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A NOTE ON THE CHOICE OF SAMPLE VOLUME IN A
BACTERIOLOGICAL STUDY OF WATER

BY J. H. DARWIN

Department of Scientific and Industrial Research, New Zealand

1. INTRODUCTION

In bacteriological investigations of stretches of water an estimate of the number
of a certain type of bacterium in a unit of volume of the water is required so that
the pattern of the pollution of the area can be discerned. Usually it is known or
guessed that the density of bacteria, 8 say, lies in a range 8L up to 8H. Several
samples of water are taken and each is tested for a positive reaction which would
indicate the presence of at least one bacterium of the type being searched for.
When it is assumed that bacteria are spread in a Poisson manner through the
water in each sample an estimate of their density can be made from the number of
positively reacting samples. If the range 8L to 8H is large it is unlikely that one
volume of water for each sample will give a very efficient estimate of the density;
e.g. if this volume is in an average position with respect to (8L to 8H), say, 2/(SL + 8H),
and the true density is near an end of the range, all the reactions are likely to have
the same sign and the sample gives no discrimination. Even worse estimation for
some densities will occur if a very small or very large volume is used. The setting of
reasonably sized confidence intervals for the density requires a series of volumes
designed to locate the density with about equal accuracy no matter where it is in
(8L to 8H). Hence the usual set of volumes is the dilution series discussed by several
writers, for example recently by Cochran (1950).

In this series, which for uniformly good estimation should range from l/8H to
\J8L (Cochran, 1950), the ratio of one volume to its lower neighbour should be
a constant, the dilution ratio. This ratio should be low and the number of samples
at each volume preferably the same. Even with this latter proviso the equation of
estimation of the most probable number of organisms per unit of volume is not
particularly easy to solve, although good methods have been devised (Finney,
1951). The usual provision of confidence intervals for 8 depends on the assumption
that the estimated density (or most probable number), d, is log normally distributed.
However, Cochran's table, showing the approximate constancy of the variance
of the log of this estimate, indicates that this is a very reasonable assumption.
Swaroop (1951) gives confidence intervals by means of a normalizing transformation.

There may occasionally arise a simplified problem in which these two difficulties
of solution of an equation and of normality do not arise; namely when good estima-
tion over the whole possible range (8L to 8H) of densities is not required. For instance,
in routine testing of water supplies to see if pollution is at a satisfactorily low level
it is perhaps not so important to know what the level is provided it is demonstrably
low enough. If the density is getting near a dangerous level it will be more impor-
tant to locate it. If it is much worse than it should be steps will be taken to lower it
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and the more accurate estimate will be needed when these have almost succeeded.
Thus we may require a test giving good estimation in the range of densities
hovering between acceptable and unacceptable and speedily indicating if the den-
sity is quite acceptable or quite unacceptable. The result of the test should be
a decision to accept the water or to reject it. Because of the fairly high standard
error of log d in dilution series estimations, water is sometimes accepted, sometimes
rejected when its density is in the doubtful region. By concentrating the best
estimation in the doubtful region we can cut down the seriousness of this sort of
test behaviour.

The density range being considered has been cut down from (SL to 8H) to
(8'L to 8'H), say, where 8'L is the acceptable density level and S'H the unacceptable
density level. Generally the possible density level may go far beyond the unac-
ceptable level so that 8'H is much less than 8H, and it may go almost to zero so
that SL is much less than 8'L. Whereas at least 3 sample volumes are required to
give efficient estimation over the complete range (8L to 8H) it is possible that only
1 may be needed to give good estimation over the range (8'L to S'H) and at the same
time give us stated risks of rejecting the water when in fact the density is less than
S'L and of accepting it when in fact the density is greater than 8'H. It is desirable
that the risks a and /?, say, of making these two mistakes should be controllable.

2. SEQUENTIAL TESTING OF SAMPLES

Suppose the samples are examined in turn, i.e. sequentially, and the number of
samples reacting positively is plotted in a running graph against the number of
samples examined. Then for such tests these risks <x and /? can be fixed. The samples
are examined till the proportion that react has become so high that the water is
rejected or so low that it is accepted. Sequential tests of this sort for given risks
a and /? require a lower average number of samples than ordinary tests in which all
the samples are examined at once.

Ordinarily in sequential testing the items are examined on the spot to see how
they react. In pollution sampling the samples would be numbered in order as they
were drawn from the source and tested later. The assumption is that all samples are
randomly drawn from the same population.

