y = ∗|q . Then one defines

S×Y0

 
X
ω := |dx0| f{1,...,q} ∈ Γ (|Ber |(S×Y0)/S).

Note that |Ber |(S×Y0)/S is p∗2 of the sheaf of ordinary densities on the manifold Y0,
so we may write |dx0|.

This fibre integral only depends on r , and not on the choice of an adapted
system of fibre coordinates. (See Ref. [3] for the absolute case.) If the resulting
relative density is absolutely integrable along the fibre Y0, then we say that ω is
absolutely integrable with respect to r , and define

S

 
X
ω :=

S

 
S×Y0

[
S×Y0

 
X
ω

]
∈ Γ (OS).

Both this quantity and its existence depend heavily on r .
Using the topology on Γ (OS) introduced below, in Appendix C, the

convergence may be understood in terms of vector-valued integrals. The relative
density S×Y0

ffl
X ω may be viewed as a Γ (OS)-valued density on Y0. It is absolutely

integrable along Y0 if and only if the corresponding vector-valued density is
Bochner integrable.

We shall use the language of S-points discussed above in Appendix A.1
to manipulate integrals of relative Berezinian densities in a, we hope, more
comprehensible formalism. This also gives a rigorous foundation for the
superintegral notation common in the physics literature.
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If f is a superfunction on X = S×Y and we are given some relative Berezinian
density |Dy| on X/S, then we writeˆ

Y
|Dy| f (s, y) :=

S

 
X
|Dy| f.

This is justified by the convention that the generic points of S and Y are denoted
by s and y, respectively. Moreover, it is easy to see that this notation behaves well
under specialization, since

ˆ
Y
|Dy| f (s(t), y) =

T

 
X
(t × id)](|Dy| f ) = t ]

[
S

 
X
|Dy| f

]
(B.1)

for any t ∈T S. This follows from the fact that the fibre retractions are respected
by the morphism t × id.

B.2. Berezin integrals and nilpotent shifts. We now return to the nilpotent
shifts previously considered in Appendix A.3, and apply them to certain integrals.

Let X be a mid-dimensional cycle in the complex vector space W ∼= Cq . Let X
carry a pseudo-Riemannian metric g and µg be the induced Riemannian density.

The following is a straightforward generalization of [32, Lemma 4.13].

LEMMA B.1. Let n be a nilpotent shift for X. Then for any compactly supported
smooth function f on X, we haveˆ

X
f (x + n) dµg(x) =

ˆ
X

f (x)Jt(x) dµg(x),

where Jt ∈ Γ (OX×N ) is the solution of the ODE

d
dt

log Jt(y, s) = − div vn(y − tn, s)

with initial condition J0 = 1 and vn is the vector field on X × N over N, defined
by

vn(k)(y, s) := d
dt

k(y + tn, s)
∣∣∣
t=0

for any smooth k on some open subspace U ⊆ X×N and any (y, s) ∈S (X×N ).

Proof. Consider for fixed t ∈ R the morphism φt : X × N → X × N , defined by

φt(y, z) := (y − tn, z)

for any (y, z) ∈S X × N .
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Then φt is an isomorphism over N , with inverse φ−t . We may consider µg as a
Berezinian density of X × N over N . Thus, we have

ˆ
X

f (x + tn) dµg(x) =
N

 
X×N

φ
]
−t(p

]

1( f )) µg =
N

 
X×N

p]1( f ) φ]t (µg).

Since BerX×N/N is a free OX×N -module with module basis µg, there exists a
unique even Jt ∈ Γ (OX×N ) such that

φ]t (µg) = Jt µg.

These superfunctions depend smoothly on t . Indeed, one may consider the
morphism φ : R× X × N → R× X × N , given by

φ(t, y, z) := (t, y − tn, z)

for all (t, y, z) ∈S R × X × N . Then φ is an isomorphism over R × N , and
φ(t, y, z) = (t, φt(y, z)) if t is the specialization of an ordinary point of R.

Now, φt is the flow of the vector field −vn , considered as vector field on (X ×
N )/N . Indeed, if h is a smooth function on R× X × N , then

d
dt
φ](h)(t, y, z) = d

ds
h(t, y − (s + t)n, z)

∣∣∣
s=0
= −φ]((id⊗ vn)h

)
(t, y, z).

We have
d
dt

Jt = d
dτ
φ]t (Jτ )

∣∣∣
τ=0
= −φ]t (divg vn) · Jt ,

so
d
dt

log Jt(y, s) = −φ]t (div vn)(y, s) = − div vn(y − tn, s)

with J0 = 1, proving the lemma.

Let G be a Lie group acting linearly on W and o ∈ W such that K := Go is a
compact subgroup, open in the fixed point set of an involutive automorphism θ of
G. Then the orbit X := G.o = G/K is a Riemannian symmetric space.

Also denote by θ the involutive automorphism of the Lie algebra g of G induced
by θ . Then g = k ⊕ p where k, the +1 eigenspace of θ , is the Lie algebra of K ,
and p, the −1 eigenspace of θ , identifies as a K -module with To X = g/k.

We will denote the action of G on W by g.w, and the derived action of g by
u.w. Since pC = W if X is mid-dimensional in W ∼= Cq as above, we obtain for
any w ∈ W endomorphisms Rw of pC by Rw(u) := u.w.

In this setting, we have the following generalization of [32, Lemma 4.12].
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LEMMA B.2. Assume that X = G/K is a mid-dimensional cycle. Then

(div vn)(gK ) = − 1
2 trpC(Rg−1.n)

for any nilpotent shift n.

Proof. Let ∇ denote the Levi-Civita connection of X . For any vector field v on
X , one has the identity

div v = tr∇v
where ∇v denotes the endomorphism of the tangent sheaf TX given by u 7→ ∇uv.
This statement extends immediately to the case of relative vector fields. In order
to compute this explicitly, we use the transitive G-action to reduce everything to
a Lie algebra computation, as follows.

Consider the vector bundle G×K p associated with the principal K -bundle G→
X via the adjoint action of K on p. By definition, this is the quotient (G × p)/K ,
where the right action of K on G × p is given by (g, u) · k := (gk,Ad(k−1)(u)).
We denote the equivalence class of (g, u) in this quotient by [g, u].

There is a natural vector bundle map G ×K p → T X mapping [g, u] to the
tangent vector β̇u(0) at gK , given as the derivative of the geodesic βu(t) :=
g exp(tu) [37, Corollary 5.8]. This map is a G-equivariant isomorphism. Here,
on T X , g ∈ G acts by the derivative T Lg of the left multiplication Lg of X , while
it acts on G ×K p by sending [g′, u] to [gg′, u]. Similarly, we identify End(T X)
with G ×K End(p).

