Automorphisms of Iterated Wreath Product p-Groups

Jeffrey M. Riedl

Abstract

We determine the order of the automorphism $\operatorname{group} \operatorname{Aut}(W)$ for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.

1 Introduction

We begin by defining an important family of finite groups of prime-power order. Let p be a prime and let e be a positive integer. Let $W_{1}^{e}(p)$ denote the cyclic group of order p^{e}. For each integer $n \geq 2$, we recursively define $W_{n}^{e}(p)$ as the regular wreath product group $W_{n}^{e}(p)=W_{n-1}^{e}(p) \imath \mathbb{Z}_{p}$. Thus, for $n \geq 2$, the group $W_{n}^{e}(p)$ is the semidirect product $N \rtimes \mathbb{Z}_{p}$ where N is the direct product of p copies of $W_{n-1}^{e}(p)$, and where \mathbb{Z}_{p}, the cyclic group of order p, acts via automorphisms on N by regularly permuting these direct factors.

It is well known that for an arbitrary prime p and positive integer n, the group $W_{n}^{1}(p)$ is isomorphic to a Sylow p-subgroup of the symmetric group of degree p^{n}. The following two results [6, Theorem 1.4, Theorem 1.5] suggest that the threeparameter family of groups $W_{n}^{e}(p)$ is worthy of attention.

Theorem 1.1 Let $q>1$ be any prime-power and let p be any prime divisor of $q-1$. Let p^{e} denote the p-part of $q-1$, so that e is a positive integer. Then for every positive integer n, the general linear group $\Gamma=\mathrm{GL}\left(p^{n-1}, q\right)$ contains a subgroup P that is isomorphic to $W_{n}^{e}(p)$. Furthermore, if $p^{e} \geq 3$, then P is a Sylow p-subgroup of Γ.

We mention without proof that in the situation of Theorem 1.1, it is actually true that P is a Sylow p-subgroup of Γ if and only if $p^{e} \geq 3$. Although Theorem 1.1 is quite well known, we suspect that the following result might be less well known.

Theorem 1.2 Let G be a finite p-group for some prime p. Let r be any prime such that $r \neq p$, and let F denote the algebraic closure of the field with r elements. Let n be any positive integer. The following conditions are equivalent.
(i) G is isomorphic to a subgroup of the general linear group $\mathrm{GL}\left(p^{n-1}, \mathrm{C}\right)$.
(ii) G is isomorphic to a subgroup of the general linear group $\mathrm{GL}\left(p^{n-1}, F\right)$.
(iii) G is isomorphic to a subgroup of $W_{n}^{e}(p)$ for some positive integer e.

The purpose of this article is to determine the order of the group of automorphisms $\operatorname{Aut}(W)$ of the group $W=W_{n}^{e}(p)$ in case $n \geq 2$ and $p^{e} \geq 3$.

[^0]Before going further, we explain why these automorphism groups may be of interest. In unpublished work we classified up to isomorphism the nonabelian subgroups H of $W_{2}^{e}(p)$ for an arbitrary prime p and positive integer e such that $p^{e} \geq 3$. (Using Theorem 1.2, one can show that this is equivalent to classifying up to isomorphism the finite p-groups having a faithful irreducible ordinary character of degree p.) Let $A=\operatorname{Aut}(W)$ for $W=W_{2}^{e}(p)$. In other unpublished work we prove, for every group H of nilpotence class at least 3 appearing in this classification, that $\mathbf{N}_{A}(H) / \mathbf{C}_{A}(H)$ is isomorphic to $\operatorname{Aut}(H)$, which says essentially that the full automorphism group $\operatorname{Aut}(H)$ is realized inside the group $\operatorname{Aut}(W)$. This suggests that knowledge of the structure of the group $\operatorname{Aut}(W)$ could, in principle, be translated into knowledge of the structure of $\operatorname{Aut}(H)$ for many subgroups H of W. Knowing the order of $\operatorname{Aut}(W)$ is a natural first step toward gaining some understanding of the structure of the group Aut (W).

In order to state the main result, we need to define some notations and make some preliminary remarks. Let p be any prime and let e and n be any positive integers such that $n \geq 2$. It is straightforward to calculate that the order of the group $W_{n}^{e}(p)$ is $p^{\alpha(n)}$ where $\alpha(n)=1+p+\cdots+p^{n-2}+e p^{n-1}$. In Section 3 we determine charactertheoretic information about the group $W_{n}^{e}(p)$ that is needed for the main result. We prove that every faithful irreducible ordinary character of $W_{n}^{e}(p)$ has degree at least p^{n-1}. Let \mathcal{F}_{n} denote the set consisting of all faithful irreducible ordinary characters of $W_{n}^{e}(p)$ that have degree p^{n-1}. We also prove that the cardinality of the set \mathcal{F}_{n} is $(p-1) p^{\beta(n)}$ where

$$
\beta(n)=(p-1)\left[\binom{n}{2}+(e-1) n\right]-(e-1)(p-2)-1 .
$$

(Our proof in Section 3 gives an interesting description of the characters belonging to the set \mathcal{F}_{n}.) Our approach to determining $\left|\mathcal{F}_{n}\right|$ is to show that $\left|\mathcal{F}_{2}\right|=(p-1) p^{e p-2}$ and that

$$
\left|\mathcal{F}_{n}\right|=\left|\mathcal{F}_{n-1}\right| \cdot p^{(p-1)(n+e-2)} \quad \text { for } n>2
$$