2.1. The test region

The equations of rejection and acceptance boundaries the crossing of which by
the plotted line produces a decision are

No of positively reacting samples = h2 + s (no. of samples tested).
No. of positively reacting samples = — h-L + s (no. of samples tested), where

log[(l-q)//?] _
1 tog[{pMQP)l(lP)Y 2 lologtWfiM1

_" k
S~log[(;

p1 and p% are the probabilities of a sample reacting positively when the volume
being used is v and densities are 8'L and 8'H respectively. The equations are given,
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for example, by Wald (1947, p. 94). By the Poisson theory of random dispersal of
the bacteria through the water being tested, these are px = 1 — exp (— S'Lv) and

(-S'Hv).

2.2. Choice of a and ft

The usual statistical levels of significance are 0-05 and 0-01. The mistake of
accepting water that should be rejected may be thought more serious than that of
rejecting water that should be accepted. That is, ft may be made less than a. The
cases considered are (1) a = /? = 0-05; (2) oc = ft = O-Ol; (3) a = 0-05, ytf = 0-01. It is
important to remember that risks corresponding to a and ft are already present in
dilution series tests. These series can be so planned that these risks have a given
size as here. The work would be approximate because of the assumption of nor-
mality of log d, whereas here there is no approximation in the tests apart from the
initial serious Poisson assumption (also used in the dilution series). The number of
samples drawn from the water for inspection may not be sufficient to give a deci-
sion when all samples have been tested. If the policy is always to come to a decision,
the safest one would be that all water not accepted should be rejected. This rule
would tend to raise a and lower ft, and if possible one should take a number of
samples big enough for this contingency rarely to arise. If no decision has been
reached it is probable that the density is in the doubtful range 8'L to S'H, and
estimation of it is as important as a decision whether or not to reject the water.

3. CHOICE OF THE VOLUME v

Wald (1947, pp. 99, 100) gives an approximate formula for the average number of
samples needed to give a decision when v, 8'L, 8'H, a and ft are given and the actual
density is 8. Suppose when the probability of a positive reaction is p = 1 — exp (— 8v)
that this average number is called np. Then it contains the known quantities
a, ft, 8'L, 8'H and the unknown v, 8. Most efficient sampling in the sense of least
average work, can be achieved by minimizing np with respect to v for some per-
tinent value of 8. If 8 is thought to be fairly low it might be best to minimize
np for 8 = 8'L; or if it is thought to be high, for 8=8'H. An objective decision
would be to minimize np when this is at its highest. np has its maximum for
a density usually between S'L and 8'H. Best estimation in the doubtful region will
follow if np is minimized for a value of 8 between 8'L and 8'H. Approximately the
highest np occurs when p = s, i.e. for a density 8S lying in (8'L to 8'H) and satisfying
1-exp (-8sv) = s.

The three np named are

log [(l-a)/fl log [(1-/?)/a]| .
log (Wft) log [(1-

- ^ log [(l-ftj/a-n,)]-*! log (ft/ft)*

n**-p2 log (ft/ft) - (1 -ft) log[(l -ft)/(l -
16 Hyg. 53, 2
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Let 8'Lv = x and S'HjS'L = r. Then the equations to find v obtained by minimizing
ns, nPl, nJH are independent of a and /? and contain only r and x. They are—

erx_ Y] rx X[ e

l

3.1

Table 1 gives solutions, x, of these equations for various values of f = 8'Hj8'L.
This table also includes the actual values of the np's when v is taken as xjS'L for
each of three sets of values of a and /?. Because of the approximation in the formula
for np some of these np's are less than 1. In these cases it is usually impossible,
because the boundaries are very close together, for a decision not to be reached
before a certain low sample size; e.g. for r= 10, x = 0-702, a decision is inevitable
before 7 samples have been taken. While it is advisable therefore to treat the lowest
figures with caution, it is generally unlikely that a decision will not have been
reached by the time 3np samples have been examined.

The table shows that in some of the extreme cases when r is large, ns is not
necessarily near the maximum np and may be less than npj or nPi. Minimizing
ns has therefore its best validity for low r. It appears, however, from the figures
that if ns is minimized and 8'H/8'L is 4 or more, 15 sample volumes of size x/S'L will
nearly always produce a decision.