Let u ∈ g. The value at gK of the fundamental vector field uX associated with u
is the tangent vector α̇u(0), where αu(t) := exp(tu)gK . By [37, Equation (4.45)],
the connection ∇ is given by

∇u X = ad uX −Λ(u)
where Λ : g → Γ (T X) is a G-equivariant map. By [37, Propositions 5.2 and
5.9], Λ is determined by Λ(u)(o) = [1, λ(u)], where

λ(x + y) := ad x for all x ∈ k, y ∈ p,

in view of [37, Proposition 5.9]. By G-equivariance, we have

Λ(u)(gK ) = To Lg ◦ λ
(
Ad(g−1)(u)

) ◦ To Lg−1 .

Thus, for [g, u] ∈ TgK X , v ∈ Γ (TX ), and any smooth function f on an open
neighbourhood of gK , we have

(∇[g,u]v)gK f = ([uX , v] f )(gK )− [g, λ(Ad(g−1)(u))(To Lg)
−1vgK ] f.
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Here, [uX , v] is the bracket of vector fields, whereas in the second term on the
right-hand side, the brackets denote an equivalence class in G ×K p.

By the invariance of the trace, we may now compute

trTgK X (∇v) = trTo X
([1, u] 7→ TgK Lg−1(∇[g,u]v)gK

)
.

Denoting the action of G on vector fields by g · v, we compute, using the G-
invariance of the Levi-Civita connection, that

∇[g,u]vgK = To Lg
(∇[1,u]Tg Lg−1vgK

) = To Lg
(∇[1,u](g−1 · v)o

)
.

In particular, since λ(u) = 0 for all u ∈ p, we find

(div v)(gK ) = trp
(
u 7→ [uX , g−1 · v]o

)
for any vector field v. We may replace trp by 1

2 trpC .
Using the identification T C j of X × W with T CX = G ×K pC given by the

G-action on W , we see (vn)gK = [g, g−1.n]. Hence, one finds that

(g−1 · vn)hK = TghK Lg−1(vn)ghK = TghK Lg−1[gh, (gh)−1.n]
= [h, h−1.g−1.n] = (vg−1.n)hK .

Computing the commutator

[uX , vn] = d
ds

exp(−su) · vn

∣∣∣
s=0
= d

ds
vexp(−su).n

∣∣∣
s=0
= −vu.n,

we see that

(div vn)(gK ) = 1
2 trpC

(
u 7→ [uX , vg−1.n]o

) = − 1
2 trpC Rg−1.n,

thus completing the proof of the lemma.

Appendix C. Superdistributions and Laplace transforms

In this appendix, we develop some basic Euclidean Fourier analysis for
superdistributions. The facts about Fourier inversion on the Schwartz space are
well-known, but we are not aware of a convenient reference. The account that we
give of the Laplace transform is to our knowledge new.
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C.1. Superdistributions. In this subsection, we give a self-contained
development of the basic functional analytic properties of the spaces of
superfunctions and superdistributions that we encounter in this article.

All the results can also be derived quickly from the classical case by invoking
Batchelor’s theorem. However, we deliberately avoid this point of view on the
grounds that it is generally useful to have definitions of the relevant topologies at
hand that do not appeal to coordinates in their definition.

We freely use some well-established functional analysis terminology. Basic
texts include Refs. [35, 38, 45].

DEFINITION C.1 (Temperedness and Schwartz class). Let V0̄,R be a real vector
space and ‖·‖ a norm function on V0̄,R. A complex-valued function f on V0̄,R is
of moderate growth if there exists an N ∈ N such that

supx∈V0̄,R
(1+ ‖x‖)−N | f (x)| <∞.

Now, let (V, V0̄,R) be a cs vector space. Consider the associated cs manifold L(V,
V0̄,R), with sheaf of superfunctions OV,V0̄,R

. For f ∈ Γ (OV,V0̄,R
) and D ∈ S(V ),

considered as a differential operator, we write

f (D; x) := (D f )(x)

for all x ∈ V0̄,R. Then f is called tempered if for any D ∈ S(V ), the function
f (D; ·) is of moderate growth; it is of Schwartz class if for any D ∈ S(V ), and
any tempered superfunction h, the function (h f )(D; ·) is bounded. In the latter
case, we set

ph,D( f ) := supx∈V0̄,R
|(h f )(D; x)|.

Then f is tempered if any only if for every D ∈ S(V ), we have

supx∈V0̄,R
(1+ ‖x‖)−N | f (D; x)| <∞

for some N > 0; f is of Schwartz class if and only if for D ∈ S(V ), we have

pN ,D( f ) := supx∈V0̄,R
(1+ ‖x‖)N | f (D; x)| <∞

for all N > 0. The totality of all tempered superfunctions (respectively, super-
functions of Schwartz class) is denoted by T (V, V0̄,R) (respectively, S (V, V0̄,R)).
We endow S (V, V0̄,R) with the locally convex topology defined by the
seminorms ph,D (or, equivalently, pN ,D), and let S ′(V, V0̄,R) denote the
topological dual space of S (V, V0̄,R), with the strong topology. The elements of
S ′(V, V0̄,R) are called tempered superdistributions.
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LEMMA C.2. The space S (V, V0̄,R) is a Fréchet space and, in particular,
barrelled.

Proof. In view of the above discussion, S (V, V0̄,R)
∼= S (V0̄,R)

m where m =
2dim V1̄ . The assertion follows from [18, Chapter II, Section 2.2, Theorem 2].

If X is a cs manifold, then we endow OX (U ), for any open set U ⊆ X0, with
the locally convex topology induced by the seminorms

pK ,D( f ) := sup
x∈K

∣∣(D f )(x)
∣∣,

where D runs through the set DX (U ) of superdifferential operators (of finite
order) on XU , and K ⊆ U is compact. In what follows, we require X0 to be
metrizable (or equivalently, paracompact [44, Appendix]).

PROPOSITION C.3. Let (Uα) be an open cover of U. Then OX (U ) is the locally
convex projective limit of the OX (Uα), with respect to the restriction morphisms.
In particular, OX (U ) is complete, and if U is σ -compact, then OX (U ) is Fréchet.