The formula for $\beta(n)$ that appears above is the unique solution of the recurrence

$$
\beta(2)=e p-2, \quad \beta(n)=\beta(n-1)+(p-1)(n+e-2) \quad \text { for } n>2
$$

We are now ready to state the main result.
Theorem A Let p be a prime and let e and n be positive integers such that $n \geq 2$ and $p^{e} \geq 3$. For $W=W_{n}^{e}(p)$, the automorphism group $\operatorname{Aut}(W)$ has order $(p-1)^{n} p^{r}$ where $r=\alpha(n)+\beta(n)-e$.

We use the automorphism counting formula that was developed in [6] to establish Theorem A. This is a general formula for the order of the automorphism group $\operatorname{Aut}(G)$ of a monolithic finite group G in terms of information about the faithful irreducible ordinary characters of G of minimal degree and information about how G is embedded as a subgroup of a particular finite general linear group. (A finite group is said to be monolithic if it has a unique minimal normal subgroup. Thus a finite
p-group is monolithic if and only if the center of the group is cyclic.) We mention that Lentoudis 45] determined the order of $\operatorname{Aut}(W)$ for the special case $W=W_{n}^{1}(p)$ for odd primes p, using methods completely different from those of this article. The proof of Theorem A appears in Section 2. The character-theoretic results that are used in the proof of Theorem A appear in Section 3.

Let $\operatorname{Irr}(G)$ denote the set of irreducible ordinary characters of a finite group G.

2 The Proof of Theorem A

For each finite group G and each prime-power q, we define mindeg (G, q) to be the smallest positive integer m such that the general linear group $\operatorname{GL}(m, q)$ contains a subgroup that is isomorphic to G. Thus $\operatorname{mindeg}(G, q)$ is the minimal degree among all the faithful F-representations of the group G, where F denotes the field with q elements.

Definition 2.1 Let G be a monolithic finite group, let q be a prime-power that is relatively prime to the order of G, and let $m=\operatorname{mindeg}(G, q)$. We say that the ordered triple (G, q, m) is a monolithic triple in case every faithful irreducible ordinary character of G has degree at least m. Assuming that (G, q, m) is a monolithic triple, we define $\mathcal{F}(G, q)$ to be the set of all faithful irreducible ordinary characters of G of degree m. We say that the monolithic triple (G, q, m) is good provided that every value of each character belonging to the set $\mathcal{F}(G, q)$ is a Z-linear combination of complex ($q-1$)-th roots of unity.

The following is a special case of a result that was proved in [6]. We refer to this result as the automorphism counting formula. It is the key to establishing Theorem A.

Theorem 2.2 Let (G, q, m) be a good monolithic triple. Suppose that $\Gamma=\operatorname{GL}(m, q)$ has a unique conjugacy class of subgroups whose members are isomorphic to G. Let H be any subgroup of Γ that is isomorphic to G. Then $|\operatorname{Aut}(G)|(q-1)=|\mathcal{F}(G, q)| \cdot\left|\mathbf{N}_{\Gamma}(H)\right|$.

To establish Theorem A, the idea is to define a good monolithic triple (G, q, m) with $G=W_{n}^{e}(p)$ that satisfies the hypothesis of Theorem 2.2. The conclusion of Theorem 2.2 would then yield $|\operatorname{Aut}(G)|$ provided that we know in advance $|\mathcal{F}(G, q)|$ and $\left|\mathbf{N}_{\Gamma}(H)\right|$. The next several results will be used to calculate $|\mathcal{F}(G, q)|$ and $\left|\mathbf{N}_{\Gamma}(H)\right|$ in this situation.

The following character-theoretic result will be proved Section 3.
Theorem 2.3 Let p be a prime. Let e and n be positive integers. Write $W=W_{n}^{e}(p)$. We define the set $\mathcal{F}=\left\{\chi \in \operatorname{Irr}(W) \mid \chi(1)=p^{n-1}\right.$ and χ is faithful $\}$. The following hold.
(i) The center of the group W is cyclic of order p^{e}.
(ii) Every faithful irreducible ordinary character of W has degree at least p^{n-1}.
(iii) Every value of each character belonging to the set \mathcal{F} is a \mathbb{Z}-linear combination of complex p^{e}-th roots of unity.
(iv) If $n \geq 2$, then $|\mathcal{F}|=(p-1) p^{\beta(n)}$, where $\beta(n)$ is as defined in the introduction.

The following result is included in [6, Theorem 4.4].