3.2. Example

In an actual case 8'L might be legally defined in that water must not contain
more than a given number of bacteria per unit volume. It is of course unrealistic
to make 8'L = 0, or even to say that water must never contain more than this given
number, as no test can find out if either of these is so. (Hence the risks a and /?
must be defined.) One might set S'L as less than or equal to this legal minimum.
The choice of 8'H might be more difficult. Clearly one wants to be almost certain
no bad water is accepted, but it is apparent from the table that ns is smallest
when the ratio of 8'H to 8'L is high. For example, if ^=5/100 c.c. and
(JJy = 20/100 c.c, r = 4, a = ̂ =0-05, a; = 0-861, and the volume to be taken is
XI^'L= (0-861)100/5 c.c. = 17-22 c.c. It appears that water with an actual density
of 8'L will seldom require more than 3 x 3-3=== 10 samples at this volume for a deci-
sion to be made. On the average 19 times out of 20 (i.e. 20(1 — a)) the water will be
accepted, and once it will be rejected. Water with density less than S'L will need
fewer samples on the average to produce a decision and there will be a smaller risk
than a that it is rejected. Again water with density 8'H will seldom require more than
6-3 x 3=== 19 samples for a decision to be reached. If the density is between 8'L and
S'H hardly any more samples than if the density is elsewhere will be needed before
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Table 1