Proof. Since DX is an OX -module and OX is c-soft, so is DX . This readily implies
that the restriction maps are continuous. Hence, we have that the linear map
OX (U ) → lim←−αOX (Uα) is continuous, and is bijective by the sheaf property.
Conversely, to see that it is open, one may pass to a locally finite refinement, and
then argue similarly using partitions of unity. The remaining statements then carry
over from the case of coordinate neighbourhoods, which is easily dealt with.

We recall that if A is an algebra (not necessarily unital or associative) endowed
with a locally convex topology, then this topology is called locally m-convex if it
is generated by a system of submultiplicative seminorms.

COROLLARY C.4. The topology on OX (U ) is locally m-convex.

Proof. In view of Proposition C.3, it is sufficient to prove this in a coordinate
neighbourhood. Then, as in the even case [27, 2.2], a locally m-convex topology
is generated by the seminorms

pK ,k( f ) = 2k · max
α∈Np×{0,1}q |α|6k

sup
x∈K
| f (∂α, x)|,

for k ∈ N and K ⊆ U compact, where we agree to write

∂α := ∂αp+q

∂(x p+q)αp+q
· · · ∂α1

∂(x1)α1
,

and (xa) is some local coordinate system on U .
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By arguments similar to those in the proof of Proposition C.3, one proves the
following.

PROPOSITION C.5. Let φ : X → Y be a morphism of cs manifolds. Then the
even linear pullback map φ] : Γ (OY )→ Γ (OX ) is continuous.

Let X be a cs manifold where X0 is σ -compact. (By assumption, X0 is
metrizable, and it is locally path-connected as a manifold. Hence, X0 is second
countable if and only if it has countably many connected components [44,
Appendix].) For any compact K ⊆ X0, let ΓK (OX ) denote the set of all global
sections of OX with support in K . Endowed with the relative topology from
Γ (OX ) = OX (X0), it is a Fréchet space.

Let Γc(OX ) = ⋃K ΓK (OX ), where the union extends over all compact subsets
K ⊆ X0, be the set of all compactly supported sections of OX , equipped with the
locally convex inductive limit topology.

PROPOSITION C.6. The locally convex space Γc(OX ) has the following
properties:

(i). It is LF, and in particular, complete, barrelled, and bornological.

(ii). It is nuclear, and in particular, reflexive and Montel.

The latter statement also holds for Γ (OX ).

Proof. (i) If K ′ ⊇ K , then ΓK (OX ) → ΓK ′(OX ) is by definition a topological
embedding. Since X0 is σ -compact, the limit topology is computed by taking any
countable exhaustive filtration of X0 by compact subsets.

(ii) It is sufficient to prove the nuclearity of ΓK (OX ), since this property is
preserved under countable locally convex inductive limits [45, Proposition 50.1].
The same holds true for locally convex projective limits [45, Proposition 50.1], so
the question is reduced to the case of the cs domain, in view of Proposition C.3.
In this case, ΓK (OX ) ∼= C∞K (U )N where U ⊆ Rp is open, K ⊆ U is compact,
and N = 2q is some nonnegative integer. The claim then follows from [45,
Proposition 50.1] and [45, Corollary to Theorem 51.4]. For Γ (OX ), we argue
analogously.

COROLLARY C.7. The locally convex spaces S (V, V0̄,R) and S ′(V, V0̄,R) are
nuclear, barrelled, reflexive, and Montel.

The proof makes use of the following lemma.
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LEMMA C.8. The natural even linear maps Γc(OV,V0̄,R
) → S (V, V0̄,R) and

S ′(V, V0̄,R)→ Γc(OV,V0̄,R
)′ are continuous, injective, and have dense image.

Proof. For any compact K ⊆ V0̄,R, we have an injection ΓK (OV,V0̄,R
) →

S (V, V0̄,R), which is continuous by definition of the topologies. Thus,
Γc(OV,V0̄,R

) → S (V, V0̄,R) is also continuous. It has dense image by
[18, Chapter II, Section 2.5]. Hence, its transpose defines an injection
S ′(V, V0̄,R)→ Γc(OV,V0̄,R

)′ with dense image.

Proof of Corollary C.7. By Proposition C.6, Γc(OV,V0̄,R
) is a nuclear LF space.

Therefore, by [45, Proposition 50.6], Γc(OV,V0̄,R
)′ is the locally convex projective

limit of nuclear spaces, and thus itself nuclear, in view of [45, Theorem 50.1].
As a subspace of a nuclear space, S ′(V, V0̄,R) is nuclear [45, Proposition 50.6].
Hence, so is S (V, V0̄,R), by [45, Proposition 50.6]. Any barrelled nuclear space
is Montel, any nuclear space is reflexive, and the strong dual of a Montel space is
Montel (and thus, barrelled). Hence the claim.

Using nuclearity, we derive along the lines of [45, proof of Theorem 51.6] the
following corollary.

COROLLARY C.9. Let X and Y be cs manifolds. There is a natural isomorphism
of locally convex supervector spaces Γ (OX )⊗̂πΓ (OY ) → Γ (OX×Y ) where ⊗̂π
denotes the completed projective tensor product topology.

Let X be a cs manifold. The assignment U 7→ Γc(OX |U ) is a cosheaf [6], and
its extension maps Γc(OX |U ) → Γc(OX |V ) for open subsets U ⊆ V ⊆ X0 are
continuous, as follows from the definition of the topologies.

Thus, we have a presheaf DbX on X0, defined by

DbX (U ) := Γc(OX |U )′,
the topological dual space of Γc(OX |U ). Because OX is c-soft, it follows easily
that DbX is a sheaf. Sections of this sheaf are called superdistributions on X .

In view of Proposition C.6, when equipped with the strong topology, DbX (U )
is nuclear and Montel, and in particular, reflexive and barrelled.

C.2. Vector-valued superfunctions. In this subsection, we generalize the
notion of a function with values in a locally convex space to the ‘supercase’.
Our motivation is Laurent Schwartz’s approach to the study of the Laplace
transform [41], which we will need to superextend in order to prove the main
result of this paper. However, the notion of vector-valued superfunctions is also
useful in other contexts.
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Rather than giving the most general definition, which would appeal to some
category of infinite-dimensional supermanifolds, we define vector-valued
superfunctions via completed tensor products. This becomes tractable by a
suitable extension of the formalism of S-valued points.

In what follows, let E denote a locally convex supervector spaces and E ′ its
strong continuous linear dual space. For any cs manifold S, we define

O(S, E) := Γ (OS)⊗̂π E,

where ⊗̂π denotes the completed projective tensor product, endowed with the
standard grading. The elements of O(S, E) are called E-valued superfunctions
on S. Observe that since Γ (OS) is nuclear by Proposition C.6, we might have
taken any other locally convex tensor product topology in the definition [45].

