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A CHARACTERIZATION OF 
THE MINKOWSKI NORMS 

C. L. ANDERSON 

ABSTRACT. If n > 2 and M(m\,..., JC„) is a symmetric norm of the form 
m(x\, m(x2, m{...)...), where m is a symmetric norm on R 2, then m(x, y) = 
(\x\p + \y\p)l/p for some p > 1 or else m(x, y) = max{\x\,\y\}. 

1. Introduction. Mizel and Sundaresan [1] generalized the Minkowski (ip) norms 
by defining a sequential norm iteratively, starting from an essentially arbitrary symmetric 
norm on R 2. Then it was shown in [2] that the Mizel-Sundaresan norms are topologically 
equivalent in the infinite dimensional case to Orlicz norms and that therefore no new 
BK spaces arise from their construction. If the only use for sequential norms was to 
identify new BK space, this result would have put an end to all questions about the Mizel-
Sundaresan construction. 

There are however other uses for norms. For example, Anderson [3] recently showed 
that an £p norm with an integer value of/? can be used to generate a sample of size p 
from the gamma probability distribution with shape parameter 1/ p. Statistical estimation 
methods based on minimum distance, as described in [4], for example, often use norms, 
and the statistical error distributions may depend strongly on the particular norm used. 

The Mizel-Sundaresan norms have several important properties which make them 
attractive for statistical purposes. In the first place, they are very simple to compute, much 
simpler, for example, than any version of Orlicz norms. Moreover, Mizel-Sundaresan 
norms have the important theoretical property that the conjugate of the Mizel-Sundaresan 
(iterative) norm generated from a two-dimensional norm m is just the iterative norm 
generated from the conjugate of m. The situation surrounding Orlicz norms, as described 
in [5], for example, is much more complicated. 

One property that Mizel-Sundaresan norms do not generally possess is the property 
of symmetry (K-symmetry). Thus the iterative norm of a sequence is generally not left 
invariant by permutations of the coordinates. In fact, the following question has been 
outstanding for a number of years: can a Mizel-Sundaresan norm be K-symmetric except 
in the classical lp case? The purpose of this note is simply to answer this question in the 
negative. 

2. Main results. A Mizel-Sundaresan (iterative) norm Im is determined by a norm 
m on R 2 under the conditions 

max {|*i |, |*2|} < m(x\9X2) = fw(|*2|> |*i|) < |*i| + |*2| 
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in addition to the norm conditions. Norms on R3, R 4 , . . . are defined iteratively by 

m3(jci,X2,Jt3) = m(m(x\,X2),X3), 

m^{X\ ,X2 ,*3,Jt4) = m(m3(jCi,JC2,JC3),JC4), 

and so on. An extended norm Im on the space of infinite sequences is then defined by 
letting /m(jci,jC2,...) be the limit of mn(x\,... ,xn), which is monotonie in n, as n —• oo. 
If we set g(a) = m(l, a) — 1, then Im is topologically equivalent to the Orlicz norm Og 

defined by 

0^) = infJA > 0 | JX|x, | /A)<l | 

as was shown, essentially, in [2]. 
The only obvious case in which Og is exactly the same as Im is the case in which m is 

one of the Minkowski £p norms mp, defined by 

m M , X 2 ) = [ ^ \ ^ 1 ' ; for„€[l ,oo) 
I max{ |jci|, |JC2|} for/7 = oo. 

In general, Og is symmetric but lm is not. Of course, the two-dimensional norm m is as
sumed to be symmetric and it is easy to see that if m^ is symmetric then so are W4, ras,... 
and also Im. This is also the case in which Im can be described as in the abstract, i.e., as 
the limit of mn(xn,..., x\ ). 

Note also that a proper sequential norm is symmetric if and only if its conjugate is 
symmetric. Hence, a number of questions are settled by the following. 

THEOREM. Iflm is symmetric, then m is mpfor somep G [1, oo]. 

Note. In terms of the function G(t) — m(l, 11\ ), the theorem defines the only solutions 
G for the functional equation 

G(s)G(t/ s) = G(t)G(s/ 0, for s, t > 0 

which satisfy the additional conditions implied above, viz. that G(s) = sG(\/ s) is convex 
and even, achieving its minimum at G(0) = 1, with | G'(s)\ < 1. 

PROOF. Define Hn = mn(Jn), where Jn is the point in Rn which has each of its 
coordinates equal to 1. If H^ = 1, then m = m^ and there is nothing more to prove. 
Hence we assume H2 > I and define p e [l,oo) by H2 = 2P. Notice that Hi+j = 
m(Hi, Hj) and hence H has the multiplicative property Htj = HtHj. Thus, for any positive 
rational number r — mj n, one can consistently define H(r) = Hmj //„, noting that 
H(r) = Hr when r is a positive integer. Note also that for m — 1,2,..., 

0 < Hm+l -Hm = Hmg (^-] < g(l). 

It follows that for any positive real number x, the infimum of H{r) for rational r > x is 
the same as the supremum for r < x and therefore H has a unique continuous extension 
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to the positive reals. Let this extension be made. Then clearly, H(x) — xP for all x > 0 
and, in particular, Hn — np for n — 1,2, — 

Now we just have to show that the norm m is characterized by the sequence 
(H\,H2,...). In fact, for any positive real number JC, we can approximate x by numbers 
of the form H(m/ n) with m and n integral. Then as mj n —-> x we have 

Hm+n/Hm = m(l,Hn/Hm)—>m(l,x). 

This concludes the proof. 
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