r-8'Hl8'L

1-5

2-0

2-5

3-0

3-5

4-0

4-5

5-0

5-5

6-0

7-0

8-0

9-0

10-0

20-0

X = 0 jV

1-308

1-145

1-037

0-961

0-905

0-861

0-827

0-800

0-778

0-761

0-735

0-719

0-708

0-702

0-693

ns minimized
A

n3

81-0
197-2
127-0
27-4
66-7
43-0
15-5
37-7
24-3
10-6
25-9
16-7
8-1

19-6
12-6
6-5

15-8
10-2
5-4

13-2
8-5

4-7
11-4
7-3

4-1
10-0

6-5

3-7
8-9
5-8

3-0
7-4
4-8

2-6
6-3
4 1

2-3
5-5
3-5

2-0
4-9
3 1

1-0
2-3
1-5

nPi

46-2
78-4
72-8
15-1
25-6
23-7

8-3
1 4 1
13-1

5-6
9-5
8-8

4-2
7 1
6-6

3-3
5-7
5-3

2-8
4-7
4-4

2-4
4-0
3-7

2 1
3-5
3-3

1-8
3-1
2-9

1-5
2-5
2-4

1-3
2-1
2-0

1-1
1-8
1-7

1-0
1-6
1-5

0-4
0-7
6-7

54-4
92-4
59-7
20-0
34-0
22-0
12-2
20-8
13-4

9-0
15-4

9-9

7-4
12-5

8-1

6-3
10-8

1 1

5-7
9-6
6-2

5-2
8-8
5-7

4-9
8-3
5-4

4-6
7-8
5 1

4-3
7-3
4-7

4-1
7-0
4-5

4-0
6-7
4-4

3-9
6-6
4-3

3-8
6-5
4-2

X

1-457

1-367

1-302

1-255

1-218

1-189

1-165

1-146

1-131

1-118

1-098

1-084

1-073

1-064

1-029

np minimized
A

ns

81-6
198-7
127-9
27-9
68-0
43-8
16-0
38-9
25-0
11-1
27-0
17-4

8-5
20-6
13-3

6-9
16-7
10-8
5-8

14-0
9-0

5-0
12-1
7-8

4-4
10-7

6-9

3-9
9-6
6-2

3-2
7-9
5-1

2-8
6-7
4-3

2-4
5-9
3-8

2 1
5-2
3-4

1-0
2-4
1-6

45-9
78-0
72-3
14-8
25-1
23-3

8-1
13-7
12-7

5-4
9 1
8-5

4-0
6-8
6-3

3-2
5-4
5-0

2-6
4-4
4-1

2-2
3-8
3-5

1-9
3-3
3-0

1-7
2-9
2-7

1-4
2-3
2-2

1-2
2-0
1-8

1-0
1-7
1-6

0-9
1-5
1-4

0-4
0-7
6-2

55-7
94-6
61-1
21-5
36-5
23-6
13-8
23-5
15-2
10-7
18-3
11-8
9-2

15-6
1 0 1

8-3
14-0
9-1
7-7

1 3 1
8-4

8-1
13-7
8-9

7-0
1 2 0

7-7

6-8
11-6

7-5

6-6
11-2

7-2

6-4
11-0
7-1

6-3
10-8

7-0

6-3
10-6

6-9

6-0
10-2
6-6

X

1-159

0-922

0-770

0-664

0-585

0-521

0-475

0-435

0-401

0-373

0-327

0-292

0-264

0-241

0-131

np minimized
A

ns

81-6
198-8
128-0
28-1
68-4
44-0
16-2
39-4
25-4
11-3
27-6
17-8

8-8
21-3
13-7

8-3
20-2
1 3 0

6-2
15-0
9-7

5-4
13-2
8-5

4-8
11-8

7-6

4-4
10-7

6-9

3-8
9-2
5-9

3-3
8-1
5-2

3-0
7-3
4-7

2-8
6-7
4-3

1-7
4-2
2-7

*>i

47-3
80-3
74-5
16-1
27-3
25-3

9-3
15-8
14-6

6-6
11-1
10-3

5 1
8-7
8-1

4-3
7-3
6-8

3-7
6-3
5-9

3-3
5-6
5-2

3-0
5-1
4-7

2-8
4-7
4-4

2-4
4-1
3-8

2-2
3-7
3-5

2-0
3-5
3-2

1-9
3-2
3-0

1-4
2-3
2-2

53-9
91-5
59-2
19-5
33-1
21-4
11-6
19-8
12-8

8-4
14-2

9-2

6-6
11-3

7-3

5-5
9-4
6-1

4-8
8-2
5-3

4-3
7-3
4-7

3-9
6-6
4-3

3-6
6-1
3-9

3 1
5-3
3-4

2-8
4-7
3 1

2-5
4-3
2-8

2-4
4-0
2-6

1-6
2-7
1-7

0-693 — — 1-000 — — — 0-000 — — —

For each value of r the first row corresponds toa =/?=0-05, the second row to a = /? = 0-01, the third to
= 0-05/?=0-01.
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the water is accepted or rejected. Suppose 15 samples are taken. If the danger of
accepting water whose true density is in this region is regarded as serious it might
be best to take S'L lower than, and 8'H about equal to, the legal minimum so that
the doubtful region is actually almost an acceptable region. If no decision has been
reached when about 10 samples have been examined it will be profitable to con-
sider the actual estimate of the density based on the results of the 15 samples.

4. ESTIMATION

Suppose the sample size on the basis of Table 1 has been fixed at n and that r of
these samples of volume v have reacted positively. Then the estimation equation

r=»(l-exp ( -

or S=(- l/»).loge [(n - r)fn\.

The curves of Clopper & Pearson (1934) give confidence intervals for exp ( — 8v)
(and so for 8 since v is known) for a fixed sample size. These will be exact here only
if estimation is always made on all the n results. Since sequential tests are sug-
gested, partly for the reduction of work in reaching a decision, an estimate of
8 will usually only be made when no decision has been reached before all n samples
have been examined. The accuracy of the estimate must then be computed for
this conditional situation, and the Clopper-Pearson confidence intervals are then
only approximate.

4.1

As an example of their use, suppose as previously that n=15,x = 0-861. Suppose
all n samples are examined and 15 react positively. Then from the Clopper-Pearson
curves we say that exp (— 8v) lies between 0-84 and 0-34 with confidence coefficient
approximately 0-95; then 8 lies between 0-01 and 0-06, the ratio of these two ex-
treme limits being 6-19. This compares with Cochran's ratios of 3-46, 5-81, 6-65 and
10-89 for 5 samples of each dilution and dilution ratios of 2, 4, 5 and 10 respec-
tively, when 8 is estimated by the most probable number. Cochran's figures are
independent of the number of dilutions used. However, the number of dilutions
needed to cover a given range (8L to 8H) will go up as the dilution ratio decreases.
In fact the number will go up approximately as the inverse of the log of the dilution
ratio. Thus the number of samples needed for dilution ratios of 2, 4, 5 and 10, in
a series intended to give an estimate of 8 when this is somewhere in (8L to 8H), will
go down as 3-32 : 1-66 : 1-43 : 1-00 if the same number of samples per volume is
used for each dilution ratio.

The smallest number of different volumes used in a series will probably be 3, so
that for a dilution ratio of 10 with 5 samples a volume, 15 samples in all will be
needed. If the dilution ratio were 2 and the series were used for estimating over the
same range, about 15 x 3-32 or nearly 50 samples would be needed to achieve the
greater accuracy of 3-46 as against 10-89 for a dilution ratio of 10, and 6-19 for our
single volume sampling, both these latter cases requiring 15 samples.

As an example of a greater number of samples, suppose we have 50 samples of
one volume with, say, 20 reacting positively. Then the ratio of the end-points of the
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approximate 95 % confidence interval is 2-54. We compare this with, say, a dilution
series with ratio 10, and 5 volumes with 10 samples a volume, or with a series
covering the same range of 8, with dilution ratio 5, 10 samples a volume and
5 x 1 -43 === 7 volumes; and so on. The ratios of the end-points of the 95 % confidence
intervals for dilution ratios 2, 4, 5 and 10 are then 2-40, 3-46, 3-80 and 5-38, while
the number of samples used varies roughly as 165 : 80 : 70 : 50. The comparison of
our accuracy of 2-54 for 50 samples, with these figures, is favourable as of course it
comes from an estimation process catering especially for the middle range of S,
whereas these long series estimate with the same precision over a much wider range.
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