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On Inductive Limit Type Actions of the
Euclidean Motion Group on Stable
UHF Algebras

Andrew J. Dean

Abstract. An invariant is presented which classifies, up to equivariant isomorphism, C∗-dynamical

systems arising as limits from inductive systems of elementary C∗-algebras on which the Euclidean

motion group acts by way of unitary representations that decompose into finite direct sums of irre-

ducibles.

1 Introduction

There is now a long history of classification results for C∗-dynamical systems of the

following form: We have a C∗-algebra given as an inductive limit and actions of a

group on each of the algebras in the inductive system such that the connecting maps

are equivariant, resulting in an action on the limit algebra. Most of the results ob-

tained so far have been for compact groups. Handelman and Rossmann [9, 10] clas-

sified actions of compact groups on AF algebras that left invariant some increasing

sequence of finite dimensional subalgebras with dense union under the restriction

that the actions of the group on the finite dimensional subalgebras arose from ho-

momorphisms of the group into their unitaries. They called such actions locally

representable. In [2, 11] this was extended to inductive systems with more compli-

cated C∗-algebras, but a local representability condition was still required. In [8], the

local representability condition was removed for the special case where the group is

Z/2Z and the algebras in the inductive system are finite dimensional. In the case of

non-compact groups, AF flows were classified in [3, 4].

In this paper, we obtain the first such classification result for a group which is

neither compact nor abelian, namely the Euclidean motion group. We shall make use

of some common notations: for the fixed point subalgebra of a C∗-algebra A under

the action α of the group G we shall write either Aα or AG depending on whether the

group or the action is being emphasized. We write M(A) for the multiplier algebra of

the C∗ algebra A, and we shall sometimes find it convenient to write (A, α) ⊗ (B, β)

for the C∗-dynamical system (A ⊗ B, α⊗ β).
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2 The Euclidean Motion Group and its Representations

In this section we recall a few facts about the Euclidean motion group. A full exposi-

tion of this material may be found in [14]. See also [5].

The Euclidean motion group, E, is the group of transformations of the plane gen-

erated by rotations about the origin and translations. If a ∈ R2 and α ∈ R, we

denote by t(a) the translation by the vector a, and by r(α) the counterclockwise ro-

tation by α radians. We then have that t(a)t(b) = t(a + b), r(α)r(β) = r(α+ β), and

r(α)t(a) = t(eiαa)r(α), so that any element of E may be written t(a)r(α) for some

a ∈ R2 and α ∈ R. E may be viewed as a subgroup of GL2(C) via the embedding

t(a)r(α) 7→
(

eiα a
0 1

)

. The translations form a normal subgroup of E, with the rota-

tions as a complimentary subgroup, so we may also express E as R2
⋊ T, where the

rotations act on R2 in the usual way.

The irreducible unitary representations of E are of two types. The first kind are the

one dimensional representations that arise from the representations of T by passing

to the quotient of E by the translations. Explicitly, for each integer n we have a repre-

sentation χn given by χn(t(a)r(α)) = einα. These representations are inequivalent for

distinct integers. The second kind are infinite dimensional, and may be given explic-

itly as follows. For each complex number a 6= 0 we define a unitary representation

U a of E on L2(T) by [U a(g)F](s) = ei(z,sa)F(r(α)−1s), where s ∈ T, (z, sa) = Re(zsa),
F ∈ L2(T), and g = t(z)r(α). It is shown in [12] that U a and U b are equivalent if

and only if |a| = |b|, so that we need only consider the case of a > 0. With a > 0, we

have in polar form [U a(g)F](θ) = eiaρ cos(ϕ−θ)F(θ − α), where g = t(ρeiϕ)r(α).

Below we shall need a few additional facts which are easily deduced from the ma-

terial in [14], in particular, the following theorem.

Theorem 2.1 For all integers n,m and real numbers a > 0,we haveχn⊗χm
∼= χ(n+m)

and χn ⊗U a ∼= U a.

Proof The map from C ⊗ C to C given by a ⊗ b 7→ ab gives a unitary equivalence

between χn ⊗ χm and χ(n+m). To see the second equivalence, first note that χn ⊗U a

is an infinite dimensional irreducible unitary representation of E, so for some b > 0,
χn ⊗U a ∼= U b. To see that b = a, we examine the proof of the classification theorem

for irreducible representations of E given as [14, Theorem 2.1, p. 165]. In that proof it

is shown that the spectral measure for the restriction of U a to R2, the translations, is

concentrated on a circle of radius a centered at the origin. Thus two representations

U a and U b are equivalent if and only if their restrictions to R2 are. If we consider

the restriction of χn ⊗ U a to R2, we see that it is just 1 ⊗ U a|R2 , which is unitarily

equivalent to U a|R2 via the map from C ⊗ L2(T) to L2(T) given by a ⊗ v 7→ av.

3 Elementary C
∗-Dynamical Systems

In this section we describe the classes of C∗-dynamical systems we shall be concerned

with, beginning with the following definitions.

