Canad. Math. Bull. Vol. **55** (2), 2012 pp. 390–399 http://dx.doi.org/10.4153/CMB-2011-088-3 © Canadian Mathematical Society 2011

Automorphisms of Iterated Wreath Product *p*-Groups

Jeffrey M. Riedl

Abstract. We determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.

1 Introduction

We begin by defining an important family of finite groups of prime-power order. Let p be a prime and let e be a positive integer. Let $W_1^e(p)$ denote the cyclic group of order p^e . For each integer $n \ge 2$, we recursively define $W_n^e(p)$ as the regular wreath product group $W_n^e(p) = W_{n-1}^e(p) \wr \mathbb{Z}_p$. Thus, for $n \ge 2$, the group $W_n^e(p)$ is the semidirect product $N \rtimes \mathbb{Z}_p$ where N is the direct product of p copies of $W_{n-1}^e(p)$, and where \mathbb{Z}_p , the cyclic group of order p, acts via automorphisms on N by regularly permuting these direct factors.

It is well known that for an arbitrary prime p and positive integer n, the group $W_n^1(p)$ is isomorphic to a Sylow p-subgroup of the symmetric group of degree p^n . The following two results [6, Theorem 1.4, Theorem 1.5] suggest that the three-parameter family of groups $W_n^e(p)$ is worthy of attention.

Theorem 1.1 Let q > 1 be any prime-power and let p be any prime divisor of q - 1. Let p^e denote the p-part of q - 1, so that e is a positive integer. Then for every positive integer n, the general linear group $\Gamma = GL(p^{n-1}, q)$ contains a subgroup P that is isomorphic to $W_n^e(p)$. Furthermore, if $p^e \ge 3$, then P is a Sylow p-subgroup of Γ .

We mention without proof that in the situation of Theorem 1.1, it is actually true that *P* is a Sylow *p*-subgroup of Γ if and only if $p^e \ge 3$. Although Theorem 1.1 is quite well known, we suspect that the following result might be less well known.

Theorem 1.2 Let G be a finite p-group for some prime p. Let r be any prime such that $r \neq p$, and let F denote the algebraic closure of the field with r elements. Let n be any positive integer. The following conditions are equivalent.

- (i) *G* is isomorphic to a subgroup of the general linear group $GL(p^{n-1}, \mathbb{C})$.
- (ii) *G* is isomorphic to a subgroup of the general linear group $GL(p^{n-1}, F)$.
- (iii) G is isomorphic to a subgroup of $W_n^e(p)$ for some positive integer e.

The purpose of this article is to determine the order of the group of automorphisms Aut(W) of the group $W = W_n^e(p)$ in case $n \ge 2$ and $p^e \ge 3$.

Received by the editors March 20, 2009; revised July 18, 2009.

Published electronically May 13, 2011.

AMS subject classification: 20D45, 20D15, 20E22.

Before going further, we explain why these automorphism groups may be of interest. In unpublished work we classified up to isomorphism the nonabelian subgroups H of $W_2^e(p)$ for an arbitrary prime p and positive integer e such that $p^e \ge 3$. (Using Theorem 1.2, one can show that this is equivalent to classifying up to isomorphism the finite p-groups having a faithful irreducible ordinary character of degree p.) Let $A = \operatorname{Aut}(W)$ for $W = W_2^e(p)$. In other unpublished work we prove, for every group H of nilpotence class at least 3 appearing in this classification, that $\mathbf{N}_A(H)/\mathbf{C}_A(H)$ is isomorphic to $\operatorname{Aut}(H)$, which says essentially that the full automorphism group $\operatorname{Aut}(H)$ is realized inside the group $\operatorname{Aut}(W)$. This suggests that knowledge of the structure of the group $\operatorname{Aut}(W)$ could, in principle, be translated into knowledge of the structure of $\operatorname{Aut}(H)$ for many subgroups H of W. Knowing the order of $\operatorname{Aut}(W)$ is a natural first step toward gaining some understanding of the structure of the group $\operatorname{Aut}(W)$.

In order to state the main result, we need to define some notations and make some preliminary remarks. Let p be any prime and let e and n be any positive integers such that $n \ge 2$. It is straightforward to calculate that the order of the group $W_n^e(p)$ is $p^{\alpha(n)}$ where $\alpha(n) = 1 + p + \cdots + p^{n-2} + ep^{n-1}$. In Section 3 we determine character-theoretic information about the group $W_n^e(p)$ that is needed for the main result. We prove that every faithful irreducible ordinary character of $W_n^e(p)$ has degree at least p^{n-1} . Let \mathcal{F}_n denote the set consisting of all faithful irreducible ordinary characters of $W_n^e(p)$ that have degree p^{n-1} . We also prove that the cardinality of the set \mathcal{F}_n is $(p-1)p^{\beta(n)}$ where