PROPOSITION C.10. Let E be a locally convex supervector space. The
assignment S 7→ O(S, E) is a functor from cs manifolds to the category of
locally convex supervector spaces with even continuous linear maps.

For any cs manifolds S and T , there is a natural isomorphism

O(S × T, E) = O(S,O(T, E))

of locally convex supervector spaces.

Proof. The functoriality of O(−, E) follows from the definitions. Given a
morphism φ : T → S of cs manifolds, we may form

O(φ, E) := φ] ⊗̂π idE : O(S, E)→ O(T, E),

by Proposition C.5. The second assertion is a consequence of Corollary C.9.

DEFINITION C.11 (Values of vector-valued superfunctions). Let X be a cs
manifold and f ∈ O(X, E). For any x ∈S E , we define

f (x) := O(x, E)( f ) = (x ] ⊗̂π idE
)
( f ) ∈ O(S, E),

and call this the value of f at the S-valued point x .

The following is immediate from the definitions.

PROPOSITION C.12. Let X1, . . . , Xn be cs manifolds, E1, . . . , En, F be locally
convex spaces and b : ∏ j E j → F an even continuous n-linear map. The
assignment

( f1, e1, . . . , fn, en) :
∏

j

(
Γ (OX j )× E j

) 7→ f1 ⊗ · · · ⊗ fb ⊗ b(e1, . . . , en)
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extends uniquely to a continuous linear map

b : O(∏ j X j ,
⊗̂

π, j E j
)→ O

(∏
j X j , F

)
which satisfies

b( f )(x1, . . . , xn) = b( f (x1, . . . , xn)) ∈ O(S, F)

for any f ∈ O(∏ j X j ,
⊗̂

π, j E j
)

and (x1, . . . , xn) ∈S
∏

j X j .

REMARK C.13. The conclusion of Proposition C.12 continues to hold if there is
some integer k 6 n such that

(i). the spaces E1, . . . , Ek are nuclear,

(ii). b is separately continuous, and

(iii). for any (e1, . . . , ek) ∈
∏k

j=1 E j , the following map is continuous:

b(e1, . . . , ek, ·) : Ek+1 × · · · × En → F.

Thus, if E is nuclear and 〈·, ·〉E denotes the canonical pairing E ′ × E → C, then

〈µ, f 〉(x, y) = 〈µ(x), f (y)〉 ∈ O(S,C) = Γ (OS)

for any µ ∈ O(X, E ′), f ∈ O(Y, E), and (x, y) ∈S X × Y .

C.3. The Fourier transform on the Schwartz space S . In this subsection,
we extend the classical theory of the Fourier transform on the Schwartz space to
the ‘supersetting’. Everything is more or less straightforward. However, we do
not know a convenient reference, and consider it worthwhile to supply one.

In what follows, recall the facts and definitions from Appendix B.

DEFINITION C.14. Let (V, V0̄,R) be a cs vector space of dim V = p|q , endowed
with a homogeneous basis (va, νb), where we assume that va ∈ V0̄,R. Let (va, νb)

be the dual basis. The Lebesgue density |dv0| is the unique translation invariant
density on V0̄,R such that the cube with side 1 spanned by (va) has volume 1.

Moreover, there is a unique Berezinian density |Dv| on the cs manifold L(V,
V0̄,R) associated with (V, V0̄,R), such that

V0̄,R

 
L(V,V0̄,R)

|Dv| f = |dv0| ∂
∂νq
· · · ∂

∂ν1
f for all f ∈ Γ (OV,V0̄,R

).
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We let (V ∗, V ∗
0̄,R) be the dual cs vector space, with densities |dv∗0 | and |Dv∗|

associated with the dual basis (va, νb).
The standard retraction r = rV,V0̄,R

of L(V, V0̄,R) is defined by r ](va) = va .
The definition is in fact independent of the choice of basis.

For f ∈S (V, V0̄,R), we define the Fourier transform F( f ) ∈S (V ∗, V ∗̄0,R) by

F( f ) := 1
(2π)p/2

ˆ
L(V,V0̄,R)

|Dv| e−i〈·,v〉 f (v),

where 〈·, ·〉 : V ∗ × V → C denotes the canonical pairing. For f ∈ S (V0̄,R), we
normalize the ordinary Fourier transform F0( f ) ∈ S (V ∗̄0,R) by

F0( f ) := 1
(2π)p/2

ˆ
V0̄,R

|dv0| e−i〈·,v0〉 f (v0).

For f ∈S (V ∗, V ∗̄0,R), we define the Fourier cotransform F̌( f ) ∈S (V, V0̄,R):

F̌( f ) := (−i)q(−1)
1
2 q(q+1)

(2π)p/2

ˆ
L(V ∗,V ∗

0̄,R)

|Dv∗| ei〈v∗,·〉 f (v∗).

The ordinary Fourier cotransform F̌0( f ) ∈ S (V0̄,R) of f ∈ S (V ∗̄0,R) is

F̌0( f ) = 1
(2π)p/2

ˆ
V ∗

0̄,R

|dv∗0 | ei〈v∗0 ,·〉 f (v∗0),

so F̌0 = F−1
0 by the classical Fourier inversion theorem [9].

From the classical theory, one deduces easily that F and F̌ are continuous.

LEMMA C.15. Let (U,U0̄,R) be a cs vector space and 〈·, ·〉 denote the canonical
pairing U ∗ ×U → C. If (ua) is a homogeneous basis of U with dual basis (ua),
such that ub(ua) = δab, then we have, as a superfunction on L(U ∗,U ∗

0̄,R)× L(U,
U0̄,R),

〈·, ·〉 =
∑

a

ua ⊗ ua.

Proof. Let S be any cs manifold, and let u∗ ∈S L(U ∗,U ∗
0̄,R), u ∈S L(U,U0̄,R),

where
u∗ =

∑
a

faua and u =
∑

a

gaua

under the identification U (S) = (Γ (OS)⊗U )0̄,R (and similarly for U ∗). Then

〈u∗, u〉 =
∑

ab

(−1)|u
a ||ub | fagbua(ub) =

∑
a

(−1)|ua | faga = str( fagb).
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On the other hand,(∑
a

ua ⊗ ua
)
(u∗, u) =

∑
abc

(−1)|ua ||ub |+|ua ||uc | fbgcua(ub)ua(uc) = str( fagb),

since ua(ub) = (−1)|ua |δab.