Definition 3.1 Given a locally compact group G, we define a concrete elementary
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C∗-dynamical system to be one of the form (K(H), Ad U ), where U is a unitary repre-

sentation of G on the Hilbert space H. A C∗-dynamical system (A, α) will be called an

elementary C∗-dynamical system if and only if it is equivariantly isomorphic to some

concrete elementary C∗-dynamical system. By a finite atomic elementary C∗-dyna-

mical system we shall mean one for which the group is E and which is isomorphic

to a concrete elementary C∗-dynamical system in which the representation is a fi-

nite direct sum of irreducible representations. Given two finite atomic elementary

C∗-dynamical systems, (A, α) and (B, β), we shall follow established usage in calling

an equivariant ∗-homomorphism ϕ : A → B proper if the hereditary subalgebra of B

generated by ϕ(A) is all of B.

We shall be concerned with C∗-dynamical systems of the following form: (A, α) =

lim
−→

{(An, αn), ϕnm},where for each n, (An, αn) is a finite atomic elementary C∗-dyna-

mical system and the ϕnms are all proper equivariant ∗-homomorphisms.

Our first step is to see what kind of proper inclusions of one finite atomic ele-

mentary C∗-dynamical system into another are possible. Let (A, α) and (B, β) be

two such C∗-dynamical systems, and let ϕ : A → B be a proper equivariant ∗-homo-

morphism. The action β on B extends to an action, which we shall also call β, on

M(B), the multiplier algebra of B. Now ϕ(A) ′ ∩ M(B) ∼= Mn, where n is the multi-

plicity of the embedding ϕ. This copy of Mn is invariant under the extended action

β. We then have (B, β) ∼= (A ⊗ Mn, α ⊗ β|Mn
) under an isomorphism that carries

the map ϕ : A → B to the map a 7→ a ⊗ 1. It is easy to see that the possible actions

of E on Mn are all of the form Ad(χk1
⊕ · · · ⊕ χkn

), for some set of one dimensional

representations χk1
, . . . , χkn

of E. The list of representations appearing is uniquely

determined up to tensoring the whole set with a single one dimensional representa-

tion. We can make the list unique by insisting that ki ≥ 0 for each i, and that the

smallest ki = 0 (recall Theorem 2.1). We summarise this in the following theorem.

Theorem 3.2 Let (A, α) and (B, β) be two finite atomic elementary C∗-dynamical

systems and let ϕ : A → B be a proper equivariant ∗-homomorphism. Then there exists

a unique list of natural numbers n1, . . . , nk such that there is an isomorphism of (B, β)

with (A, α) ⊗ (M(k+1),Ad W ) that carries ϕ to the map a 7→ a ⊗ 1, where W =

χ0 ⊕ χn1
⊕ · · · ⊕ χnk

.

Our next step is to consider the fixed point subalgebra in a finite atomic elemen-

tary C∗-dynamical system. Let (A, α) be such a system and let a ∈ Aα. Assume

(A, α) = (K(H),Ad U ), where U = χn1
⊕ · · · ⊕χnk

⊕U b1 ⊕ · · · ⊕U bl . Let P denote

the projection onto the subspace of H corresponding to the χni
s. Then P ∈ Aα. We

shall show that a = PaP. Write U = V ⊕ U bl , and let q ∈ M(A) be the projection

onto the subspace of H corresponding to V . Since U bl is both infinite dimensional

and irreducible, there are no non-zero projections in (1− q)A(1− q)∩Aα. Consider

now (1− q)a(1− q). Then (1− q) ∈ M(A)α and a ∈ Aα, so (1− q)a∗(1− q)a(1− q)

is a self adjoint element of (1 − q)A(1 − q) ∩ Aα. The spectral theorem for compact

operators combined with the absence of non-zero projections in this algebra shows

that (1 − q)a∗(1 − q)a(1 − q) = 0, and so (1 − q)a(1 − q) = 0. For qa(1 − q), we

may apply a similar argument to (1−q)a∗qa(1−q) and for (1−q)aq we do the same
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thing with (1− q)aqa∗(1− q). Now we get our result by repeating the above steps for

successive U bi s.

From the above discussion we see that if (A, α) is a finite atomic elementary

C∗-dynamical system, then Aα is a unital algebra with the projection P from above as

its unit (we include {0} as a unital C∗-algebra). Furthermore, from Theorem 3.2 we

see that if (A, α) and (B, β) are two finite atomic elementary C∗-dynamical systems

and ϕ : A → B is a proper equivariant ∗-homomorphism, then ϕ takes the unit of Aα

to the unit of Bβ . If we now consider (A, α) = lim
−→

{(An, αn), ϕmn}, an inductive limit

of finite atomic elementary C∗-dynamical systems with proper connecting maps, we

see that Aα is unital.

Let (A, α) = lim
−→

{(An, αn), ϕmn} be an inductive limit C∗-dynamical system as

above, and let 1AE ∈ A denote the unit of Aα. The action α restricts to an action of E

on the hereditary subalgebra 1AE A1AE . On this subalgebra the translations act trivially

and we have an AF-type action of T . The special case where 1AE A1AE = A, i.e., when

all our elementary C∗-algebras are matrix algebras and the representations are finite

dimensional, is discussed in Section 5 below. The special case where 1AE = 0, and all

of our representations are infinite dimensional, is the subject of the next section.

4 Infinite Dimensional Representations

In this section, we consider the case in which the fixed point subalgebra is {0} (only

infinite dimensional representations). We begin by introducing some terminology.