$$\beta(n) = (p-1)\left[\binom{n}{2} + (e-1)n\right] - (e-1)(p-2) - 1.$$

(Our proof in Section 3 gives an interesting description of the characters belonging to the set \mathcal{F}_n .) Our approach to determining $|\mathcal{F}_n|$ is to show that $|\mathcal{F}_2| = (p-1)p^{ep-2}$ and that

$$|\mathcal{F}_n| = |\mathcal{F}_{n-1}| \cdot p^{(p-1)(n+e-2)}$$
 for $n > 2$

The formula for $\beta(n)$ that appears above is the unique solution of the recurrence

$$\beta(2) = ep - 2,$$
 $\beta(n) = \beta(n-1) + (p-1)(n+e-2)$ for $n > 2.$

We are now ready to state the main result.

Theorem A Let p be a prime and let e and n be positive integers such that $n \ge 2$ and $p^e \ge 3$. For $W = W_n^e(p)$, the automorphism group $\operatorname{Aut}(W)$ has order $(p-1)^n p^r$ where $r = \alpha(n) + \beta(n) - e$.

We use the automorphism counting formula that was developed in [6] to establish Theorem A. This is a general formula for the order of the automorphism group Aut(G) of a monolithic finite group G in terms of information about the faithful irreducible ordinary characters of G of minimal degree and information about how G is embedded as a subgroup of a particular finite general linear group. (A finite group is said to be *monolithic* if it has a unique minimal normal subgroup. Thus a finite *p*-group is monolithic if and only if the center of the group is cyclic.) We mention that Lentoudis [4,5] determined the order of Aut(*W*) for the special case $W = W_n^1(p)$ for odd primes *p*, using methods completely different from those of this article. The proof of Theorem A appears in Section 2. The character-theoretic results that are used in the proof of Theorem A appear in Section 3.

Let Irr(G) denote the set of irreducible ordinary characters of a finite group *G*.

2 The Proof of Theorem A

For each finite group G and each prime-power q, we define mindeg(G, q) to be the smallest positive integer m such that the general linear group GL(m, q) contains a subgroup that is isomorphic to G. Thus mindeg(G, q) is the minimal degree among all the faithful F-representations of the group G, where F denotes the field with q elements.

Definition 2.1 Let G be a monolithic finite group, let q be a prime-power that is relatively prime to the order of G, and let m = mindeg(G,q). We say that the ordered triple (G, q, m) is a *monolithic triple* in case every faithful irreducible ordinary character of G has degree at least m. Assuming that (G, q, m) is a monolithic triple, we define $\mathcal{F}(G,q)$ to be the set of all faithful irreducible ordinary characters of G of degree m. We say that the monolithic triple (G, q, m) is good provided that every value of each character belonging to the set $\mathcal{F}(G,q)$ is a \mathbb{Z} -linear combination of complex (q-1)-th roots of unity.

The following is a special case of a result that was proved in [6]. We refer to this result as the automorphism counting formula. It is the key to establishing Theorem A.

Theorem 2.2 Let (G, q, m) be a good monolithic triple. Suppose that $\Gamma = GL(m, q)$ has a unique conjugacy class of subgroups whose members are isomorphic to G. Let H be any subgroup of Γ that is isomorphic to G. Then $|Aut(G)|(q-1) = |\mathcal{F}(G,q)| \cdot |\mathbf{N}_{\Gamma}(H)|$.

To establish Theorem A, the idea is to define a good monolithic triple (G, q, m) with $G = W_n^e(p)$ that satisfies the hypothesis of Theorem 2.2. The conclusion of Theorem 2.2 would then yield $|\operatorname{Aut}(G)|$ provided that we know in advance $|\mathcal{F}(G, q)|$ and $|\mathbf{N}_{\Gamma}(H)|$. The next several results will be used to calculate $|\mathcal{F}(G, q)|$ and $|\mathbf{N}_{\Gamma}(H)|$ in this situation.

The following character-theoretic result will be proved Section 3.

Theorem 2.3 Let p be a prime. Let e and n be positive integers. Write $W = W_n^e(p)$. We define the set $\mathcal{F} = \{\chi \in \operatorname{Irr}(W) \mid \chi(1) = p^{n-1} \text{ and } \chi \text{ is faithful}\}$. The following hold.

- (i) The center of the group W is cyclic of order p^e .
- (ii) Every faithful irreducible ordinary character of W has degree at least p^{n-1} .
- (iii) Every value of each character belonging to the set F is a Z-linear combination of complex p^e-th roots of unity.
- (iv) If $n \ge 2$, then $|\mathcal{F}| = (p-1)p^{\beta(n)}$, where $\beta(n)$ is as defined in the introduction.

The following result is included in [6, Theorem 4.4].