LEMMA C.16. For any f ∈S (V, V0̄,R), g ∈S (V ∗, V ∗̄0,R), and a = 1, . . . , p+q,
we have

F(νa f ) = (−1)q i
∂

∂νa
F( f ), F̌(νag) = (−1)q i

∂

∂νa
F̌(g),

F
( ∂

∂νa
f
)
= −(−1)q iνaF( f ), F̌

( ∂

∂νa
g
)
= −(−1)q iνaF̌(g).

Proof. By Lemma C.15, we have

∂

∂νa
〈·, ·〉 = νa and

∂

∂νa
〈·, ·〉 = −νa,

and so
∂

∂νa
e±i〈·,·〉 =

∞∑
n=0

(±i)n+1

n! νa〈·, ·〉n = ±iνae±i〈·,·〉

and ∂

∂νa e±i〈·,·〉 = ∓iνae±i〈·,·〉. Then

F(νa f ) =
ˆ

L(V,V0̄,R)

|Dv| νae−i〈·,v〉 f (v)

= i
ˆ

L(V,V0̄,R)

|Dv| ∂
∂νa

e−i〈·,v〉 f (v) = (−1)q i
∂

∂νa
F( f ),

and similarly F̌(νag) = (−1)q i ∂

∂νa F̌(g). Using integration by parts, we see that

F
( ∂

∂νa
f
)
= −

ˆ
L(V,V0̄,R)

|Dv| ∂
∂νa

e−i〈·,v〉 f (v) = −(−1)q iνaF( f ),

and similarly F̌
(
∂

∂νa
g
) = −(−1)q iνaF̌(g).

PROPOSITION C.17. The linear map F : S (V, V0̄,R)→ S (V ∗, V ∗̄0,R) is an
isomorphism of locally convex vector spaces of parity ≡ q (2), with inverse F̌ .

Note that when considered on the level of Berezinian densities instead of
functions, the Fourier transform is an even map.
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Proof of Proposition C.17. The idea is to reduce to the classical case by taking
derivatives, as is done for dim V = 0|q in Ref. [20, Chapter 7].

Let f ∈ S (V0̄,R), considered as an element of S (V, V0̄,R) via the standard
retraction of V . Letting v∗ denote the generic point of L(V ∗, V ∗̄0,R), the proof of
Lemma C.16 shows that

F( f )(v∗) = 1
(2π)p/2

ˆ
V0̄,R

|dv0| j ]L(V,V0̄,R)0

( ∂

∂νq
· · · ∂

∂ν1
e−i〈v∗,·〉

)
(v0) f (v0)

= iq(−1)
1
2 q(q−1)ν1 · · · νq F0( f ),

where F0( f ) is considered as a superfunction on L(V ∗, V ∗̄0,R) via the standard
retraction. It follows that

F̌F( f ) = 1
(2π)p/2

ˆ
V ∗

0̄,R

|dv∗0 | ei〈v∗0 ,v0〉 j ]L(V ∗,V ∗
0̄,R)0

( ∂

∂νq
· · · ∂

∂ν1
ν1 · · · νq F0( f )

)
(v∗0)

= f,

since ei〈·,·〉 is even, and by the classical Fourier inversion formula [9].
If now f ∈ S (V, V0̄,R) is arbitrary, then by Lemma C.16,

F̌F(νa f ) = (−1)q i F̌
( ∂

∂νa
F( f )

)
= νaF̌F( f ).

This reduces the proof of the equation F̌F = id to the subspace S (V0̄,R), which
was treated above. For the converse composition, one proceeds analogously.

DEFINITION C.18. For f, g ∈ S (V, V0̄,R), define the convolution f ∗ g ∈
S (V, V0̄,R) by demanding that

ˆ
L(V,V0̄,R)

|Dv| ( f ∗ g)(v)h(v) =
ˆ

L(V×V,V0̄,R×V0̄,R)

|Dv1||Dv2| f (v1)g(v2)h(v1+v2)

for any tempered superfunction h. Then, for any cs manifold S, and any S-valued
point x ∈S L(V, V0̄,R),

( f ∗ g)(x) =
ˆ

L(V,V0̄,R)

|Dv| f (v)g(x − v).

The following lemma, which is an easy consequence of the Leibniz rule and
Hölder’s inequality, shows that we do indeed have f ∗ g ∈ S (V, V0̄,R).
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LEMMA C.19. For all I ⊆ {1, . . . , q}, there exist DI 1, DI 2 ∈ S(V ∗), such that∣∣∣∣ˆ
L(V,V0̄,R)

|Dv| ( f g)(v)
∣∣∣∣ 6∑

I

sup
v0∈V0̄,R

∣∣ f (DI 1; v0)
∣∣ˆ

V0̄,R

|dv0|
∣∣g(DI 2; v0)

∣∣,
for any superfunctions f, g such that all integrals in question converge absolutely.

The behaviour of convolution products under Fourier transform carries over
to the ‘supercase’. The nontrivial signs are again an artefact introduced by
considering the Fourier transform on the level of functions rather than that of
Berezinian densities.

LEMMA C.20. For any f, g ∈ S (V, V0̄,R), we have

F( f ∗ g) = (−1)q| f |(2π)p/2F( f )F(g).

Proof. By the definition of f ∗ g, and writing
´

V for
´

L(V,V0̄,R)
, we compute

F( f ∗ g) = 1
(2π)p/2

ˆ
V×V
|Dv1||Dv2| e−i〈·,v1+v2〉 f (v1)g(v2)

= (−1)q| f |

(2π)p/2

ˆ
V
|Dv| e−i〈·,v〉 f (v) ·

ˆ
V
|Dv| e−i〈·,v〉g(v)

= (−1)q| f |(2π)p/2F( f )F(g).

Here, the equality
e−i〈u,v1+v2〉 = e−i〈u,v1〉e−i〈u,v2〉

for all u, v j ∈S L(V, V0̄,R) follows as usual using Cauchy summation, since
the exponential series in question converge absolutely in Γ (OS), in view of
Corollary C.4 and the (elementary) fact that complete locally m-convex algebras
admit a functional calculus for entire functions; see Ref. [36]. This proves the
claim.

PROPOSITION C.21. Let f, g ∈ S (V, V0̄,R). Thenˆ
V ∗
|Dv∗|F( f )(v∗)F(g)(v∗) = (−1)q| f |iq(−1)

1
2 q(q−1)

ˆ
V
|Dv| f (v)g(−v),

where we write
´

V ∗ for
´

L(V ∗,V ∗̄0,R)
and

´
V for

´
L(V,V0̄,R)

.