Definition 4.1 Let INF denote the class of finite atomic elementary C∗-dynamical

systems in which the fixed point subalgebra is {0}. Let LIMINF denote the class

of C∗-dynamical systems arising as inductive limits of elements of INF with proper

connecting maps.

Suppose that (A, α) ∈ INF , that (B, β) is a finite atomic elementary C∗-dynamical

system, and that ϕ : A → B is a proper equivariant ∗-homomorphism. Then it is easy

to see from Theorem 3.2 that (B, β) ∼= (A ⊗ Mn, α ⊗ id) for some n via an isomor-

phism that carries ϕ to the map a 7→ a ⊗ 1. Thus if {(An, αn), ϕnm} is an inductive

system of elements of inf with proper connecting maps and (A, α) is the inductive

limit, then (A, α) ∼= (A1 ⊗ M, α1 ⊗ id), where M is a UHF algebra. We shall prove

the following theorem, showing that this decomposition is essentially unique.

Theorem 4.2 Let (A, α) = lim
−→

{(An, αn), ϕmn}, where, for each n, (An, αn) ∈ INF

and the connecting maps ϕmn are proper. For some UHF algebra M, we have (A, α) ∼=
(A1, α1) ⊗ (M, id). This decomposition is unique in the following sense. Suppose

(K(H),Ad V ) ⊗ (M, id) ∼= (K(H),Ad W ) ⊗ (N, id), N and M are UHF algebras,

V = n1U a1 ⊕ · · · ⊕ nkU
ak ,W = m1U b1 ⊕ · · · ⊕ mlU

bl , with ai 6= a j and bi 6= b j for

i 6= j, and that gcd(n1, . . .nk) = 1 = gcd(m1, . . .ml). Then N ∼= M and V ∼= W .

Proof The existence of such a decomposition was observed above, so we proceed

to show uniqueness. Recall the formula for the representation U a on L2(T) given in
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Section 2 above. If we consider the restriction of U a to just the rotations, and we let

fn denote the function θ 7→ einθ for θ ∈ T = R/2πZ, we see that { fn | n ∈ Z}
is an orthonormal basis for L2(T) consisting of eigenvectors for this action, and that

the eigenvalues are all distinct. We see that the fixed point subalgebra for the action

restricted to the rotations, which we shall denote AT, is the copy of c0 generated by

the projections 〈 fn | ( · )〉 fn. Call the n-th such projection en.

Next, we consider the function h(n, a) : E → R given by g 7→ ‖enαg(en)‖. We

shall only need the case where g > 0, so that, in the notation of Section 2, g = ρ and

ϕ = 0. Then

‖enαg(en)‖ = ‖〈 fn | (αg(en)( · )〉 fn‖

=
∥

∥

〈

fn

∣

∣ 〈U a(g) fn | ( · )〉U a(g) fn

〉

fn

∥

∥

= ‖〈U a(g) fn | ( · )〉〈 fn |U
a(g) fn〉 fn‖

= |〈 fn |U
a(g) fn〉| ‖〈U

a(g) fn | ( · )〉 fn‖

= |〈 fn |U
a(g) fn〉|

=

∣

∣

∣

∣

1

2π

∫ 2π

0

e−inθ(eiag cos θeinθ) dθ

∣

∣

∣

∣

=
1

2π

∣

∣

∣

∣

∫ 2π

0

eiag cos θ dθ

∣

∣

∣

∣

From this we see that h(n, a) is independent of n, and furthermore only depends

the product ag. Let h : R → R denote the function such that h(ax) = h(n, a)(x). It is

easy to see that h(0) = 1, that h(t) < 1 for t > 0, and that h is continuous. It follows

that if a, b > 0 and a 6= b, then for any integers n and m, h(n, a) 6= h(m, b).

Now consider (B, β) ∼= (A, α) ⊗ (M, id) where (A, α) ∼= (K(H),Ad U a) is an

element of inf with no nontrivial invariant hereditary subalgebra, and M is a UHF

algebra. If we let BT denote the fixed point subalgebra of the restriction of β to the

rotations, we see from the discussion above that BT ∼= c0 ⊗ M. Furthermore, if we

let p be a minimal central projection in BT, we have ‖pβg(p)‖ = h(ag) for g > 0.

(In fact, we have ‖qαg(q)‖ = h(ag) for g > 0 for any projection q ≤ p, an obser-

vation we shall need below.) This shows that if (B, β) ∼= (C, γ) ⊗ (N, id) for some

other element (C, γ) of inf with no non-trivial invariant hereditary subalgebras, then

(C, γ) ∼= (A, α) and N ∼= M.