Theorem 2.4 Let $\Gamma=\operatorname{GL}(m, q)$, where $q>1$ is any prime-power and m is any positive integer. Let F be the field with q elements, let F_{0} be any nontrivial subgroup of the multiplicative group $F^{\times}=F-\{0\}$, and let E be the group of all diagonal matrices in Γ having the property that each entry along the diagonal belongs to F_{0}. Let S be the subgroup of Γ consisting of all permutation matrices, and note that $S \cong \operatorname{Sym}(m)$. Let T be any transitive subgroup of the symmetric group S and let $H=E \rtimes T$. If E is a characteristic subgroup of H, then

$$
\left|\mathbf{N}_{\Gamma}(H)\right|=\left|\mathbf{N}_{S}(T): T\right| \cdot|H|(q-1) /\left|F_{0}\right| .
$$

In the situation and notation of Theorem 2.4, the conclusion of that result reduces the problem of calculating the order of $\mathbf{N}_{\Gamma}(H)$ to the problem of calculating the index $\left|\mathbf{N}_{S}(T): T\right|$. The following result, which appears in [1], will be used to calculate the index $\left|\mathbf{N}_{S}(T): T\right|$ for the particular situation that arises in the proof of Theorem A.

Theorem 2.5 Let p be any prime and let n be any positive integer. Let P be any Sylow p-subgroup of the symmetric group $S=\operatorname{Sym}\left(p^{n}\right)$. Then $\left|\mathbf{N}_{S}(P): P\right|=(p-1)^{n}$.

Recall that in case $n \geq 2$, we recursively defined $W_{n}^{e}(p)$ as the semidirect product $N \rtimes \mathbb{Z}_{p}$, where N is the direct product of p copies of $W_{n-1}^{e}(p)$. We now describe another useful way to regard $W_{n}^{e}(p)$ as a semidirect product. First note that for $n \geq 2$, the fact that $W_{n-1}^{1}(p)$ is isomorphic to a Sylow p-subgroup of the symmetric group of degree p^{n-1} provides us with a transitive action of $W_{n-1}^{1}(p)$ on a set of size p^{n-1}. For each positive integer n, the group $W_{n}^{e}(p)$ is isomorphic to the semidirect product $B \rtimes T$, where B is the direct product of p^{n-1} copies of the cyclic group of order p^{e} and where the group T and its action on B are defined as follows. In case $n=1$, the group T is trivial and thus its action on B is trivial. In case $n \geq 2$, the group T is isomorphic to $W_{n-1}^{1}(p)$ and acts via automorphisms on B by transitively permuting the p^{n-1} direct factors of B in a manner described earlier in this paragraph.

In the proof of Theorem A, we apply Theorem 2.4 with the groups $W_{n}^{e}(p)$ and B playing the roles of H and E in the notation of Theorem 2.4. One hypothesis of Theorem 2.4 is that E is a characteristic subgroup of H, and so we need the following result. This result is a generalization of [2] Satz III.15.4(a)] with the same proof, which we omit here.

Theorem 2.6 Let p be a prime, let e and n be positive integers, and write $W_{n}^{e}(p)=$ $B \rtimes T$, where B and T are as defined earlier. If $p^{e} \geq 3$, then B is the product of all the abelian normal subgroups of $W_{n}^{e}(p)$, and so B is a characteristic subgroup of $W_{n}^{e}(p)$.

In the proof of Theorem A, we use the following result to define an embedding of $W_{n}^{e}(p)$ as a subgroup of a general linear group that satisfies the hypotheses of Theorem 2.4

Lemma 2.7 Let p be a prime, let e and n be positive integers, and write $W_{n}^{e}(p)=$ $B \rtimes T$, where B and T are as defined earlier. Let F be any field containing a primitive p^{e}-th root of unity. Then there exists a faithful F-representation y of $W_{n}^{e}(p)$ of degree p^{n-1} such that $y(B)$ is the group of all diagonal matrices of order dividing p^{e} in the general linear group $\mathrm{GL}\left(p^{n-1}, F\right)$, while $y(T)$ is a transitive group of permutation matrices.

Proof We proceed via induction on n. The base case $n=1$ is trivial. Let $n>1$ and assume inductively that X is a faithful F-representation of $W_{n-1}^{e}(p)$ of degree p^{n-2} having the desired properties. By definition we have $W_{n}^{e}(p)=N \rtimes\langle w\rangle$, where N is the direct product of p copies of the group $W_{n-1}^{e}(p)$ and the automorphism $w \in$ $\operatorname{Aut}(N)$ cyclically permutes these p direct factors. We now define the homomorphism $y: W_{n}^{e}(p) \rightarrow \mathrm{GL}\left(p^{n-1}, F\right)$ as follows. For each element $x=\left(x_{1}, \ldots, x_{p}\right) \in N$, we let

$$
y(x)=\left(\begin{array}{cccc}
X\left(x_{1}\right) & 0 & \cdots & 0 \\
0 & X\left(x_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X\left(x_{p}\right)
\end{array}\right)
$$

Furthermore, letting I denote the p^{n-2}-by- p^{n-2} identity matrix, we define

$$
y(w)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & I \\
I & 0 & \cdots & 0 & 0 \\
0 & I & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 \\
0 & 0 & \cdots & I & 0
\end{array}\right)
$$

The proof is complete.
The following result (which appeared as Lemma 3.2 in [6]) describes the orders of the Sylow p-subgroups of certain finite general linear groups.