Proof. We have

F̌(h)(0) = (−i)q(−1)
1
2 q(q−1)

(2π)p/2

ˆ
V ∗
|Dv∗| h(v∗)
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for all h ∈ S (V ∗, V ∗̄0,R), so by Lemma C.20 and Proposition C.17,
ˆ

V ∗
|Dv∗|F( f )(v∗)F(g)(v∗) = (−1)q| f |

(2π)p/2

ˆ
V ∗
|Dv∗|F( f ∗ g)(v∗)

= (−1)q| f |iq(−1)
1
2 q(q−1)F̌F( f ∗ g)(0)

= (−1)q| f |iq(−1)
1
2 q(q−1)

ˆ
V
|Dv| f (v)g(−v),

which was our assertion.

Finally, we define the Fourier (co)transform on S ′(V, V0̄,R) by duality.

DEFINITION C.22. For any homogeneous µ ∈ S ′(V, V0̄,R), we define the
distributional Fourier transform F(µ) ∈ S ′(V ∗, V ∗̄0,R) by

〈F(µ),F( f )〉 := (−1)q|µ|iq(−1)
1
2 q(q−1)〈µ, f̌ 〉 for all f ∈ S (V, V0̄,R)

where f̌ (v) = f (−v) for all v ∈S L(V, V0̄,R) and any cs manifold S. Similarly,
we define, for any homogeneous tempered superdistribution ν ∈ S ′(V ∗, V ∗̄0,R),
the Fourier cotransform F̌(ν) ∈ S ′(V, V0̄,R) by

〈F̌(ν), F̌(g)〉 := (−1)q|ν|(−i)q(−1)
1
2 q(q−1)〈ν, ǧ〉 for all g ∈ S (V ∗, V ∗̄0,R).

The following is immediate.

COROLLARY C.23. The Fourier transform F : S ′(V, V0̄,R)→ S ′(V ∗, V ∗̄0,R) is
an isomorphism of locally convex vector spaces, of parity ≡ q (2), with inverse
F̌ .

Again, the parity problems disappear if instead we consider the Fourier
transform on the level of tempered generalized superfunctions (that is, the dual
of the space of Berezinian densities of Schwartz class).

C.4. The Paley–Wiener space Z . We will also need to consider the Fourier
transform in situations which do not exhibit the same self-duality as the case of
the Schwartz space. A useful receptacle will be the so-called Paley–Wiener space,
which arises by Fourier transform of compactly supported smooth functions.

DEFINITION C.24. Fix a positive inner product (·|·)V on V0̄,R. Write ‖·‖V for the
associated norm function.
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Denote by L(V ) the complex supermanifold associated with the complex
supervector space V , with sheaf of superfunctions OV . We denote by Z (V, V0̄,R)

the following subspace of Γ (OV ):

Z (V, V0̄,R) :=
{

f ∈ Γ (OV )
∣∣ ∃R > 0∀D ∈ S(V ) , p ∈ S(V ∗) : zR,D,p( f ) <∞},

where
zR,D,p( f ) := supv∈V0̄

∣∣e−R‖=v‖V (p · f )(D; v)∣∣
for all R > 0, p ∈ S(V ∗), D ∈ S(V ) and f ∈ Γ (OV ). Here, =v := 1

2i (v − v̄)
where v̄ is the complex conjugate of v with respect to the real form V0̄,R of V0̄.

Thus, Z (V, V0̄,R) consists of holomorphic superfunctions of exponential type;
it is called the Paley–Wiener space of (V, V0̄,R). We also consider for fixed R > 0
the subspace Z R(V, V0̄,R) ⊆ Γ (OV ) defined by the requirement that all zR,D,p,
for p and D arbitrary, are finite. With the topology induced by these seminorms,
Z R(V, V0̄,R) is a Fréchet space. We endow Z (V, V0̄,R) with the locally convex
inductive limit topology of the spaces Z R(V, V0̄,R). Obviously, the restriction
map Γ (OV ) → Γ (OV,V0̄,R

) induces a continuous injection Z (V, V0̄,R) →
S (V, V0̄,R).

PROPOSITION C.25 (Paley–Wiener). Let F̌ : S (V, V0̄,R) → S (V ∗, V ∗̄0,R) be
the Fourier cotransform of (V ∗, V ∗̄0,R) and f ∈ Z (V, V0̄,R). Then F̌( f ) ∈
Γc(OV ∗,V ∗̄0,R), and f ∈ Z R(V, V0̄,R) if and only if supp F̌( f ) ⊆ BV ∗(0, R), where

BV ∗(0, R) = {v∗ ∈ V ∗0̄,R
∣∣ ‖v∗‖V ∗ 6 R

}
,

and ‖·‖V ∗ denotes the norm dual to ‖·‖V . Moreover, this sets up an isomorphism
of locally convex spaces ΓBV∗ (0,R)

(
OV ∗,V ∗̄0,R

) ∼= Z R(V, V0̄,R).

Proof. In view of Lemma C.16, the proof is reduced to the case of f ∈ Z (V0̄,R).
Then by the proof of Proposition C.17, F̌( f ) = ν1 · · · νqF̌0( f )which has support
in BV ∗(0, R) if and only if this is the case for F̌0( f ). Hence, the statement reduces
to the classical Paley–Wiener theorem; see Refs. [9, 17, 12, 40].

COROLLARY C.26. The locally convex spaces Z R(V, V0̄,R) are nuclear Fréchet,
and Z (V, V0̄,R) is nuclear LF. In particular, both spaces are complete, reflexive,
barrelled, Montel, and bornological.

Proof. The topology on Z R(V, V0̄,R) (respectively, Z (V, V0̄,R)) is the one
induced via the Fourier transform from ΓBV∗ (0,R)(OV ∗) (respectively, Γc(OV ∗)),
and the latter is nuclear Fréchet (respectively, nuclear LF) and Montel by
Proposition C.6.
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DEFINITION C.27. For any homogeneous µ ∈ Z ′(V, V0̄,R), we define the
distributional Fourier transform F(µ) ∈ Γ (DbV ∗,V ∗̄0,R) by

〈F(µ),F( f )〉 := (−1)q|µ|iq(−1)
1
2 q(q−1)〈µ, f̌ 〉 for all f ∈ Z (V, V0̄,R).