Suppose (B, β) ∈ LIMINF , A ⊆ B, (A, β|A) ∈ INF , and that the inclusion is

proper. Suppose (A, β|A) ∼= (K(H),Ad V ) where V = n1U a1 ⊕· · ·⊕nkU
ak with ai 6=

a j for i 6= j. The action β|A extends to an action on B(H) ∼= M(A), the multiplier

algebra of A, via the same representation V . Then V (E) ′ ∼= Ck, so the fixed point

subalgebra, M(A)β , for the extension of the action to M(A), is isomorphic to Ck. Let

P1, . . . , Pk denote the minimal central projections for M(A)β . Since the inclusion

of A into B is proper, M(A) ⊆ M(B), so we may view P1, . . . , Pk as projections in

M(B)β .
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Now, in the same situation as in the paragraph above, assume further that (B, β) ∼=
(A, α) ⊗ (M, id), where α = β|A and M is a UHF algebra. We shall show that in this

case P1, . . . , Pk are central in M(B)β . We have that the action β on B is given by a ho-

momorphism V : E → U (B(H)) = U (M(A)) ⊆ U (M(B)), where U (C) denotes the

unitary group of the unital C∗-algebra C, such that βg(x) = (Ad V (g))(x). The ex-

tension of the action β to M(B) is given by the same unitaries. Represent M faithfully

and non-degenerately on a Hilbert space K. Then we have B represented faithfully

and non-degenerately on H ⊗ K, by a ∗-homomorphism, say π, and this represen-

tation extends to a faithful representation, which we shall also call π, of M(B) on

H ⊗ K such that π(M(B)) is the set of all operators in B(H ⊗ K) that multiply π(B)

into itself (cf. [12]). We then have π(V (g)) = V (g) ⊗ 1 ∈ B(H) ⊗ 1 ⊆ B(H ⊗ K),
and similarly π(Pi) = Pi ⊗ 1. Since the automorphisms in β are inner in M(B), we

have that π(M(B)β) ⊆ (π ◦V (E)) ′, so we just have to see that for each i, Pi is central

for (π ◦ V (E)) ′. This follows from the fact that the representations V (·)Pi ⊗ 1 of E

are pairwise disjoint (cf. [6]).

Assume the same notation as in the statement of the theorem. Let B = K(H) ⊗
M ∼= K(H) ⊗N, let P1, . . . , Pk be the projections in M(B) corresponding to the sub-

spaces for n1U a1, . . . ,m1U ak in V, and let Q1, . . . ,Ql be those for m1U b1 , . . . ,mlU
bl

in W . Then from above we have that QiP j = P jQi for each i and j. Assume that for

some fixed i and j we have PiQ j 6= 0. Let Di j = (PiQ j)B(Q jPi) = (Q jBQ j)∩(PiBPi).

Let {en} denote the minimal central projections in (Q jBQ j)
T ∼= c0 ⊗ Mm j

⊗ N and

let { fn} denote the minimal central projections in (PiBPi)
T ∼= c0 ⊗Mni

⊗M. Let a be

a non-zero positive element in Di j . Then the element b =
∫

T
αθ(a) dθ is a non-zero

positive element in (Di j)
T. For some k, the element c = ekbek is non-zero, and the

hereditary subalgebra of B generated by this element is contained in ekBek. The alge-

bra ekBek is a UHF algebra, and has real rank zero. It is known that in a C∗-algebra

with real rank zero every hereditary subalgebra has an approximate unit consisting of

projections (cf. [13]), so in particular we may choose a non-zero projection p ∈ cBc.

Clearly p ≤ ek. Since Di j is hereditary, p ∈ (Di j )
T. For some n, we have that

fn p fn 6= 0, and 0 ≤ fn p fn ≤ p. The hereditary subalebra of B generated by fn p fn

is contained in fnB fn, which is a UHF algebra. As above, we may choose a non-zero

projection q in the hereditary subalgebra generated by fn p fn. Then q ≤ p ≤ ek, and

q ≤ fn. From the analysis of the case with just one representation, applied to Q jBQ j ,
and the first of these conditions, we see that ‖qαg(q)‖ = h(b jg) for g > 0. From the

second condition we have ‖qαg(q)‖ = h(aig) for g > 0. From this it follows that

b j = ai . It is now easy to see that we must have k = l, and, possibly after reordering,

Pi = Qi, ai = bi , for i = 1, . . . , k. Furthermore, the analysis of the case of one

representation applied to each of PiBPi in turn shows that Mni
⊗ M ∼= Mmi

⊗ N for

each i.

Finally, it remains to check that the multiplicities are the same. With the notation

as in the paragraph above, we identify N and M with the e11 corners in the respective

decompositions of B and consider the K0 classes [1N ] and [1M] in K0(B) ⊆ Q . We

have mi[1M] = ni[1N ] for i = 1, . . . , k. It is easy to show that if p and q are positive

non-zero rational numbers, n1, . . . , nk,m1, . . . ,mk are non-zero natural numbers,

gcd(n1, . . . , nk) = 1 = gcd(m1, . . . ,mk), and mi p = niq for i = 1, . . . , k, then

p = q. Thus [1N ] = [1M], so mi = ni for each i, and we have V ∼= W and N ∼= M.
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This completes the proof of Theorem 4.2.

If V = n1U a1 ⊕ · · · ⊕ nkU
ak and gcd(n1, . . . , nk) = d, then (K(H),Ad V ) ∼=

(K(H),Ad W )⊗(Md, id), where W = (n1/d)U a1⊕· · ·⊕(nk/d)U ak , so we see that any

(A, α) ∈ LIMINF may be written in the form (B, β)⊗(M, id) with M a UHF algebra

and (B, β) ∈ inf with the multiplicities in the corresponding representation having

greatest common divisor 1 in a unique way. We call this tensor product expression

the canonical decomposition for (A, α).