Lemma 2.8 Let $q>1$ be any prime-power and let p be any prime divisor of $q-1$. Let p^{e} denote the full p-part of $q-1$, and suppose that $p^{e} \geq 3$. Then for every positive integer m, the full p-part of $|\mathrm{GL}(m, q)|$ is $p^{e m+s}$ where p^{s} is the full p-part of $m!$.

Let q be a prime-power and p a prime that satisfy the hypothesis of Lemma 2.8. For any integers k and m such that $1 \leq k<m$, the full p-part of k ! is less than or equal to the full p-part of $m!$, and so by Lemma 2.8 , the full p-part of $|\operatorname{GL}(k, q)|$ is strictly smaller than the full p-part of $|\mathrm{GL}(m, q)|$. Hence a Sylow p-subgroup of $\mathrm{GL}(k, q)$ has smaller order than a Sylow p-subgroup of $\mathrm{GL}(m, q)$. We shall use this fact in the proof of Theorem A.

Proof of Theorem A By Theorem 2.3(i), the p-group W has a cyclic center and is therefore monolithic. Choose any prime-power $q>1$ such that p^{e} is the full p-part of $q-1$. Write $\Gamma=\mathrm{GL}\left(p^{n-1}, q\right)$ and let P be any Sylow p-subgroup of Γ. By the hypothesis $p^{e} \geq 3$ and by Theorem 1.1, we deduce that $P \cong W$. It follows that $\operatorname{mindeg}(W, q) \leq p^{n-1}$. For each positive integer k such that $k<p^{n-1}$, Lemma 2.8 implies that the p-part of the order of the general linear group $\operatorname{GL}(k, q)$ is strictly smaller than the p-power $|W|$, and so $\operatorname{GL}(k, q)$ contains no subgroup that is isomorphic to W. It follows that mindeg $(W, q)=p^{n-1}$. Now Theorem 2.3(ii) implies that (W, q, p^{n-1}) is a monolithic triple. By Theorem 2.3(iii) and the fact that p^{e} is a divisor of $q-1,\left(W, q, p^{n-1}\right)$ is indeed a good monolithic triple. Since W is isomorphic to
a Sylow p-subgroup of Γ, there is only one conjugacy class of subgroups of Γ whose members are isomorphic to W. Theorem 2.3(iv) yields $|\mathcal{F}(W, q)|=(p-1) p^{\beta(n)}$.

By Lemma 2.7, we may write $P=B \rtimes T$, where B is the group of all diagonal matrices of order dividing p^{e} in Γ, and where T is a transitive group of permutation matrices that is isomorphic to $W_{n-1}^{1}(p)$. Let S be the subgroup of Γ consisting of all permutation matrices, and note that $S \cong \operatorname{Sym}\left(p^{n-1}\right)$. Theorem 2.5 yields $\left|\mathbf{N}_{S}(T): T\right|=$ $(p-1)^{n-1}$. By Theorem 2.6, B is a characteristic subgroup of P. Since $P \cong W$, we have $|P|=p^{\alpha(n)}$. By Theorem 2.4, we obtain $\left|\mathbf{N}_{\Gamma}(P)\right|=(p-1)^{n-1} p^{\alpha(n)}(q-1) / p^{e}$. Now Theorem 2.2 yields

$$
\begin{aligned}
|\operatorname{Aut}(W)| & =\left[(p-1) p^{\beta(n)}\right]\left[(p-1)^{n-1} p^{\alpha(n)-e}(q-1)\right] /(q-1) \\
& =(p-1)^{n} p^{\alpha(n)+\beta(n)-e},
\end{aligned}
$$

as desired to complete the proof.

3 Character Theory

In this section we determine useful character-theoretic information about the family of groups $W_{n}^{e}(p)$. First we introduce some notations. For an arbitrary finite group G, we write $\operatorname{Lin}(G)$ to denote the group of all linear ordinary characters of G. If ϵ is any primitive complex m-th root of unity for some positive integer m, we let $\mathbb{Z}(\epsilon)$ denote the subring of \mathbb{C} that is generated by ϵ, and we mention that $\mathbb{Z}(\epsilon)$ is equal to the set of all \mathbb{Z}-linear combinations of complex m-th roots of unity. The following result includes Theorem 2.3.

Theorem 3.1 Let p be a prime and let e and n be positive integers. Write $P=W_{n}^{e}(p)$. We define the set $\mathcal{F}_{n}=\left\{\chi \in \operatorname{Irr}(P) \mid \chi(1)=p^{n-1}\right.$ and χ is faithful $\}$. Let ϵ be any primitive complex p^{e}-th root of unity. Then the following conditions hold.
(i) The center $\mathbf{Z}(P)$ is cyclic of order p^{e}.
(ii) $|\operatorname{Lin}(P)|=p^{n+e-1}$.
(iii) For each character $\mu \in \operatorname{Lin}(P)$, all the values of μ belong to the ring $\mathbb{Z}(\epsilon)$.
(iv) For each faithful character $\chi \in \operatorname{Irr}(P)$, we have $\chi(1) \geq p^{n-1}$.
(v) For each character $\chi \in \mathcal{F}_{n}$, all the values of χ belong to the ring $\mathbb{Z}(\epsilon)$.
(vi) If $n \geq 2$, then $\left|\mathcal{F}_{n}\right|=(p-1) p^{\beta(n)}$ where $\beta(n)$ is as defined in the Introduction.