Theorem 2.4 Let $\Gamma = GL(m, q)$, where q > 1 is any prime-power and m is any positive integer. Let F be the field with q elements, let F_0 be any nontrivial subgroup of the multiplicative group $F^{\times} = F - \{0\}$, and let E be the group of all diagonal matrices in Γ having the property that each entry along the diagonal belongs to F_0 . Let S be the subgroup of Γ consisting of all permutation matrices, and note that $S \cong Sym(m)$. Let T be any transitive subgroup of the symmetric group S and let $H = E \rtimes T$. If E is a characteristic subgroup of H, then

$$|\mathbf{N}_{\Gamma}(H)| = |\mathbf{N}_{S}(T):T| \cdot |H| (q-1) / |F_{0}|.$$

In the situation and notation of Theorem 2.4, the conclusion of that result reduces the problem of calculating the order of $N_{\Gamma}(H)$ to the problem of calculating the index $|N_S(T):T|$. The following result, which appears in [1], will be used to calculate the index $|N_S(T):T|$ for the particular situation that arises in the proof of Theorem A.

Theorem 2.5 Let p be any prime and let n be any positive integer. Let P be any Sylow p-subgroup of the symmetric group $S = \text{Sym}(p^n)$. Then $|\mathbf{N}_S(P):P| = (p-1)^n$.

Recall that in case $n \ge 2$, we recursively defined $W_n^e(p)$ as the semidirect product $N \rtimes \mathbb{Z}_p$, where N is the direct product of p copies of $W_{n-1}^e(p)$. We now describe another useful way to regard $W_n^e(p)$ as a semidirect product. First note that for $n \ge 2$, the fact that $W_{n-1}^1(p)$ is isomorphic to a Sylow p-subgroup of the symmetric group of degree p^{n-1} provides us with a transitive action of $W_{n-1}^1(p)$ on a set of size p^{n-1} . For each positive integer n, the group $W_n^e(p)$ is isomorphic to the semidirect product $B \rtimes T$, where B is the direct product of p^{n-1} copies of the cyclic group of order p^e and where the group T and its action on B are defined as follows. In case n = 1, the group T is trivial and thus its action on B is trivial. In case $n \ge 2$, the group T is isomorphic to $W_{n-1}^1(p)$ and acts via automorphisms on B by transitively permuting the p^{n-1} direct factors of B in a manner described earlier in this paragraph.

In the proof of Theorem A, we apply Theorem 2.4 with the groups $W_n^e(p)$ and *B* playing the roles of *H* and *E* in the notation of Theorem 2.4. One hypothesis of Theorem 2.4 is that *E* is a characteristic subgroup of *H*, and so we need the following result. This result is a generalization of [2, Satz III.15.4(a)] with the same proof, which we omit here.

Theorem 2.6 Let p be a prime, let e and n be positive integers, and write $W_n^e(p) = B \rtimes T$, where B and T are as defined earlier. If $p^e \ge 3$, then B is the product of all the abelian normal subgroups of $W_n^e(p)$, and so B is a characteristic subgroup of $W_n^e(p)$.

In the proof of Theorem A, we use the following result to define an embedding of $W_n^e(p)$ as a subgroup of a general linear group that satisfies the hypotheses of Theorem 2.4

Lemma 2.7 Let p be a prime, let e and n be positive integers, and write $W_n^e(p) = B \rtimes T$, where B and T are as defined earlier. Let F be any field containing a primitive p^e -th root of unity. Then there exists a faithful F-representation \mathcal{Y} of $W_n^e(p)$ of degree p^{n-1} such that $\mathcal{Y}(B)$ is the group of all diagonal matrices of order dividing p^e in the general linear group $GL(p^{n-1}, F)$, while $\mathcal{Y}(T)$ is a transitive group of permutation matrices.

Proof We proceed via induction on *n*. The base case n = 1 is trivial. Let n > 1 and assume inductively that \mathcal{X} is a faithful *F*-representation of $W_{n-1}^e(p)$ of degree p^{n-2} having the desired properties. By definition we have $W_n^e(p) = N \rtimes \langle w \rangle$, where *N* is the direct product of *p* copies of the group $W_{n-1}^e(p)$ and the automorphism $w \in \operatorname{Aut}(N)$ cyclically permutes these *p* direct factors. We now define the homomorphism $\mathcal{Y}: W_n^e(p) \to \operatorname{GL}(p^{n-1}, F)$ as follows. For each element $x = (x_1, \ldots, x_p) \in N$, we let

$$\mathcal{Y}(x) = egin{pmatrix} \mathfrak{X}(x_1) & 0 & \cdots & 0 \ 0 & \mathfrak{X}(x_2) & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \mathfrak{X}(x_p) \end{pmatrix}.$$

Furthermore, letting *I* denote the p^{n-2} -by- p^{n-2} identity matrix, we define

$$\mathcal{Y}(w) = \begin{pmatrix} 0 & 0 & 0 & 0 & I \\ I & 0 & \cdots & 0 & 0 \\ 0 & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & \cdots & I & 0 \end{pmatrix}.$$

The proof is complete.