5 Finite Dimensional Representations

In this section, we review the classification of product-type actions of the circle on

UHF algebras. To do this, one may use the results of any of [3, 4, 9, 10]. We shall

follow [4]. In doing so we shall view the circle as R/2πZ and regard circle actions as

periodic actions of R.

In [4, Definition 3.1] the ordered ring R is defined via a Grothendieck construc-

tion. We begin with the set S of all unordered tuples of non-negative real numbers

(finite sets of non-negative reals counted with multiplicity) and we define an addition

⊕ and a multiplication ⊙ on S as follows. Writing [x1, . . . , xn] for the element of S

corresponding to the tuple 〈x1, . . . , xm〉, and [Ø] for the element of S corresponding

to the empty set,

[x1, . . . , xn] ⊕ [y1, . . . , ym] = [x1, . . . , xn, y1, . . . , ym]

[Ø] ⊕ X = X ⊕ [Ø] = X X any element of S

[x1, . . . , xn] ⊙ [y1, . . . , ym] = [xi + y j , 1 ≤ i ≤ n, 1 ≤ j ≤ m]

[Ø] ⊙ X = X ⊙ [Ø] = [Ø] X any element of S

With these definitions, (S,⊕) is an abelian semigroup with cancellation, and we

can enlarge it into a group via the Grothendieck construction. The multiplication

extends to make this group into a ring. With the original semigroup (S,⊕) as positive

cone, the ring, which we denote R, becomes an ordered ring.

In [4, Definition 3.2] an invariant of an AF flow, called the coloured K0 module,

is defined as follows. Given an AF flow (A, α), we let Aα denote the fixed point

subalgebra of A, and D(Aα) the dimension range of Aα. The coloured K0 module,

denoted KR(A, α), of the AF flow (A, α) is the universal right R module generated

by the set D(Aα) with the following relations:

(1) If p and q are projections in Aα and p ⊥ q, then [p + q] = [p] + [q].

(2) If v is a partial isometry in A which is also an eigenoperator with eigenvalue a,
then [v∗v] = [vv∗][a], where [a] ∈ R.

We make the coloured K0 module into an ordered module over the ordered ring R

by taking as positive cone the set of all positive R-linear combinations of elements of

D(Aα). We refer to the copy of D(Aα) in KR(A, α) as the coloured scale, and denote

it ΣR(A, α). If (A, α) and (B, β) are two AF flows and ϕ : A → B is an equivariant
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∗-homomorphism, then we define KR(ϕ) : KR(A, α) → KR(B, β) by KR(ϕ)[p] =

[ϕ(p)] for any projection p in Aα and extending by linearity. This makes the coloured

K0 module into a functor from AF flows with equivariant ∗-homomorphisms to or-

dered R modules with positive R module maps respecting the scales.

The following existence result may easily be deduced from [4, Lemma 3.5].

Lemma 5.1 (Existence) Let (A, α,R) and (B, β,R) be two C∗-dynamical systems

with A and B full matrix algebras, and let ϕ : KR(A, α) → KR(B, β) be a positive

R module homomorphism mapping the class of the unit [1A] ∈ KR(A, α) to [1B] ∈
KR(B, β). Then there exists a unital equivariant ∗-homomorphism ϕ̃ : A → B such

that KR(ϕ̃) = ϕ.

Similarly, the following uniqueness result may be easily deduced from [4, Lemma

3.6].

Lemma 5.2 (Uniqueness) Let (A, α,R) and (B, β,R) be two C∗-dynamical systems

with A and B full matrix algebras, and let ψ and ϕ be two unital equivariant ∗-homo-

morphisms from A to B. Suppose that KR(ψ) = KR(ϕ). Then there exists a unitary U

in the fixed point subalgebra of B such that ψ = (Ad U ) ◦ ϕ.

The final result we shall need from [4] is the following lemma.

Lemma 5.3 (Inductive limits) Let {(An, αn,R), ϕnm} be an inductive system of

C∗-dynamical systems where the Ans are full matrix algebras, and the ϕnms are uni-

tal equivariant ∗-homomorphisms, and let (A, α,R) denote the inductive limit of this

system. Then (KR(A, α),KR
+(A, α), [1A]) is the inductive limit, in the category of

ordered R modules with distinguished positive elements and positive R module maps

preserving the distinguished elements, of the inductive system

{(KR(An, αn),K+
R(An, αn), [1An

]),KR(ϕnm)}.

This may be deduced from [4, Remark 3.3 part 3; Lemma 3.7].

6 Classification

In this section we shall introduce an invariant that classifies C∗-dynamical systems

arising as inductive limits of finite atomic elementary C∗-dynamical systems with

proper connecting maps up to equivariant isomorphism (this is made precise in The-

orem 6.2). We shall make free use of elementary results about K-theory. We refer the

reader to [1] for this material.