The following standard fact is used in our proof of Theorem 3.1.
Lemma 3.2 Let G be a finite group having a unique minimal normal subgroup M. Let $1<N \triangleleft G$ and let $\psi \in \operatorname{Irr}(N)$. Then the induced character ψ^{G} is faithful if and only if $M \nsubseteq \operatorname{ker} \psi$.

Proof If $M \subseteq \operatorname{ker} \psi$, then [3], Lemma 5.11] yields $1<M \subseteq \operatorname{core}_{G}(\operatorname{ker} \psi)=\operatorname{ker} \psi^{G}$, so ψ^{G} is not faithful. If $M \nsubseteq \operatorname{ker} \psi$, then using $\operatorname{ker} \psi^{G} \subseteq \operatorname{ker} \psi$ we obtain $M \nsubseteq \operatorname{ker} \psi^{G}$, and so by the uniqueness of M we have $\operatorname{ker} \psi^{G}=1$, which says that ψ^{G} is faithful.

Proof of Theorem 3.1 Since p is fixed throughout this proof, we write $W_{n}^{e}=W_{n}^{e}(p)$ for arbitrary positive integers n and e. We proceed via induction on n. In the base
case $n=1$, it is clear that all conclusions hold. Henceforth let $n \geq 2$ and note that $P=N \rtimes \mathbb{Z}_{p}$, where N is a direct product of p copies of the group W_{n-1}^{e}. Each element of N is of the form $x=\left(x_{1}, \ldots, x_{p}\right)$ where $x_{i} \in W_{n-1}^{e}$ for $i \in\{1, \ldots, p\}$. Conjugation by an arbitrary element of P cyclically permutes the direct factors of N.

By the inductive hypothesis applied to part (i), the center $\mathbf{Z}\left(W_{n-1}^{e}\right)$ is cyclic of order p^{e}. Let the element u be a generator for the cyclic group $\mathbf{Z}\left(W_{n-1}^{e}\right)$. If $\mathbf{Z}(P) \nsubseteq N$, then using $|P: N|=p$ we obtain $P=\mathbf{Z}(P) N$, and so the permutation action of P on the p direct summands of N is trivial, contrary to what we know. Therefore $\mathbf{Z}(P) \subseteq N$.

It follows that $\mathbf{Z}(P) \subseteq \mathbf{Z}(N)=\langle u\rangle \times \cdots \times\langle u\rangle$. For an element $x \in \mathbf{Z}(N)$ to belong to $\mathbf{Z}(P)$, it is necessary and sufficient that x be invariant under conjugation by elements outside of N. But this happens if and only if the components of x are all equal to each other. Thus, for the element $z=(u, \ldots, u) \in N$ of order p^{e}, we have $\mathbf{Z}(P)=\langle z\rangle$, establishing part (i).

Since $N \triangleleft P$ and $|P: N|=p$, for each character $\psi \in \operatorname{Irr}(N)$, it is true that ψ extends to P in case ψ is P-invariant (by [3, Corollary 6.20]) and that ψ^{P} is irreducible in case ψ is not P-invariant. Each character $\psi \in \operatorname{Irr}(N)$ is of the form $\psi=\theta_{1} \times \cdots \times \theta_{p}$ for $\theta_{i} \in \operatorname{Irr}\left(W_{n-1}^{e}\right)$. We call $\theta_{1}, \ldots, \theta_{p}$ the components of ψ. For an arbitrary element $x=\left(x_{1}, \ldots, x_{p}\right) \in N$, we have $\psi(x)=\theta_{1}\left(x_{1}\right) \theta_{2}\left(x_{2}\right) \cdots \theta_{p}\left(x_{p}\right)$. We say that ψ is homogeneous in case $\theta_{1}=\theta_{2}=\cdots=\theta_{p}$. It is clear that ψ is P-invariant if and only if ψ is homogeneous.

The restriction of each linear character of P to the subgroup N is a linear P-invariant character of N and is therefore homogeneous. On the other hand, every homogenous linear character of N has p distinct extensions in $\operatorname{Lin}(P)$. Hence restriction to N defines a p-to-one mapping from the set $\operatorname{Lin}(P)$ onto the set of all homogenous linear characters of N. The number of homogenous linear characters of N is $\left|\operatorname{Lin}\left(W_{n-1}^{e}\right)\right|$. It follows that $|\operatorname{Lin}(P)|=p \cdot\left|\operatorname{Lin}\left(W_{n-1}^{e}\right)\right|$. The inductive hypothesis applied to part (ii) yields $\left|\operatorname{Lin}\left(W_{n-1}^{e}\right)\right|=p^{(n-1)+e-1}$. We obtain $|\operatorname{Lin}(P)|=p^{n+e-1}$ as desired to establish part (ii).

It is clear that the group W_{n}^{1} is a homomorphic image of P. By [2, Satz III.15.3c], the elementary abelian p-group of rank n is a homomorphic image of W_{n}^{1}. Hence the elementary abelian p-group of rank n is a homomorphic image of P / P^{\prime}. The abelian p-group $\operatorname{Lin}(P)$ is isomorphic to P / P^{\prime}, and therefore has rank at least n. Since $|\operatorname{Lin}(P)|=p^{n+e-1}$, it follows that the abelian p-group $\operatorname{Lin}(P)$ has exponent at most p^{e}, and so part (iii) is established.