The following result (which appeared as Lemma 3.2 in [6]) describes the orders of the Sylow *p*-subgroups of certain finite general linear groups.

Lemma 2.8 Let q > 1 be any prime-power and let p be any prime divisor of q - 1. Let p^e denote the full p-part of q - 1, and suppose that $p^e \ge 3$. Then for every positive integer m, the full p-part of |GL(m, q)| is p^{em+s} where p^s is the full p-part of m!.

Let *q* be a prime-power and *p* a prime that satisfy the hypothesis of Lemma 2.8. For any integers *k* and *m* such that $1 \le k < m$, the full *p*-part of *k*! is less than or equal to the full *p*-part of *m*!, and so by Lemma 2.8, the full *p*-part of |GL(k,q)| is strictly smaller than the full *p*-part of |GL(m,q)|. Hence a Sylow *p*-subgroup of GL(k,q) has smaller order than a Sylow *p*-subgroup of GL(m,q). We shall use this fact in the proof of Theorem A.

Proof of Theorem A By Theorem 2.3(i), the *p*-group *W* has a cyclic center and is therefore monolithic. Choose any prime-power q > 1 such that p^e is the full *p*-part of q - 1. Write $\Gamma = \operatorname{GL}(p^{n-1}, q)$ and let *P* be any Sylow *p*-subgroup of Γ . By the hypothesis $p^e \ge 3$ and by Theorem 1.1, we deduce that $P \cong W$. It follows that mindeg $(W, q) \le p^{n-1}$. For each positive integer *k* such that $k < p^{n-1}$, Lemma 2.8 implies that the *p*-part of the order of the general linear group $\operatorname{GL}(k, q)$ is strictly smaller than the *p*-power |W|, and so $\operatorname{GL}(k, q)$ contains no subgroup that is isomorphic to *W*. It follows that mindeg $(W, q) = p^{n-1}$. Now Theorem 2.3(ii) implies that (W, q, p^{n-1}) is a monolithic triple. By Theorem 2.3(iii) and the fact that p^e is a divisor of q-1, (W, q, p^{n-1}) is indeed a good monolithic triple. Since *W* is isomorphic to

a Sylow *p*-subgroup of Γ , there is only one conjugacy class of subgroups of Γ whose members are isomorphic to *W*. Theorem 2.3(iv) yields $|\mathcal{F}(W, q)| = (p-1)p^{\beta(n)}$.

By Lemma 2.7, we may write $P = B \rtimes T$, where *B* is the group of all diagonal matrices of order dividing p^e in Γ , and where *T* is a transitive group of permutation matrices that is isomorphic to $W_{n-1}^1(p)$. Let *S* be the subgroup of Γ consisting of all permutation matrices, and note that $S \cong \text{Sym}(p^{n-1})$. Theorem 2.5 yields $|\mathbf{N}_S(T):T| = (p-1)^{n-1}$. By Theorem 2.6, *B* is a characteristic subgroup of *P*. Since $P \cong W$, we have $|P| = p^{\alpha(n)}$. By Theorem 2.4, we obtain $|\mathbf{N}_{\Gamma}(P)| = (p-1)^{n-1}p^{\alpha(n)}(q-1)/p^e$. Now Theorem 2.2 yields

$$|\operatorname{Aut}(W)| = [(p-1)p^{\beta(n)}][(p-1)^{n-1}p^{\alpha(n)-e}(q-1)]/(q-1)$$
$$= (p-1)^n p^{\alpha(n)+\beta(n)-e},$$

as desired to complete the proof.

3 Character Theory

In this section we determine useful character-theoretic information about the family of groups $W_n^e(p)$. First we introduce some notations. For an arbitrary finite group *G*, we write Lin(*G*) to denote the group of all linear ordinary characters of *G*. If ϵ is any primitive complex *m*-th root of unity for some positive integer *m*, we let $\mathbb{Z}(\epsilon)$ denote the subring of \mathbb{C} that is generated by ϵ , and we mention that $\mathbb{Z}(\epsilon)$ is equal to the set of all \mathbb{Z} -linear combinations of complex *m*-th roots of unity. The following result includes Theorem 2.3.

Theorem 3.1 Let p be a prime and let e and n be positive integers. Write $P = W_n^e(p)$. We define the set $\mathcal{F}_n = \{\chi \in \operatorname{Irr}(P) \mid \chi(1) = p^{n-1} \text{ and } \chi \text{ is faithful}\}$. Let ϵ be any primitive complex p^e -th root of unity. Then the following conditions hold.