Let (A, α) ∼= (A1, α1) ⊗ (M, id) be the canonical decomposition for (A, α) ∈
LIMINF . Suppose (A1, α1) ∼= (K(H),Ad V ). Then AT ∼= c0 ⊗ Md ⊗ M, where d is

the sum of the multiplicities of the distinct irreducible representations appearing in

V . The minimal central projections in AT are all Murray–von Neumann equivalent

in A, so they have the same class in K0(A). Call this K0 class g(A, α). Write µ(A, α)

for the unitary equivalence class [V ] of the representation V of E appearing in the

canonical decomposition of (A, α). We are now ready to define our invariant.
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Definition 6.1 Let (A, α) be a C∗-dynamical system arising as an inductive limit

of finite atomic elementary C∗-dynamical systems, and let 1AE ∈ A denote the unit

of the fixed point subalgebra AE. The invariant for (A, α), which we shall denote

Inv(A, α), consists of the following pieces of information:

(1) The coloured K0 module KR(1AE A1AE , α) along with its positive cone

KR
+(1AE A1AE , α),

and the class of the unit [1AE ]KR.

(2) The ordered K0 group (K0(A),K0(A)+) along with the scale D(A) and the distin-

guished elements [1AE ] and g
(

(1 − 1AE )A(1 − 1AE ), α
)

.

(3) The unitary equivalence class µ
(

(1 − 1AE )A(1 − 1AE ), α
)

of the representation

appearing in the canonical decomposition of
(

(1 − 1AE )A(1 − 1AE ), α
)

.

By a morphism of invariants we shall mean a triple (ϕ, ψ,=) where ϕ is a mor-

phism of scaled, ordered, R-modules preserving the class of the unit,ψ is a morphism

of scaled, ordered groups preserving the distinguished elements, and = denotes iden-

tity of unitary equivalence classes of representations. The definition of composition

of morphisms is the obvious one.

With these definitions, we may now state our main theorem.

Theorem 6.2 Suppose (A, α) and (B, β) are two C∗-dynamical systems arising as in-

ductive limits of finite atomic elementary C∗-dynamical systems with proper connecting

maps and that (ϕ, ψ,=) is an isomorphism of invariants from Inv(A, α) to Inv(B, β).

Then there exists an equivariant ∗-isomorphism γ : A → B such that ϕ = KR(γ) and

ψ = K0(γ).

The proof of this theorem will follow the pattern of an Elliott intertwining argu-

ment, cf. [7]. We shall require the following lemma.

Lemma 6.3 Suppose (A, α) and (B, β) are two finite atomic elementary C∗-dynami-

cal systems with 1AE 6= 0 and γ = (ϕ, ψ,=) is a morphism of invariants from Inv(A, α)

to Inv(B, β) such that ψ is not the zero homomorphism. Then there exists a proper

equivariant ∗-homomorphism γ̃ : A → B such that ϕ = KR(γ̃) and ψ = K0(γ̃).

Furthermore, if δ : A → B is another such proper equivariant ∗-homomorphism, then

there exists a unitary U in the fixed point subalgebra of M(B) such that δ = Ad U ◦ γ̃.

Proof of Lemma 6.3 We have that (K0(A),K+
0 (A)) ∼= (Z,Z+) ∼= (K0(B),K+

0 (B)).

We shall divide the proof into cases according to the values of D(A) and D(B). There

are two combinations that may be ruled out. If either D(A) = K+
0 (A) and D(B) 6=

K+
0 (B), or D(A) 6= K+

0 (A) and D(B) = K+
0 (B), then we cannot have

µ
(

(1 − 1AE )A(1 − 1AE ), α
)

= µ
(

(1 − 1BE )B(1 − 1BE ), β
)

.

We have then two cases to consider: the case where D(A) 6= K+
0 (A) and D(B) 6=

K+
0 (B), and the case where D(A) = K+

0 (A) and D(B) = K+
0 (B). We deal with the first

case first.
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Suppose that, in the situation described in the statement of the lemma, we have

further that D(A) 6= K+
0 (A) and D(B) 6= K+

0 (B), so that both A and B are full ma-

trix algebras. In this case, both of the representations in the invariant are the zero

representation, and g
(

(1 − 1AE )A(1 − 1AE ), α
)

and g
(

(1 − 1BE )B(1 − 1BE ), β
)

are

both zero too. From Lemma 5.1 we have that there exists a unital equivariant ∗-

homomorphism ϕ̃ : A → B such that KR(ϕ̃) = ϕ. Furthermore, from Lemma 5.2

we have that if γ is another unital equivariant ∗-homomorphism from A to B with

KR(γ) = ϕ, then there exists a unitary U in the fixed point subalgebra of B such that

γ = (Ad U )◦ ϕ̃. All that remains to be checked is that K0(ϕ̃) = ψ. This follows from

the fact that ϕ̃ is a unital homomorphism, so that K0(ϕ̃) takes the class of the unit of

A to that of the unit of B, and that ψ does the same.

Next we consider the case where D(A) = K+
0 (A) and D(B) = K+

0 (B). In this

case we have A ∼= B ∼= K. The assumption that ψ is not a zero homomorphism

together with 1AE 6= 0 implies that 1BE 6= 0. We have that the coloured K0 module for

(1AE A1AE , α) (resp., (1BE B1BE , β)) is a singly generated free ordered right R module

with generator the class of a certain minimal projection in A (resp., B). It follows

that there is an element b = [0, b1, . . . , bn] ∈ R
+ such that ϕ is the map x 7→ x · b.

