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Abstract. For every n a 2, a discrete subgroup of isometries of the hyperbolic n-space,
which is conservative but not ergodic on the sphere at infinity, is constructed.

1. Introduction
Let G be a discrete group of isometries of the hyperbolic n- space H" with M&2.
When we take B" = {x eW: \x\< 1} as the model space of H", we can visualize the
sphere at infinity of H" as S""1 = {xeR": |JC| = 1}. And the horospherical limit set
Lh(G) of G is defined as follows;

Lh(G) = {pe S"~l: for every horosphere 5 in B" based

at p, there is a g € G such that g(0) e S},

where 0 is the origin of U". Recently, D. Sullivan obtained several deep results on
this horospherical limit set in [5]. In particular, he showed that Lh(G) has full
measure on S"~l if and only if G is conservative on S""1 ([5, IV. Theorem IV]). If
G is ergodic on S"~\ then G is conservative, as he noted in [5, IV. Note]. And one
may think that ergodicity is equivalent to conservativity (cf. [1, Introduction]). But
this is false. In fact, the main purpose of this note is to show the following

THEOREM. For every n(>2), there is a discrete group G of isometries of H" which is
conservative but not ergodic on S"~\

2. Construction. First we note the following1

LEMMA 1 ([4], § 4). For every n (&2), there is a torsion-free discrete group Go of
isometries of H" such that M = H"/G0 is a compact manifold containing mutually
disjoint compact (totally geodesic) submanifolds Nt, N2 and N3 of codimension
one such that M - (JV, u JV2u N3) is connected.

Remark. When n = 2, we can take as M a compact surface of genus 3, and as
{N/JiUi mutually disjoint loops in a canonical homology basfrof M.

1 The author wishes to thank Professor S. Kojima (Tokyo Institute of Technology) for teaching him
about Millson's work.
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Fix such Go as in Lemma 1, and let M' be the compact manifold with boundary
obtained from M-(TV,u N2u N3) by attaching six borders {Nt, NZ}3

k=l corre-
sponding to {Nk}l-j. Next, consider copies {M'(h,i,j)}hiJeZ of M', and gluing
canonically the border Nt of M'(h, ij) to that of NZ of M'(h + 8lk, i + S2k,j + S3k)
for every h, i,j and k, where Smk is Kronecker's delta. Then we have a complete
hyperbolic manifold M,, which is a torsion-free abelian cover of M of rank 3.
Equivalently, we have a normal subgroup G, of Go such that M,=H1"/G1 and
G0/Gi is a torsion-free abelian group of rank 3.

Next let N be the submanifold of M, of codimension one corresponding to N^
of M'(0,0,0), and fix a positive integer K greater than one. Using K copies of
M! — N, we can construct in the same way as above, an abelian cover M2 of Mx of
order K, i.e. a normal subgroup G2 of G, such that M2 = H"/G2 and G,/G2 is
isomorphic to Z/K- Z, which is a desired group as is shown in the next section.

3. Proof of theorem
Let irl be the natural projection of M2 to M, and T be an isometry of M2 of order
K such that TT, ° T-irx. Then attaching K points {ek}k=l to M2, we have the
Kerekjarto-Stoilow's compactification M2 = M2u(U*=i iek}) of M2 such that Tcan
be extended to an automorphism of M2 by setting T(ek) = ek+1 for every k (with

Let v2 be the natural projection of H" to M2 = Hn/G2. Fix xeH", and set

Ek(x) = {pe S""1: letting L(x, p) be the geodesic ray

from x tending to p, TT2(L(X, p)) converges

to ek in M2}

for every k. Then we have the following

LEMMA 2. Ek(x) is a G2-invariant measurable set not depending on x.

Proof. First we show that Ek(x) does not depend on x. For any other x'e
H", ir2(L(x, p)) and TT2(L(X', p)) are mutually asymptotic for every p e S"~\ Hence
we can see that p e Ek(x) if and only if p e Ek(x').

In particular, Ek(x) = Ek(g(x)), or equivalently Ek(x) = g~\Ek(x)) for every
geG2; and since measurability of Ek{x) is routine, we have the assertion. •

In the sequel, we will write simply Ek instead of Ek(x).

LEMMA 3. It holds that

Ekn Ek' = 0 ifk^ k',

m(Ek)>0 for every k, and

mis"'1- U 1

where m is the canonical measure on S"~\
In particular, G2 is not ergodic on S"~\

https://doi.org/10.1017/S0143385700004739 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004739


Discrete groups of hyperbolic motions 635

Proof. It is clear that Ek n Ew = 0 if k ̂  k'. Let g* be an element of G, such that
the class of g* in GJG2 corresponds to T, then g*(Ek) = £k+1 for every fc, hence
m(Ek)>0 if and only if it does so for some k.

Now for every />e S"~' — LJ*=i £*, w e c a n s e e from the definition that there is a
compact set A in M2 and a sequence {xn}™=l of points on L(x, p) tending to p such
that 77-2(xn) s A for every «, which in turn implies that there is a sequence {gm}m=i
of mutually distinct elements of G2 such that the hyperbolic distances between gm (0)
and L{x, p) form a bounded sequence. Hence by definition, p belongs to the conical
limit set LC(G2) of G2.

On the other hand, since Af, admits Green's function by [3, Theorem 4], hence
since M2 does so, we can see that m{Lc(G2)) = 0 by [5, Corollary III] (cf. [2, VII.7
and VII.8 Theorem 1]). Thus we have

m [S'-'-U Ek)^m(Lc(G2))=0,

hence wi(£k) > 0 for every k. Since every £k is G2-invariant by Lemma 2, G2 is not
ergodic on S"'\ D

Now we say that a G2-invariant set E on S""1 is non-decomposable if either
m(E') = 0 or m ( E - £ ' ) = 0 for every G2-invariant subset E' of £. Then we have
the following

LEMMA 4. Every Ek is non-decomposable.

Proof. Assume that Ek is decomposable, and let £ be a G2-invariant subset of Ek

such that m{E)>0 and m(Ek-E)>0. Set F = U L i (g*)k(E), where g* is as in
the proof of Lemma 3, then F is G,-invariant, m(F) >0 and m(S"" ' -F)>0 . Then
the Poisson's integral

[
J F

= ((l-\t\2)/\t-y\2)-ldm(y)
J F

induces a non-constant bounded harmonic function on M] (cf. [2, Theorem V.9]),
which contradicts [3, Theorem 1]. •

LEMMA 5. mdS"'1 -Lh(G2))nEk) = 0 for every k. Moreover G2 is conservative
on S"~l.

Proof. Suppose that m((Sn~1-L/ l(G2))n£i t)>0 for some fc. Then by [5, IV.
Theorem III], this set is contained in the dissipative part of G2, hence is
decomposable (which follows at once from the definition of the dissipative part).
This contradicts Lemma 4, and we have the first assertion.

Moreover, Lemma 3 and the first assertion imply that miS"'1 — L(G2)) = 0, hence
the second assertion follows by [5, IV. Theorem IV]. •

Remark. We have constructed a group G2 such that S""1 is divided into a set of
measure zero and K G2-invariant sets of positive measure. The author conjectures
that a group G* is conservative on S"~l if and only if S"~l is divided into a set of
measure zero and (at most countable) non-decomposable G*-invariant sets of
positive measure.
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