- (i) The center $\mathbf{Z}(P)$ is cyclic of order p^e .
- (ii) $|\text{Lin}(P)| = p^{n+e-1}$.
- (iii) For each character $\mu \in \text{Lin}(P)$, all the values of μ belong to the ring $\mathbb{Z}(\epsilon)$.
- (iv) For each faithful character $\chi \in Irr(P)$, we have $\chi(1) \ge p^{n-1}$.
- (v) For each character $\chi \in \mathfrak{F}_n$, all the values of χ belong to the ring $\mathbb{Z}(\epsilon)$.
- (vi) If $n \ge 2$, then $|\mathcal{F}_n| = (p-1)p^{\beta(n)}$ where $\beta(n)$ is as defined in the Introduction.

The following standard fact is used in our proof of Theorem 3.1.

Lemma 3.2 Let G be a finite group having a unique minimal normal subgroup M. Let $1 < N \triangleleft G$ and let $\psi \in Irr(N)$. Then the induced character ψ^G is faithful if and only if $M \not\subseteq \ker \psi$.

Proof If $M \subseteq \ker \psi$, then [3, Lemma 5.11] yields $1 < M \subseteq \operatorname{core}_G(\ker \psi) = \ker \psi^G$, so ψ^G is not faithful. If $M \nsubseteq \psi$, then using $\ker \psi^G \subseteq \ker \psi$ we obtain $M \nsubseteq \psi^G$, and so by the uniqueness of M we have $\ker \psi^G = 1$, which says that ψ^G is faithful.

Proof of Theorem 3.1 Since *p* is fixed throughout this proof, we write $W_n^e = W_n^e(p)$ for arbitrary positive integers *n* and *e*. We proceed via induction on *n*. In the base

https://doi.org/10.4153/CMB-2011-088-3 Published online by Cambridge University Press

case n = 1, it is clear that all conclusions hold. Henceforth let $n \ge 2$ and note that $P = N \rtimes \mathbb{Z}_p$, where N is a direct product of p copies of the group W_{n-1}^e . Each element of N is of the form $x = (x_1, \ldots, x_p)$ where $x_i \in W_{n-1}^e$ for $i \in \{1, \ldots, p\}$. Conjugation by an arbitrary element of P cyclically permutes the direct factors of N.

By the inductive hypothesis applied to part (i), the center $\mathbb{Z}(W_{n-1}^e)$ is cyclic of order p^e . Let the element *u* be a generator for the cyclic group $\mathbb{Z}(W_{n-1}^e)$. If $\mathbb{Z}(P) \not\subseteq N$, then using |P:N| = p we obtain $P = \mathbb{Z}(P)N$, and so the permutation action of *P* on the *p* direct summands of *N* is trivial, contrary to what we know. Therefore $\mathbb{Z}(P) \subseteq N$.

It follows that $\mathbf{Z}(P) \subseteq \mathbf{Z}(N) = \langle u \rangle \times \cdots \times \langle u \rangle$. For an element $x \in \mathbf{Z}(N)$ to belong to $\mathbf{Z}(P)$, it is necessary and sufficient that x be invariant under conjugation by elements outside of N. But this happens if and only if the components of x are all equal to each other. Thus, for the element $z = (u, \ldots, u) \in N$ of order p^e , we have $\mathbf{Z}(P) = \langle z \rangle$, establishing part (i).

Since $N \triangleleft P$ and |P:N| = p, for each character $\psi \in Irr(N)$, it is true that ψ extends to *P* in case ψ is *P*-invariant (by [3, Corollary 6.20]) and that ψ^P is irreducible in case ψ is not *P*-invariant. Each character $\psi \in Irr(N)$ is of the form $\psi = \theta_1 \times \cdots \times \theta_p$ for $\theta_i \in Irr(W_{n-1}^e)$. We call $\theta_1, \ldots, \theta_p$ the components of ψ . For an arbitrary element $x = (x_1, \ldots, x_p) \in N$, we have $\psi(x) = \theta_1(x_1)\theta_2(x_2)\cdots \theta_p(x_p)$. We say that ψ is homogeneous in case $\theta_1 = \theta_2 = \cdots = \theta_p$. It is clear that ψ is *P*-invariant if and only if ψ is homogeneous.

The restriction of each linear character of *P* to the subgroup *N* is a linear *P*-invariant character of *N* and is therefore homogeneous. On the other hand, every homogenous linear character of *N* has *p* distinct extensions in Lin(*P*). Hence restriction to *N* defines a *p*-to-one mapping from the set Lin(*P*) onto the set of all homogenous linear characters of *N*. The number of homogenous linear characters of *N* is $|\text{Lin}(W_{n-1}^e)|$. It follows that $|\text{Lin}(P)| = p \cdot |\text{Lin}(W_{n-1}^e)|$. The inductive hypothesis applied to part (ii) yields $|\text{Lin}(W_{n-1}^e)| = p^{(n-1)+e-1}$. We obtain $|\text{Lin}(P)| = p^{n+e-1}$ as desired to establish part (ii).