Since ϕ takes [1AE ]KR to [1BE ]KR, we see that b1, . . . , bn ∈ Z+ and (1BE B1BE , β) ∼=
(1AE A1AE , α) ⊗ (M(n+1),Ad(χ0 ⊕ χb1

⊕ · · · ⊕ χbn
)). It follows that [1BE ]K0

= (n +

1)[1AE ]K0
, identifying both groups with Z, so the K0 map ψ is multiplication by n + 1.

Since the same representation class appears in the canonical decompositions of
(

(1 − 1AE )A(1 − 1AE ), α
)

and
(

(1 − 1BE )B(1 − 1BE ), β
)

and (n + 1)g
(

(1 − 1AE )A(1 − 1AE ), α) = g((1 − 1BE )B(1 − 1BE ), β
)

, we see that

if we write (A, α) ∼= (K(H),Ad W ), where W is a finite direct sum of irreducible

representations of E, and do the same for (B, β), then each infinite dimensional rep-

resentation appears n+1 times as many times in the representation for (B, β) as in the

one for (A, α). It follows that (B, β) ∼= (A, α) ⊗ (M(n+1),Ad(χ0 ⊕ χb1
⊕ · · · ⊕ χbn

)),
and the map γ̃ given by a 7→ a ⊗ 1 satisfies the existence part of the lemma.

Suppose that δ : A → B is another proper equivariant ∗-homomorphism with

KR(δ) = KR(γ̃) and K0(δ) = K0(γ̃). Since both δ and γ̃ are proper, they extend to

unital equivariant ∗-homomorphisms, which we shall also call δ and γ̃ respectively,

from M(A) to M(B). Consider the relative commutants C = γ̃(M(A)) ′ ∩ M(B) and

D = δ(M(A)) ′ ∩ M(B). Both C and D are invariant subalgebras of M(B) isomor-

phic to M(n+1). We have (C, β) ∼= (M(n+1),Ad(χ0 ⊕ χb1
⊕ · · · ⊕ χb1

)), and we may

write (D, β) ∼= (M(n+1),Ad W ), where W is some other finite direct sum of χks. It

follows that (B, β) ∼= (A, α) ⊗ (M(n+1),Ad W ) via an equivariant isomorphism that

carries δ to the map a 7→ a ⊗ 1. This implies that (1BE B1BE , β) ∼= (1AE A1AE , α) ⊗
(M(n+1),Ad W ), so we must have (M(n+1),Ad W ) ∼= (M(n+1),Ad(χ0⊕χb1

⊕· · ·⊕χb1
)).

We thus have an equivariant automorphism of B that carries δ to γ̃, and as every

equivariant automorphism of B is implemented by a unitary in the fixed point sub-

algebra of M(B), this gives us our uniqueness result. This completes the proof of

Lemma 6.3.

Remark 6.4 The assumption that 1AE 6= 0 in Lemma 6.3 is necessary. Suppose

that, in the situation of the lemma, we have that both 1AE and 1BE are zero. Let
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V ∈ µ(A, α), and write V in terms of distinct irreducible representations as V ∼=
n1U a1 ⊕ · · · ⊕ nkU

ak . For some m, l the canonical decompositions of (A, α) and

(B, β) are (K(H),Ad V ) ⊗ (Mm, id) and (K(H),Ad V ) ⊗ (Ml, id), respectively. We

have then g(A, α) = m(n1 + · · · + nk) and g(B, β) = l(n1 + · · · + nk). It now follows

from the condition ψ(g(A, α)) = g(B, β) that m divides l, l = sm say, and that the

map from A to B given by γ̃ : K(H)⊗Mm → K(H)⊗Ml
∼= K(H)⊗Mm⊗Ms; x⊗ y 7→

x⊗ y⊗1s meets the requirements of the existence part of the lemma. The uniqueness

statement in the lemma, however, does not hold in this case. Let (A, α) ∈ inf and let

(B, β) = (A, α) ⊗ (M2, id). By Theorem 3.2 (B, β) ∼= (A, α) ⊗ (M2,Ad(id ⊕ χ1)).

Let ψ denote the inclusion a 7→ a ⊗ 1 in the first case, and let ϕ denote the inclusion

a 7→ a⊗ 1 in the second tensor product decomposition. The invariants for these two

equivariant inclusions are the same. The restrictions of β to the relative commutants

ψ(A) ′ ∩ M(B) and ϕ(A) ′ ∩ M(B) however give (M2, id) and (M2,Ad(id ⊕ χ1)),
which are not isomorphic, so there cannot be a unitary in the fixed point subalgebra

of M(B) taking ψ to ϕ.

Proof of Theorem 6.2 We deal first with the case where 1AE = 0. Then, since the

isomorphism ψ of K0(A) with K0(B) takes [1AE ] to [1BE ], we have 1BE = 0 too,

and (A, α), (B, β) are both elements of lim inf. Let (K(H),Ad V ) ⊗ (M, id) and

(K(H),Ad V ) ⊗ (N, id) be the canonical decompositions of (A, α) and (B, β) re-

spectively, and suppose V = n1U a1 ⊕ · · · ⊕ nkU
ak with ai 6= a j for i 6= j. Then

g(A, α) = (n1 + · · · + nk)[e11 ⊗ 1M] and g(B, β) = (n1 + · · · + nk)[e11 ⊗ 1N ], so

ψ(g(A, α)) = g(B, β) implies that ψ([e11 ⊗ 1M]) = [e11 ⊗ 1N]. It follows from a fun-

damental result in K-theory (cf. [1]) that there exists an isomorphism ψ̃ : A → B

such that ψ = K0(ψ̃), and we see that M and N are cutdowns of A and B, re-

spectively by projections which are set Murray–von Neumann equivalent by this

isomorphism, so we have M ∼= N, under an isomorphism γ say. It follows that

1 ⊗ γ : K(H) ⊗ M → K(H) ⊗ N is an equivariant isomorphism satisfying the re-

quirements of the theorem.