Here, we write DbV ∗,V ∗̄0,R := DbL(V ∗,V ∗̄0,R). Similarly, we define, for ν ∈
Γ (DbV ∗,V ∗̄0,R), the Fourier cotransform F̌(ν) ∈ Z ′(V, V0̄,R) by

〈F̌(µ), F̌(g)〉 := (−1)q|ν|(−i)q(−1)
1
2 q(q−1)〈ν, ǧ〉 for all g ∈ Γc(OV ∗,V ∗̄0,R).

COROLLARY C.28. The Fourier transform F : Z ′(V, V0̄,R)→ Γ (DbV ∗,V ∗̄0,R) is
an isomorphism of locally convex vector spaces, of parity ≡ q (2), with inverse
F̌ .

C.5. Laplace transforms. In this subsection, we give an account of the basics
of the Laplace transform. The two main results are that the Laplace transform
is injective, and that under mild conditions it can be computed as an integral.
Another point, which we discuss at some length, is the extension of generalized
superfunctions as functionals to certain larger spaces of test superfunctions,
depending on the domains of definition of their Laplace transforms.

Essentially, we follow the classical exposition by Schwartz [41] (see also the
Exercises 4 and 6 in [9, Chapter XXII.18]), although we also need to consider the
Laplace transform for functionals on Z (as in Ref. [25]). Moreover, a rigorous
account of this theory for superspaces needs to use S-valued points; in this, we
follow the exposition given in Appendix C.2.

DEFINITION C.29. A locally convex supervector space E is called a test space
for (V, V0̄,R) if it is one of Γc(OV,V0̄,R

), Z (V, V0̄,R), or S (V, V0̄,R). In this case,
Ě := F(E) (where F is the Fourier transform on (V, V0̄,R)) is called the the
dual test space (for (V ∗, V ∗̄0,R)); one also has Ě = F̌(E), where F̌ is the Fourier
cotransform on (V ∗, V ∗̄0,R). Notice that all test spaces are contained as dense
subspaces in S (V, V0̄,R)

The strong dual E ′ of a test space is called a space of generalized functions for
(V, V0̄,R). Notice that S ′(V, V0̄,R) is contained as a dense subspace in any space
of generalized functions E ′. The set M(E) of all functions f ∈ Γ (OV,V0̄,R

) such
that f · E ⊆ E in Γ (OV,V0̄,R

) is called the multiplier space of E . We write Ě ′ for
the strong dual of the dual test space Ě .

For E = Γc(OV,V0̄,R
), we have M(E) = Γ (OV,V0̄,R

). For E = S (V, V0̄,R), we
have M(E) = T (V, V0̄,R), the space of tempered superfunctions [9]. Finally, for
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E = Z (V, V0̄,R), we have [17]

M(E) = { f ∈ Γ (OV )
∣∣ ∀D ∈ S(V ) ∃R, N > 0 : zR,D,−N ( f ) <∞},

where
zR,D,−N ( f ) := sup

v∈V0̄

(1+ ‖v‖V )
−N e−R‖=v‖V | f (D; v)|.

Notice that M(E) contains the space S(V ∗) of superpolynomials for any E .
Let E ⊆ F be test spaces for (V, V0̄,R) and µ ∈ E ′. For z ∈S L(V ∗), we write

e−〈z,·〉µ ∈S F ′ (C.1)

if the series ∞∑
k=0

(−1)k

k! 〈z, v〉
kµ (C.2)

converges in O(S, E ′), and its limit, denoted by e−〈z,·〉µ, lies in the subspace O(S,
F ′). Here, v denotes the generic point of L(V, V0̄,R), so 〈z, v〉k can be interpreted
as an element of

O
(
S, Γ (OV,V0̄,R

)
) = Γ (OS)⊗̂πΓ (OV,V0̄,R

) = Γ (OS×L(V,V0̄,R)

)
.

Hence, we have 〈z, v〉kµ ∈ O(S)⊗̂π E ′ = O(S, E ′).
We may thus define

γF(µ)S :=
{

x ∈S L(V ∗, V ∗̄0,R)
∣∣ e−〈x,·〉µ ∈S F ′

}
.

We also write γD , γS , and γZ for the cases of E = Γc(OV,V0̄,R
), E =S (V, V0̄,R),

and E = Z (V, V0̄,R), respectively.
We remark that for any z = x + iy ∈S L(V ∗), x, y ∈S L(V ∗, V ∗̄0,R), we have

e−〈z,·〉µ ∈S F ′ ⇔ x ∈ γF(µ)S. (C.3)

DEFINITION C.30. Let E ⊆ F be test spaces for (V, V0̄,R) and µ ∈ E ′. For any
x ∈ γF(µ)S , we define the Laplace transform

L (µ)(x) := F(e−〈x,·〉µ) ∈ O(S, F̌ ′).

LEMMA C.31. Let E ⊆ F be test spaces for (V, V0̄,R) and µ ∈ E ′. If x ∈ γF(µ)S

and t : T → S, then x(t) ∈ γF(µ)T and

L (µ)(x(t)) = (L (µ)(x))(t).

Proof. Applying Proposition C.5 to exchange t ] ⊗̂π id with the limit of the series,
we find x(t) ∈ γF(µ)T . The second assertion follows from Proposition C.12 and
the continuity of the Fourier transform.
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We now relate the thus defined Laplace transform of generalized superfunctions
to the Laplace transform of ordinary generalized functions. First, observe that the
following is immediate by the Leibniz rule.

LEMMA C.32. Let E ⊆ F be test spaces and µ ∈ E ′. Then

γF(ν
bµ)S ⊇ γF(µ)S and γF

(
∂

∂νb
µ
)

S ⊇ γF(µ)S.

Denote the standard retraction of L(V, V0̄,R) by rV,V0̄,R
: L(V, V0̄,R)→ V0̄,R.

Let E be a test space for (V, V0̄,R) and E0 the corresponding test space for V0̄,R;
that is, E0 = Z (V0̄,R) if E = Z (V, V0̄,R), and so on. Then r ]V,V0̄,R

(E0) ⊆ E , so

〈rV,V0̄,R,]
(µ), f 〉 := 〈µ, r ]V,V0̄,R

( f )〉 for all µ ∈ E ′ , f ∈ E0.

defines a continuous even linear map rV,V0̄,R,]
: E ′→ E ′0.

PROPOSITION C.33. Let E ⊆ F be test spaces and µ ∈ E ′. Then

γF(µ)S =
q⋂

k=0

⋂
16b1<···<bk6q

γF0

(
rV,V0̄,R,]

(νb1 · · · νbkµ)
)

S.