We now argue that the element $z^{p^{e-1}}$ is contained in the kernel of every homogeneous character $\psi \in \operatorname{Irr}(N)$. Write $\psi=\theta \times \cdots \times \theta$ for some $\theta \in \operatorname{Irr}\left(W_{n-1}^{e}\right)$. Because the element $u \in \mathbf{Z}\left(W_{n-1}^{e}\right)$ has order p^{e}, we have $\theta(u)=\theta(1) \epsilon^{m}$ for some integer m. Hence $\theta\left(u^{p^{e-1}}\right)=\theta(1) \epsilon^{m p^{e-1}}$. Since $z=(u, \ldots, u)$, we have $z^{p^{e-1}}=$ $\left(u^{p^{e-1}}, \ldots, u^{p^{e-1}}\right)$. Recalling that ϵ is a primitive complex p^{e}-th root of unity, we obtain

$$
\psi\left(z^{p^{c-1}}\right)=\prod_{i=1}^{p} \theta\left(u^{p^{e-1}}\right)=\prod_{i=1}^{p} \theta(1) \epsilon^{m p^{e-1}}=\theta(1)^{p} \epsilon^{m p^{e}}=\theta(1)^{p}=\psi(1),
$$

which says that $z^{p^{e-1}} \in \operatorname{ker} \psi$, as claimed.

We now argue that for each faithful character $\chi \in \operatorname{Irr}(P)$ there exists $\psi \in \operatorname{Irr}(N)$ such that $\psi^{P}=\chi$ and $z^{p^{e-1}} \notin \operatorname{ker} \psi$. Let $\chi \in \operatorname{Irr}(P)$ be faithful. If the restriction χ_{N} is irreducible, then χ_{N} is P-invariant and therefore homogeneous, and so the preceding paragraph yields $z^{p^{e-1}} \in \operatorname{ker} \chi_{N}$, from which it follows that $z^{p^{e-1}} \in \operatorname{ker} \chi$, contradicting that χ is faithful. Hence χ_{N} is reducible. By [3, Corollary 6.19], we deduce that $\psi^{P}=\chi$ for some character $\psi \in \operatorname{Irr}(N)$. Since $\left\langle z^{p^{e-1}}\right\rangle$ is the unique minimal normal subgroup of P while ψ^{P} is faithful, Lemma 3.2 yields $z^{p^{e-1}} \notin \operatorname{ker} \psi$, as desired to establish our claim.

We define the set $\mathcal{S}=\left\{\psi \in \operatorname{Irr}(N) \mid z^{p^{e-1}} \notin \operatorname{ker} \psi\right.$ and $\left.\psi(1)=p^{n-2}\right\}$. We now argue that the rule $\psi \mapsto \psi^{P}$ defines a mapping from the set \mathcal{S} to the set \mathcal{F}_{n}. Let $\psi \in \mathcal{S}$ be arbitrary. Because $z^{p^{e-1}} \notin \operatorname{ker} \psi$, we know that ψ is not homogeneous and therefore not P-invariant, and so ψ^{P} is irreducible. Since $z^{p^{e-1}} \notin \operatorname{ker} \psi$ while $\left\langle z^{p^{e-1}}\right\rangle$ is the unique minimal normal subgroup of P, Lemma 3.2 implies that ψ^{P} is faithful. Using $\psi(1)=p^{n-2}$ and $|P: N|=p$, we obtain $\psi^{P}(1)=p^{n-1}$. Hence $\psi^{P} \in \mathcal{F}_{n}$ and the mapping $\mathcal{S} \rightarrow \mathcal{F}_{n}$ is well defined. Next we argue that this mapping $\mathcal{S} \rightarrow \mathcal{F}_{n}$ is p-to-one and onto. Let $\chi \in \mathcal{F}_{n}$ be arbitrary. By the preceding paragraph, there exists $\psi \in \operatorname{Irr}(N)$ such that $\psi^{P}=\chi$ and $z^{p^{e-1}} \notin \operatorname{ker} \psi$. Since $\chi(1)=p^{n-1}$ and $\chi=\psi^{P}$ for $\psi \in \operatorname{Irr}(N)$ with $|P: N|=p$, we have $\psi(1)=p^{n-2}$. Therefore $\psi \in \mathcal{S}$ and the mapping is onto. Since $\psi \in \operatorname{Irr}(N)$ and ψ^{P} is irreducible, we know that ψ is not P-invariant. Each of the p distinct P-conjugates of ψ in $\operatorname{Irr}(N)$ also belongs to the set \mathcal{S} and induces χ. Hence the mapping is p-to-one.

Since we have a p-to-one mapping from the set \mathcal{S} onto the set \mathcal{F}_{n}, indeed $\left|\mathcal{F}_{n}\right|=$ $|\mathcal{S}| / p$.