It is clear that the group W_n^1 is a homomorphic image of *P*. By [2, Satz III.15.3c], the elementary abelian *p*-group of rank *n* is a homomorphic image of W_n^1 . Hence the elementary abelian *p*-group of rank *n* is a homomorphic image of *P*/*P'*. The abelian *p*-group Lin(*P*) is isomorphic to *P*/*P'*, and therefore has rank at least *n*. Since $|\text{Lin}(P)| = p^{n+e-1}$, it follows that the abelian *p*-group Lin(*P*) has exponent at most p^e , and so part (iii) is established.

We now argue that the element $z^{p^{e-1}}$ is contained in the kernel of every homogeneous character $\psi \in \operatorname{Irr}(N)$. Write $\psi = \theta \times \cdots \times \theta$ for some $\theta \in \operatorname{Irr}(W_{n-1}^e)$. Because the element $u \in \mathbb{Z}(W_{n-1}^e)$ has order p^e , we have $\theta(u) = \theta(1)\epsilon^m$ for some integer *m*. Hence $\theta(u^{p^{e-1}}) = \theta(1)\epsilon^{mp^{e-1}}$. Since $z = (u, \ldots, u)$, we have $z^{p^{e-1}} = (u^{p^{e-1}}, \ldots, u^{p^{e-1}})$. Recalling that ϵ is a primitive complex p^e -th root of unity, we obtain

$$\psi(z^{p^{e^{-1}}}) = \prod_{i=1}^{p} \theta(u^{p^{e^{-1}}}) = \prod_{i=1}^{p} \theta(1) \epsilon^{mp^{e^{-1}}} = \theta(1)^{p} \epsilon^{mp^{e}} = \theta(1)^{p} = \psi(1)$$

which says that $z^{p^{e-1}} \in \ker \psi$, as claimed.

We now argue that for each faithful character $\chi \in \operatorname{Irr}(P)$ there exists $\psi \in \operatorname{Irr}(N)$ such that $\psi^{P} = \chi$ and $z^{p^{e^{-1}}} \notin \ker \psi$. Let $\chi \in \operatorname{Irr}(P)$ be faithful. If the restriction χ_{N} is irreducible, then χ_{N} is *P*-invariant and therefore homogeneous, and so the preceding paragraph yields $z^{p^{e^{-1}}} \in \ker \chi_{N}$, from which it follows that $z^{p^{e^{-1}}} \in \ker \chi$, contradicting that χ is faithful. Hence χ_{N} is reducible. By [3, Corollary 6.19], we deduce that $\psi^{P} = \chi$ for some character $\psi \in \operatorname{Irr}(N)$. Since $\langle z^{p^{e^{-1}}} \rangle$ is the unique minimal normal subgroup of *P* while ψ^{P} is faithful, Lemma 3.2 yields $z^{p^{e^{-1}}} \notin \ker \psi$, as desired to establish our claim.

We define the set $S = \{\psi \in \operatorname{Irr}(N) \mid z^{p^{e-1}} \notin \ker \psi \text{ and } \psi(1) = p^{n-2}\}$. We now argue that the rule $\psi \mapsto \psi^p$ defines a mapping from the set S to the set \mathcal{F}_n . Let $\psi \in S$ be arbitrary. Because $z^{p^{e-1}} \notin \ker \psi$, we know that ψ is not homogeneous and therefore not *P*-invariant, and so ψ^p is irreducible. Since $z^{p^{e-1}} \notin \ker \psi$ while $\langle z^{p^{e-1}} \rangle$ is the unique minimal normal subgroup of *P*, Lemma 3.2 implies that ψ^p is faithful. Using $\psi(1) = p^{n-2}$ and |P:N| = p, we obtain $\psi^p(1) = p^{n-1}$. Hence $\psi^p \in \mathcal{F}_n$ and the mapping $S \to \mathcal{F}_n$ is well defined. Next we argue that this mapping $S \to \mathcal{F}_n$ is *p*-to-one and onto. Let $\chi \in \mathcal{F}_n$ be arbitrary. By the preceding paragraph, there exists $\psi \in \operatorname{Irr}(N)$ such that $\psi^p = \chi$ and $z^{p^{e-1}} \notin \ker \psi$. Since $\chi(1) = p^{n-1}$ and $\chi = \psi^p$ for $\psi \in \operatorname{Irr}(N)$ with |P:N| = p, we have $\psi(1) = p^{n-2}$. Therefore $\psi \in S$ and the mapping is onto. Since $\psi \in \operatorname{Irr}(N)$ and ψ^p is irreducible, we know that ψ is not *P*-invariant. Each of the *p* distinct *P*-conjugates of ψ in $\operatorname{Irr}(N)$ also belongs to the set *S* and induces χ . Hence the mapping is *p*-to-one.

