W. Taylor Nagoya Math. J. Vol. 52 (1973), 31-33

A HETEROGENEOUS INTERPOLANT

WALTER TAYLOR

In this note we exhibit an interpolant for a certain valid implication $\models \varphi \rightarrow \psi$, where φ and ψ come from the infinitary language $L_{\omega_1\omega_1}$. The existence of this interpolant follows from Takeuti's heterogeneous interpolation theorem [5], but unfortunately the proof in [5] is not explicit enough to allow one to find the interpolant explicitly. Takeuti's theorem asserts the existence of an interpolant in the class $\bar{L}_{\omega_1\omega_1}$ of heterogeneous formulas, which admits the rules of formation of $L_{\omega_1\omega_1}$ plus the following additional rule: if $\varphi \in \bar{L}_{\omega_1\omega_1}$ and $\langle Q_{\alpha} \rangle_{\alpha < \beta}$ is a sequence of quantifiers (i.e. $Q_{\alpha} = \exists \text{ or } Q_{\alpha} = \forall$) then $Q_0 x_{i_0} \cdots Q_{\alpha} x_{i_{\alpha}} \cdots_{(\alpha < \beta)} \varphi \in \bar{L}_{\omega_1\omega_1}$. (The semantic interpretation is the obvious one; consult [2, § C] or [4].)

The present interpolation example (whose investigation was suggested by J. Malitz) will be presented as a definability theorem. Namely we give a formula explicitly defining an isomorphism between two isomorphic well-founded extensional relations.

We take unary predicates A_1, A_2 and binary predicates E_1, E_2, F (written medially). Let σ be the conjunction of the following sentences.

$$\begin{split} &\forall x [(A_1 x \lor A_2 x) \land \neg (A_1 x \land A_2 x)] \\ &\forall x \forall y [x E_i y \to A_i x \land A_i y] \quad (i = 1, 2) \\ &\forall x \forall y [A_i x \land A_i y \to [x \simeq y \leftrightarrow \forall z (z E_i x \leftrightarrow z E_i y)]] \quad (i = 1, 2) \\ &\forall x_0 \forall x_1 \cdots [\neg \bigwedge_{j \in \omega} x_{j+1} E_i x_j] \quad (i = 1, 2) \\ &\forall x \forall y [x F y \to A_1 x \land A_2 y] \\ &\forall x [A_1 x \to \exists ! y (x F y)] \\ &\forall y [A_2 y \to \exists ! x (x F y)] \\ &\forall u \forall v \forall x \forall y [x F y \land u F v \to (u E_1 x \leftrightarrow v E_2 y)] . \end{split}$$

One may easily check that if

$$\langle U$$
 ; A_1 , A_2 , E_1 , E_2 , $F
angle arepsilon$ σ

Received March, 14, 1972.

and

$$\langle U$$
 ; A_1 , A_2 , E_1 , E_2 , $F'
angle arphi$,

then F = F'. Thus F is implicitly defined by σ , and hence by Takeuti's theorem together with the usual argument for Beth's theorem, there is a (heterogeneous) formula $\Phi(x, y)$ such that $\sigma \models xFy \leftrightarrow \Phi(x, y)$, with F not appearing in Φ . (Such Φ cannot be in any L_{z} , as follows from the proof of Malitz [3, Theorem 4.2].) The aim of this note is to explicitly exhibit Φ .

Let C be the set of finite sequences of 0's and 1's (including the empty sequence \Box). For $\Box \neq \sigma = a_0 a_1 \cdots a_{n-1} a_n \in C$, we let $\hat{\sigma} = a_0 \cdots a_{n-1}$. For all $\sigma \in C$ we take variables x_{σ} and y_{σ} . For all $\sigma \in C$, let Q_{σ} stand for¹

$$(\forall x_{\sigma 0} \in A_1)(\exists y_{\sigma 0} \in A_2)(\forall y_{\sigma 1} \in A_2)(\exists x_{\sigma 1} \in A_1) .$$

