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N O T E O N B E S T A P P R O X I M A T I O N O F |x| 

BY 

COLIN BENNETT, KARL RUDNICK AND JEFFREY D. VAALER 

In this note the best uniform approximation on [—1,1] to the function |JC| by 
symmetric complex valued linear fractional transformations is determined. This 
is a special case of the more general problem studied in [1]. Namely, for any 
even, real valued function f(x) on [-1,1] satsifying 0 = / ( 0 ) < / ( x ) < / ( l ) = l, 
determine the degree of symmetric approximation 

Bs(/) = iiiff||l7-/|U: U(x) = ^ ^ , a, b,c and d complex, U(x)=U(-x)\ 
I cx + d J 

and the extremal transformations U whenever they exist. The authors com
pletely solved this problem for two classes of functions / (cf. Theorems C and 
D, [1]) and in particular solved it for the functions |jc|a, provided a>K = 
1.4397589 Here K is the unique solution in (1, <») of (2K - 1 ) 2 K - 1 = K/K -1. 
Furthermore, A. Ruttan [3] has shown that Es(|x|°0, a > K , is also the degree 
of approximation when the symmetry condition U(x) = U(-x) is dropped. 

The method which was used in [1] to determine best approximations 
consisted of two basic steps. First the interval [-1,1] was replaced by the four 
point set {-1, -co, co, 1}, 0 < c o < l , and U(oi)(x) was chosen so as to minimize 

max{| UM(x)-f(x)\ : x = - 1 , -co, co, 1}. 

This was achieved by geometric considerations described in [2J. The second 
step was to show that for certain functions f(x) the best global approximation 
was attained by UM for a suitable choice of coe(0,1). For /(x) = |x|a, a<K, 
this method failed. However we conjectured that the method could be modified 
so as to successfully handle the case a < K if the four point set were replaced by 
the five point set {—1, -œ, 0, co, 1}, 0<co < 1. In the present note we show that 
ES(|JC|) and the corresponding extremal transformations can be determined by 
algebraic means. Moreover, if 17* is extremal then | £/*(*)-|x| | does indeed 
attain its maximum on a certain five point set. Thus our result may be of use in 
finding a general method for determining best approximations on such five 
point sets. 

Received by the editors April 25, 1978. 
363 

https://doi.org/10.4153/CMB-1979-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-046-x


364 C. BENNETT, K. RUDNICK AND J. D. VAALER [September 

THEOREM. For any symmetric transformation U (that is U(x) = U(-x)) we 

have 

|LT(x)-|x||U^ 
V 5 - 1 

with equality if and only if U(x) = U*(x) or U(x) = l/*(x), where 

1 

\x - it0J 

So = — , ('o)2 = 

r ° " 4 ' 

V5 , ^ 2 _ > / 5 - l 

Proof. First we observe that 

| L 7 * ( x ) - | x | | 2 - ( ^ ) 2 = | x | ( | x | - l ) ( | x | - ^ ) 2 < 0 

for | x | < l . Hence \\U*(x)-\x\\\O0 = (y/5 — l)/4 and the norm is attained precisely 
when x is in the five point set Z = {0, ±(V5 -1 ) /4 , ±1}. Thus it suffices to show 
that no other symmetric transformation can attain the degree of approximation 
( V 5 - l ) / 4 o n Z. 

As in [1] we need only consider symmetric transformations U(x) of the form 

Ix + it\ 

\x — it/' 
U(x) = s + r 

with r, s and t real, r^O, f^O. Thus we may suppose that 

(1) r - r 0 + e, S = S0 + TJ, f2 = (t0)2 + è 

and that the corresponding U(x) satisfies 

V 5 - 1 (2) 

(3) 

(4) 

From (2) we have 

I/(D-i 

V 5 - 1 

- 7 5 - 1 
4 ' 

I C/(0)| = 

( l - r - s ) 2 + f 2 ( l + r - s ) 2 

f-l*> + f2), 
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and then substituting from (1) we obtain 

(5) ( l +z^y+ 2(^_ l ) e , 

+ ({+Z^),.+(zîZp 

Similarly, from (3) and (1) we have 

(6) ( i + e ) ^ + 2 ( ^ - { ) e , 

Finally, from (4) and (1) we find that 

(7) r j - e < 0 . 

Next we multiply (5) by 8, we multiply (6) by 32, and adding the two 
inequalities that result we obtain 

(8) ae 2 + 2b£Ti + aT]2<c(T]-£), 

where 

a = 15+V5+40fe b = 2 5 - 9 V 5 - 4 0 £ 

c = - 5 + 3V5 + 4(5-V5)£ 

It follows from (1) that a > 0 and c > 0. The discriminant of the quadratic form 
on the left of (8) is 

4a2-b2 = 320(5 - V5)(V5 - 1 + 8£) 

which is positive by (1). Thus the form is positive definite and so (7) and (8) can 
hold if and only if e = TJ = 0. But then (5) shows that £ < 0 and (6) implies £ > 0. 
Hence the inequalities (2), (3) and (4) hold if and only if U(x) = U*(x) or 
ZJ(x)=U*(x). 
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