Proof. The statement is immediate from the Taylor expansion

〈µ, f 〉 =
q∑

k=0

∑
B=(16b1<···<bk6q)

±
〈
rV,V0̄,R,]

(νBµ), j ]L(V,V0̄,R)

( ∂k

∂νB
f
)〉
, (C.4)

which can be applied to 〈e−〈x,·〉 · µ, f 〉. Here, we use Proposition C.12 in
conjunction with Remark C.13.

If X is any cs manifold and j : Y → X is an embedding, then if a morphism
S → X factors through j , it does so uniquely. Hence, for any open subspace U
of X , U (S) may be considered as a subset of X (S) for any S, and the totality
of these subsets forms a topology on X (S). For this topology, any morphism f :
X → Y induces continuous maps X (S)→ Y (S) on S-valued points; moreover,
if j : Y → X is an embedding, then j is open if and only if Y (S) ⊆ X (S) is open
for every S.

In what follows, given an open subspace γ ⊆ L(V ∗, V ∗̄0,R), we denote by T (γ )
the open subspace γ + i L(V ∗, V ∗̄0,R) of L(V ∗).

THEOREM C.34. Let E ⊆ F be test spaces for (V, V0̄,R) and µ ∈ E ′.

(i) There exists a unique open subspace γ ◦F(µ) of L(V ∗, V ∗̄0,R) such that for
any cs manifold S, γ ◦F(µ)(S) is the interior of γF(µ)S in L(V ∗, V ∗̄0,R)(S).
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(ii) Assume that γ ◦S (µ) 6= ∅ and let T (µ) := T (γ ◦S (µ)). Then there is a
unique f ∈ Γ (OT (µ)) such that

ˆ
L(V ∗,V ∗̄0,R)

|Dy| f (x + iy)ϕ(y) = 〈L (µ)(x), ϕ〉 (C.5)

for any ϕ ∈S (V ∗, V ∗̄0,R) and x ∈S γ
◦
S (µ), in the sense that the integral on

the left-hand side converges absolutely and the equality holds. Moreover,
for any D ∈ S(V ∗), the function f (D; z) is bounded on T (K ) by some
polynomial in =z, for every compact subset K ⊆ γ ◦S (µ)0.

(iii) Given an open subspace γ ⊆ L(V ∗, V ∗̄0,R) and f ∈ Γ (OT (γ )), there is a
tempered superdistribution µ ∈ S ′(V, V0̄,R) such that γ ⊆ γ ◦S (µ) and
Equation C.5 holds, if and only if for any D ∈ S(V ∗), the function f (D; z)
is bounded on T (K ) by a polynomial in =z, for every compact K ⊆ γ0. In
this case, µ is unique.

Proof. (i) Unicity is obvious, and so we check existence. In view of
Proposition C.33, we may assume that V = V0̄ and µ ∈ E ′ = E ′0 is an ordinary
generalized function. In this case, we let γ ◦F(µ) be the set of all x ∈ V0̄,R such
that e−〈y,·〉 · µ ∈ F ′ for all y a some neighbourhood of x . In general, γ ◦F(µ) will
be defined by

γ ◦F(µ) :=
q⋂

k=0

⋂
16b1<···<bk6q

γ ◦F0

(
rV,V0̄,R,]

(νb1 · · · νbkµ)
)
.

If γF(µ)
◦
S 6= ∅ where S0 6= ∅, then there exists an open subset U ⊆ V0̄,R such

that for any y ∈S U , we have e−〈y,·〉 ·µ ∈O(S, F ′). In particular, e−〈u,·〉 ·µ ∈ F ′ for
any u ∈ U that appears as the value of some y ∈S U . But since the image of S0 is
nonempty, any u ∈ U appears in this way (by considering constant morphisms).

Then by Equations (C.3) and (C.2), the map z 7→ e−〈z,·〉 · µ : U + iV0̄,R → F ′

is (strongly) holomorphic, and in particular, if u denotes the generic point of U ,
we have e−〈z,·〉 · µ ∈ O(U, F ′) = C∞(U )⊗̂π F ′. In other words, U ⊆ γ ◦F(µ).

Thus, any S-valued point of L(V, V0̄,R) in the interior of γ (µ)S is the
specialization of the identity of some open subset of γ ◦F(µ), and this proves the
claim.

((ii), (iii)) Using Proposition C.12 in conjunction with Remark C.13, the
statements reduce by token of Equation (C.4) to the classical case [41,
Proposition 6].

The following is immediate on combining items (ii) and (iii) of Theorem C.34.
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COROLLARY C.35. Let E be a test space for (V, V0̄,R) and µ ∈ E ′. If γ ◦S (µ) 6=
∅, then µ ∈S ′(V, V0̄,R), in the sense that µ extends continuously to S (V, V0̄,R).

DEFINITION C.36. Let E be a test space for (V, V0̄,R) and µ ∈ E ′, where we
assume γ ◦S (µ) 6= ∅. The holomorphic superfunction f on T (µ) defined in
Theorem C.34 will be denoted by L (µ) and called the Laplace transform of µ.

As above, using Taylor expansion in the odd directions, the following
two statements are immediate from the classical work of L. Schwartz [41,
Proposition 8, Corollaire, Remarque].

PROPOSITION C.37. Let E be a test space for (V, V0̄,R) and µ ∈ E ′, where we
assume that γ := γ ◦S (µ) 6= ∅. Let ξ ∈ V ∗

0̄,R and C ∈ R. Then the support of
µ ∈ S ′(V, V0̄,R) is contained in the half-space

Hξ,C :=
{
v ∈ V0̄,R

∣∣ 〈ξ, v〉 > C
}

if and only if for every c < C and for some, or equivalently, for all ξ0 ∈ γ0, we
have ξ0 + R>0ξ ⊆ γ0 and each of the functions

etc L (µ)(D; ξ0 + tξ + iη),

for D ∈ S(V ∗), is bounded for all t > 0 by some polynomial in η independent
of t .

COROLLARY C.38. Let µ ∈S ′(V, V0̄,R) and assume that suppµ ⊆ γ where the
latter is a closed convex cone with γ ∩ (−γ ) = 0. Then

γ ◦S (µ)0 ⊇ γ̌ :=
{
ξ ∈ V ∗0̄,R

∣∣ ∀v ∈ γ \ {0} : 〈ξ, v〉 > 0
}
.

REMARK C.39. A nice and more elementary proof of the latter result (for the
classical case) is given in Ref. [23].
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