Now let $\Phi(x, y)$ be

$$(A_1x) \wedge (A_2y) \wedge Q_{\Box} \cdots \underset{\sigma,\tau \in \mathcal{C} \\ |\sigma| \leq |\tau|}{Q_{\sigma}} \cdots Q_{\tau} \cdots \bigwedge_{\sigma \in \mathcal{C} \\ \sigma \neq \Box} (x_{\sigma}E_1x_{\sigma}^{\star} \leftrightarrow y_{\sigma}E_2y_{\sigma}^{\star}) ,$$

where $|\sigma|$ denotes the length of σ . We claim that $\sigma \models (\varPhi(x, y) \leftrightarrow xFy)$. To see this, let $\mathfrak{A} = \langle U; A_1, A_2, E_1, E_2, F \rangle$ be any model of σ . We then need to see that for $a, b \in U, \mathfrak{A} \models \Phi$ [a, b] if and only if $(a, b) \in F$. Certainly if $(a, b) \in F$, then we may obviously use the isomorphism F to continue to establish the satisfaction of Φ in \mathfrak{A} . Conversely suppose that for some a and $b, a \in A_1$ and $b \in A_2$,

(*)
$$\mathfrak{A} \models \Phi[a, b]$$
 but $(a, b) \notin F$.

We let a be E_1 -minimal among those a for which such b exists, and let b be E_2 -minimal such that (*) holds for b and this value of a. Notice that $\Phi(x, y)$ is logically equivalent to

$$\begin{array}{l} \forall x_0 \exists y_0 [(x_0 E_1 x \leftrightarrow y_0 E_2 y) \land \varPhi(x_0, y_0)] \land \\ \forall y_1 \exists x_1 [(x_1 E_1 x \leftrightarrow y_1 E_2 y) \land \varPhi(x_1, y_1)] . \end{array}$$

Thus we know that

$$\mathfrak{A} \models \begin{bmatrix} \forall x_0 \exists y_0 [(x_0 E_1 a \leftrightarrow y_0 E_2 b) \land \varPhi(x_0, y_0)] \land \\ \forall y_1 \exists x_1 [(x_1 E_1 a \leftrightarrow y_1 E_2 b) \land \varPhi(x_1, y_1)] \end{bmatrix}$$

32

¹ We express the quantifiers Q_{σ} with " \in " for cognitive purposes. Clearly it is possible to write Φ in strict accordance with the formation rule mentioned above.

By the minimality of a and b, we know that therefore

$$\mathfrak{A} \models \begin{bmatrix} \forall x_0 \exists y_0 [(x_0 E_1 a \leftrightarrow y_0 E_2 b) \land x_0 F y_0] \land \\ \forall y_1 \exists x_1 [(x_1 E_1 a \leftrightarrow y_1 E_2 b) \land x_1 F y_1] \end{bmatrix}$$

But since F is an isomorphism and since E_1 and E_2 are each extensional, we see that $(a, b) \in F$.

References

- [1] Barwise, J., ed., The syntax and semantics of infinitary languages, Lecture notes in mathematics #72, Springer-Verlag, Berlin, 1968.
- [2] Henkin, L., Some remarks on infinitely long formulas, pp. 167-183 in: Infinitistic methods (Proceedings of the symposium on foundations of mathematics, Warsaw, September, 1959), Pergamon, Państwowe Wydawnictwo Naukowe, Warsaw, 1961.
- [3] Malitz, J., Infinitary analogs of theorems from first order model theory, J. Symbolic Logic 36 (1971), 216-228.
- [4] Mycielski, J., On the axiom of determinateness, Fund. Math., 53 (1964), 205-224.
- [5] Takeuti, G., A determinate logic, Nagoya Math. J. 38 (1970), 113-138. (Essentially the same article appears as pp. 237-264 in [1].)
 Added July 18, 1973 The following articles give further information on Takeuti's (and other) interpolation theorems:
- [6] Kueker, D. W., Löwenheim-Skolem and interpolation theorems in infinitary languages, Bull. Amer. Math. Soc. 78 (1972), 211-215.
- [7] Nebres, B. F., Herbrand uniformity theorems for infinitary languages, J. Math. Soc. Japan 24 (1972), 1-19.
- [8] Swett, A. K., Interpolation theorems for languages with game quantifiers, ms., Toronto, 1973.

University of Colorado