Case 1: Suppose $n=2$. Thus N is a direct product of p copies of the cyclic group W_{1}^{e} of order p^{e}. Let $\chi \in \operatorname{Irr}(P)$ be faithful. Since P is a noncyclic p-group, we have $\chi(1) \geq p$, thereby establishing part (iv). By earlier observation, we know that $\chi=\psi^{P}$ for some $\psi \in \operatorname{Irr}(N)$. Hence χ vanishes off the normal subgroup N. We also know that $\chi_{N}=\psi_{1}+\cdots+\psi_{p}$ for characters $\psi_{1}, \ldots, \psi_{p} \in \operatorname{Irr}(N)$. Because N is homocyclic of exponent p^{e}, each of the values of each of the characters $\psi_{1}, \ldots, \psi_{p}$ belongs to the ring $\mathbb{Z}(\epsilon)$. This establishes part (v).

Since $n=2$, the condition $\psi(1)=p^{n-2}$ in the definition of \mathcal{S} becomes $\psi(1)=1$, which is true for every $\psi \in \operatorname{Irr}(N)$ since N is abelian. Thus

$$
\mathcal{S}=\left\{\psi \in \operatorname{Irr}(N) \mid z^{p^{e-1}} \notin \operatorname{ker} \psi\right\}
$$

In order to calculate the cardinality $|\mathcal{S}|$, it suffices to count the linear characters of the abelian group N whose kernel does not contain the subgroup $\left\langle z^{p^{e-1}}\right\rangle$ of order p. The total number of linear characters of N is $|N|=p^{e p}$, and the number of these whose kernel contains $\left\langle z^{p^{e-1}}\right\rangle$ is $|N| / p=p^{e p-1}$. Hence $|\mathcal{S}|=p^{e p}-p^{e p-1}=(p-1) p^{e p-1}$. Therefore $\left|\mathcal{F}_{2}\right|=|\mathcal{S}| / p=(p-1) p^{e p-2}$. Since $\beta(2)=e p-2$, we have established part (vi).
Case 2: Suppose $n>2$. First we argue that the element $z^{p^{e-1}}$ is contained in the kernel of every character $\psi=\theta_{1} \times \cdots \times \theta_{p} \in \operatorname{Irr}(N)$ having the property that none of the characters $\theta_{1}, \ldots, \theta_{p}$ is faithful. First note that $\left\langle u^{p^{e-1}}\right\rangle$ is the unique minimal
normal subgroup of W_{n-1}^{e}. Assuming that for each $i \in\{1, \ldots, p\}$ the character $\theta_{i} \in \operatorname{Irr}\left(W_{n-1}^{e}\right)$ is not faithful, we have $u^{p^{e-1}} \in \operatorname{ker} \theta_{p}$ for each $i \in\{1, \ldots, p\}$. Using $z^{p^{e-1}}=\left(u^{p^{e-1}}, \ldots, u^{p^{e-1}}\right)$, we calculate that

$$
\psi\left(z^{p^{e-1}}\right)=\prod_{i=1}^{p} \theta_{i}\left(u^{p^{e-1}}\right)=\prod_{i=1}^{p} \theta_{i}(1)=\psi(1)
$$

which says that $z^{p^{c-1}} \in \operatorname{ker} \psi$, as claimed.
Let $\psi \in \operatorname{Irr}(N)$ be arbitrary and write $\psi=\theta_{1} \times \cdots \times \theta_{p}$. Since $|P: N|=p$, the induced character ψ^{P} has degree $\psi^{P}(1)=p \psi(1)$ with $\psi(1)=\theta_{1}(1) \theta_{2}(1) \cdots \theta_{p}(1)$. Suppose that $z^{p^{e-1}} \notin \operatorname{ker} \psi$. By the preceding paragraph, there exists an index $k \in$ $\{1, \ldots, p\}$ such that the character $\theta_{k} \in \operatorname{Irr}\left(W_{n-1}^{e}\right)$ is faithful. The inductive hypothesis applied to part (iv) yields $\theta_{k}(1) \geq p^{n-2}$. It is clear that $\psi(1) \geq \theta_{k}(1)$, and so we obtain

$$
\psi^{P}(1)=p \psi(1) \geq p \theta_{k}(1) \geq p p^{n-2}=p^{n-1}
$$

Note that $\psi \in \mathcal{S}$ if and only if $\psi(1)=p^{n-2}$. By the preceding chain of inequalities, the condition $\psi(1)=p^{n-2}$ occurs if and only if $\theta_{k}(1)=p^{n-2}$ while $\theta_{i}(1)=1$ for each $i \in\{1, \ldots, p\}$ such that $i \neq k$.

For each faithful character $\chi \in \operatorname{Irr}(P)$, we proved earlier that there exists $\psi \in$ $\operatorname{Irr}(N)$ such that $\psi^{P}=\chi$ and $z^{p^{e-1}} \notin \operatorname{ker} \psi$, and so the preceding paragraph yields $\chi(1)=\psi^{P}(1) \geq p^{n-1}$, thereby establishing part (iv).