Since we have a *p*-to-one mapping from the set S onto the set \mathcal{F}_n , indeed $|\mathcal{F}_n| = |\mathcal{S}|/p$.

Case 1: Suppose n = 2. Thus *N* is a direct product of *p* copies of the cyclic group W_1^e of order p^e . Let $\chi \in Irr(P)$ be faithful. Since *P* is a noncyclic *p*-group, we have $\chi(1) \ge p$, thereby establishing part (iv). By earlier observation, we know that $\chi = \psi^p$ for some $\psi \in Irr(N)$. Hence χ vanishes off the normal subgroup *N*. We also know that $\chi_N = \psi_1 + \cdots + \psi_p$ for characters $\psi_1, \ldots, \psi_p \in Irr(N)$. Because *N* is homocyclic of exponent p^e , each of the values of each of the characters ψ_1, \ldots, ψ_p belongs to the ring $\mathbb{Z}(\epsilon)$. This establishes part (v).

Since n = 2, the condition $\psi(1) = p^{n-2}$ in the definition of S becomes $\psi(1) = 1$, which is true for every $\psi \in Irr(N)$ since N is abelian. Thus

$$\mathcal{S} = \{ \psi \in \operatorname{Irr}(N) \mid z^{p^{e^{-1}}} \notin \ker \psi \}.$$

In order to calculate the cardinality |S|, it suffices to count the linear characters of the abelian group N whose kernel does not contain the subgroup $\langle z^{p^{e-1}} \rangle$ of order p. The total number of linear characters of N is $|N| = p^{ep}$, and the number of these whose kernel contains $\langle z^{p^{e-1}} \rangle$ is $|N|/p = p^{ep-1}$. Hence $|S| = p^{ep} - p^{ep-1} = (p-1)p^{ep-1}$. Therefore $|\mathcal{F}_2| = |S|/p = (p-1)p^{ep-2}$. Since $\beta(2) = ep - 2$, we have established part (vi).

Case 2: Suppose n > 2. First we argue that the element $z^{p^{e^{-1}}}$ is contained in the kernel of every character $\psi = \theta_1 \times \cdots \times \theta_p \in \operatorname{Irr}(N)$ having the property that none of the characters $\theta_1, \ldots, \theta_p$ is faithful. First note that $\langle u^{p^{e^{-1}}} \rangle$ is the unique minimal

normal subgroup of W_{n-1}^e . Assuming that for each $i \in \{1, \ldots, p\}$ the character $\theta_i \in \operatorname{Irr}(W_{n-1}^e)$ is not faithful, we have $u^{p^{e-1}} \in \ker \theta_p$ for each $i \in \{1, \ldots, p\}$. Using $z^{p^{e-1}} = (u^{p^{e-1}}, \ldots, u^{p^{e-1}})$, we calculate that

$$\psi(z^{p^{e^{-1}}}) = \prod_{i=1}^{p} \theta_i(u^{p^{e^{-1}}}) = \prod_{i=1}^{p} \theta_i(1) = \psi(1),$$

which says that $z^{p^{e^{-1}}} \in \ker \psi$, as claimed.

Let $\psi \in \operatorname{Irr}(N)$ be arbitrary and write $\psi = \theta_1 \times \cdots \times \theta_p$. Since |P:N| = p, the induced character ψ^p has degree $\psi^p(1) = p\psi(1)$ with $\psi(1) = \theta_1(1)\theta_2(1)\cdots\theta_p(1)$. Suppose that $z^{p^{e^{-1}}} \notin \ker \psi$. By the preceding paragraph, there exists an index $k \in \{1, \ldots, p\}$ such that the character $\theta_k \in \operatorname{Irr}(W_{n-1}^e)$ is faithful. The inductive hypothesis applied to part (iv) yields $\theta_k(1) \ge p^{n-2}$. It is clear that $\psi(1) \ge \theta_k(1)$, and so we obtain

$$\psi^{P}(1) = p\psi(1) \ge p\theta_{k}(1) \ge pp^{n-2} = p^{n-1}.$$

Note that $\psi \in S$ if and only if $\psi(1) = p^{n-2}$. By the preceding chain of inequalities, the condition $\psi(1) = p^{n-2}$ occurs if and only if $\theta_k(1) = p^{n-2}$ while $\theta_i(1) = 1$ for each $i \in \{1, ..., p\}$ such that $i \neq k$.

For each faithful character $\chi \in \text{Irr}(P)$, we proved earlier that there exists $\psi \in \text{Irr}(N)$ such that $\psi^P = \chi$ and $z^{p^{e^{-1}}} \notin \ker \psi$, and so the preceding paragraph yields $\chi(1) = \psi^P(1) \ge p^{n-1}$, thereby establishing part (iv).