The preceding observations give us the following more explicit characterization of the members of the set \mathcal{S}. For each character $\psi=\theta_{1} \times \cdots \times \theta_{p} \in \operatorname{Irr}(N)$, it is true that $\psi \in \mathcal{S}$ if and only if exactly one of the characters $\theta_{1}, \ldots, \theta_{p}$ belongs to the set \mathcal{F}_{n-1} (and is hence nonlinear because W_{n-1}^{e} is noncyclic for $n>2$), while the remaining $p-1$ such characters are linear.

We now argue that every value of each character belonging to the set \mathcal{S} lies in the ring $\mathbb{Z}(\epsilon)$. Let $\psi=\theta_{1} \times \cdots \times \theta_{p} \in \mathcal{S}$ be arbitrary. By the preceding paragraph, there exists a unique index $k \in\{1, \ldots, p\}$ such that $\theta_{k} \in \mathcal{F}_{n-1}$ while $\theta_{i} \in \operatorname{Lin}\left(W_{n-1}^{e}\right)$ for each $i \in\{1, \ldots, p\}$ such that $i \neq k$. By the inductive hypothesis applied to part (iii) and part (v), every value of each of the characters $\theta_{1}, \ldots, \theta_{p}$ lies in the ring $\mathbb{Z}(\epsilon)$. Thus for an arbitrary element $x=\left(x_{1}, \ldots, x_{p}\right) \in N$ we have $\psi(x)=$ $\theta_{1}\left(x_{1}\right) \theta_{2}\left(x_{2}\right) \cdots \theta_{p}\left(x_{p}\right) \in \mathbb{Z}(\epsilon)$.

We now establish part (v). Let $\chi \in \mathcal{F}_{n}$ be arbitrary. Thus $\chi=\psi^{P}$ for some character $\psi \in \mathcal{S}$. Since $\psi \in \operatorname{Irr}(N)$, the character χ vanishes off the normal subgroup N. The restriction χ_{N} is a sum of p characters belonging to the set \mathcal{S}. By the preceding paragraph, it follows that every value of χ_{N} lies in the ring $\mathbb{Z}(\epsilon)$, as required to establish part (v).

It remains to establish part (vi). First we use our characterization of the set \mathcal{S} to determine the cardinality of the set \mathcal{S}. To construct an arbitrary member ψ of the set \mathcal{S}, we begin by choosing some character in \mathcal{F}_{n-1}. Next we decide in which of the p components of ψ this character chosen from \mathcal{F}_{n-1} will appear. We then fill each of the remaining $p-1$ components of ψ with an arbitrary member of $\operatorname{Lin}\left(W_{n-1}^{e}\right)$. By counting the total number of ways to carry out this process, we obtain

$$
|\mathcal{S}|=\left|\mathcal{F}_{n-1}\right| \cdot p \cdot\left|\operatorname{Lin}\left(W_{n-1}^{e}\right)\right|^{p-1}
$$

The inductive hypothesis applied to part (ii) yields $\left|\operatorname{Lin}\left(W_{n-1}^{e}\right)\right|=p^{n+e-2}$. Using $\left|\mathscr{F}_{n}\right|=|\mathcal{S}| / p$, we deduce that $\left|\mathscr{F}_{n}\right|=\left|\mathcal{F}_{n-1}\right| \cdot p^{(p-1)(n+e-2)}$. Since $n>2$, the inductive hypothesis applied to part (vi) yields $\left|\mathcal{F}_{n-1}\right|=(p-1) p^{\beta(n-1)}$. It follows that

$$
\left|\mathscr{F}_{n}\right|=(p-1) p^{\beta(n-1)} p^{(p-1)(n+e-2)}
$$

It is straightforward to verify that $\beta(n-1)+(p-1)(n+e-2)=\beta(n)$. Hence we conclude that indeed $\left|\mathcal{F}_{n}\right|=(p-1) p^{\beta(n)}$, as required to establish part (vi).

Acknowledgements We thank the referee for suggesting improvements to the proof of Theorem 3.1.

References

[1] J. L. Alperin and P. Fong, Weights for symmetric and general linear groups. J. Algebra 131(1990), no. 1, 2-22. http://dx.doi.org/10.1016/0021-8693(90)90163-1
[2] B. Huppert, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften 134. Springer-Verlag, Berlin, 1967.
[3] I. M. Isaacs, Character Theory of Finite Groups. Dover, New York, 1994.
[4] P. Lentoudis, Détermination du groupe des automorphismes du p-groupe de Sylow du groupe symétrique de degré ${ }^{m}$: l'idée de la méthode. C. R. Math. Rep. Acad. Sci. Canada 7(1985), no. 1, 67-71.
[5] Le groupe des automorphismes du p-groupe de Sylow du groupe symétrique de degré p^{m} : résultats. C. R. Math. Rep. Acad. Sci. Canada 7(1985), no. 2, 133-136.
[6] J. M. Riedl, The number of automorphisms of a monolithic finite group. J. Algebra 322(2009), no. 12, 4483-4497. http://dx.doi.org/10.1016/j.jalgebra.2009.07.034

Department of Theoretical and Applied Mathematics, University of Akron, Akron, OH 44325-4002, USA e-mail: riedl@uakron.edu

[^0]: Received by the editors March 20, 2009; revised July 18, 2009.
 Published electronically May 13, 2011.
 AMS subject classification: 20D45, 20D15, 20E22.