The preceding observations give us the following more explicit characterization of the members of the set S. For each character $\psi = \theta_1 \times \cdots \times \theta_p \in \text{Irr}(N)$, it is true that $\psi \in S$ if and only if exactly one of the characters $\theta_1, \ldots, \theta_p$ belongs to the set \mathcal{F}_{n-1} (and is hence nonlinear because W_{n-1}^e is noncyclic for n > 2), while the remaining p - 1 such characters are linear.

We now argue that every value of each character belonging to the set S lies in the ring $\mathbb{Z}(\epsilon)$. Let $\psi = \theta_1 \times \cdots \times \theta_p \in S$ be arbitrary. By the preceding paragraph, there exists a unique index $k \in \{1, \dots, p\}$ such that $\theta_k \in \mathcal{F}_{n-1}$ while $\theta_i \in \text{Lin}(W_{n-1}^e)$ for each $i \in \{1, \dots, p\}$ such that $i \neq k$. By the inductive hypothesis applied to part (iii) and part (v), every value of each of the characters $\theta_1, \dots, \theta_p$ lies in the ring $\mathbb{Z}(\epsilon)$. Thus for an arbitrary element $x = (x_1, \dots, x_p) \in N$ we have $\psi(x) = \theta_1(x_1)\theta_2(x_2)\cdots\theta_p(x_p) \in \mathbb{Z}(\epsilon)$.

We now establish part (v). Let $\chi \in \mathcal{F}_n$ be arbitrary. Thus $\chi = \psi^p$ for some character $\psi \in S$. Since $\psi \in Irr(N)$, the character χ vanishes off the normal subgroup N. The restriction χ_N is a sum of p characters belonging to the set S. By the preceding paragraph, it follows that every value of χ_N lies in the ring $\mathbb{Z}(\epsilon)$, as required to establish part (v).

It remains to establish part (vi). First we use our characterization of the set S to determine the cardinality of the set S. To construct an arbitrary member ψ of the set S, we begin by choosing some character in \mathcal{F}_{n-1} . Next we decide in which of the *p* components of ψ this character chosen from \mathcal{F}_{n-1} will appear. We then fill each of the remaining p-1 components of ψ with an arbitrary member of $\text{Lin}(W_{n-1}^e)$. By counting the total number of ways to carry out this process, we obtain

$$|\mathcal{S}| = |\mathcal{F}_{n-1}| \cdot p \cdot |\operatorname{Lin}(W_{n-1}^e)|^{p-1}$$

The inductive hypothesis applied to part (ii) yields $|\text{Lin}(W_{n-1}^e)| = p^{n+e-2}$. Using $|\mathcal{F}_n| = |\mathcal{S}|/p$, we deduce that $|\mathcal{F}_n| = |\mathcal{F}_{n-1}| \cdot p^{(p-1)(n+e-2)}$. Since n > 2, the inductive hypothesis applied to part (vi) yields $|\mathcal{F}_{n-1}| = (p-1)p^{\beta(n-1)}$. It follows that

$$|\mathcal{F}_n| = (p-1)p^{\beta(n-1)}p^{(p-1)(n+e-2)}$$

It is straightforward to verify that $\beta(n-1) + (p-1)(n+e-2) = \beta(n)$. Hence we conclude that indeed $|\mathcal{F}_n| = (p-1)p^{\beta(n)}$, as required to establish part (vi).

Acknowledgements We thank the referee for suggesting improvements to the proof of Theorem 3.1.

References

- J. L. Alperin and P. Fong, Weights for symmetric and general linear groups. J. Algebra 131(1990), no. 1, 2–22. http://dx.doi.org/10.1016/0021-8693(90)90163-1
- B. Huppert, *Endliche Gruppen. I.* Die Grundlehren der Mathematischen Wissenschaften 134. Springer-Verlag, Berlin, 1967.
- [3] I. M. Isaacs, Character Theory of Finite Groups. Dover, New York, 1994.
- [4] P. Lentoudis, Détermination du groupe des automorphismes du p-groupe de Sylow du groupe symétrique de degré p^m: l'idée de la méthode. C. R. Math. Rep. Acad. Sci. Canada 7(1985), no. 1, 67–71.
- [5] _____, Le groupe des automorphismes du p-groupe de Sylow du groupe symétrique de degré p^m: résultats. C. R. Math. Rep. Acad. Sci. Canada 7(1985), no. 2, 133–136.
- [6] J. M. Riedl, The number of automorphisms of a monolithic finite group. J. Algebra 322(2009), no. 12, 4483–4497. http://dx.doi.org/10.1016/j.jalgebra.2009.07.034

Department of Theoretical and Applied Mathematics, University of Akron, Akron, OH 44325-4002, USA e-mail: riedl@uakron.edu