Suppose now that {(An, αn), inm} and {(Bn, βn), jnm} are two inductive systems of

finite atomic elementary C∗-dynamical systems with proper connecting maps, that

(A, α) and (B, β) are the inductive limits, that 1AE 6= 0, and that γ is an isomorphism

of Inv(A, α) with Inv(B, β). It follows that 1BE 6= 0, 1AE ∈ A1, and 1BE ∈ B1. Since

K0 is continuous with respect to inductive limits, and by Lemma 5.3 KR is as well,

we get a diagram,

Inv(A1, α1) // Inv(A2, α2) // · · · // Inv(A, α)

γ

��

Inv(B1, β1
// Inv(B2, β2) // · · · // Inv(B, β)

ν

OO

in the category of invariants in which

Inv(A, α) = lim
−→

{Inv(An, αn),
(

KR(inm),K0(inm),=
)

= Inv(inm)},

https://doi.org/10.4153/CMB-2006-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-022-x


224 A. J. Dean

and similarly for Inv(B, β).

Both K0(A1) and KR(1AE A11AE ) are singly generated, so for some n we may

find a morphism of invariants, γ1 say, from Inv(A1, α1) to Inv(Bn, βn) such that

γ ◦ Inv(i1∞) = Inv( jn∞) ◦ γ1. Passing to a subsequence and renumbering, we

may suppose that n = 1. Applying the same reasoning, we get a morphism of in-

variants, δ say, from Inv(B1, β1) to Inv(Am, αm) for some m, such that Inv(im∞) ◦
δ = ν ◦ Inv( j1∞). We then have that Inv(i1∞) = Inv(im∞ ◦ δ ◦ γ1). Since

both K0(A1) and KR(1AE A11AE ) are singly generated, for some k ≥ m we have

Inv(i1k) = Inv(imk) ◦ δ ◦ γ1. Passing to a subsequence and renumbering, we may

suppose m = k = 2. We write ν1 for δ. Proceeding in this fashion, from left to right

through the diagram above, we arrive at a commutative diagram:

Inv(A1, α1) //

γ1

��

Inv(A2, α2) //

γ2

��

· · · // Inv(A, α)

γ

��

Inv(B1, β1
//

ν1

88
q

q
q

q
q

q
q

q
q

q
q

Inv(B2, β2) //

ν2

::
u

u
u

u
u

u
u

u
u

u

· · · // Inv(B, β)

ν

OO

Next, we use the existence part of Lemma 6.3 to conclude that, for each n, there exist

proper equivariant ∗-homomorphisms γ̃n : (An, αn) → (Bnβn) and ν̃n : (Bn, βn) →
(An+1, αn+1) such that (KR(γ̃n),K0(γ̃n),=) = γn and (KR(ν̃n),K0(ν̃n),=) = νn.

This gives us a diagram

(A1, α1) //

γ̃1

��

(A2, α2) //

γ̃2

��

· · · // (A, α)

(B1, β1
//

ν̃1

::
t

t
t

t
t

t
t

t
t

(B2, β2) //

ν̃2

;;
x

x
x

x
x

x
x

x
x

· · · // (B, β)

in which the triangles need not commute.

Finally, we use the uniqueness part of Lemma 6.3 to adjust the vertical maps in the

above diagram to get a commuting one in which the maps have the same invariants as

in the one above. We start with ν1. Since i12 and ν1◦γ1 have the same invariants, there

exists a unitary U in the fixed point subalgebra of M(A2) such that Ad U◦ν1◦γ1 = i12.

Since U ∈ M(A2)α2 , K0(Ad U ◦ ν1) = K0(ν1). Also, U commutes with 1AE , so 1AEU

is a unitary in the fixed point subalgebra of 1AE A11AE and KR(Ad U ◦ ν1) = KR(ν1).

We replace ν1 with Ad U ◦ ν1 and proceed to γ2. Continuing in this way gives us a

diagram like the one above, and in which the maps have the same invariants, but in

which each triangle, and hence the whole diagram, now commutes. It is well known,

(cf. [7]) that such a commuting diagram gives rise to a pair of inverse isomorphisms,

γ̃ : A → B and ν̃ : B → A which make the whole diagram commute. In our case, these

isomorphisms are also equivariant. That they have the right values on the invariants

follows from commutativity of the diagram and functoriality of the invariant.

https://doi.org/10.4153/CMB-2006-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-022-x


On Inductive Limit Type Actions 225

References

[1] B. Blackadar, K-Theory for Operator Algebras. Mathematical Sciences Research Institute
Publications 5, Springer-Verlag, New York, 1986.

[2] O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, On the classification of inductive limits of
inner actions of a compact group. In: Current Topics in Operator Algebras. World Scientific
Publishing, River Edge, NJ, 1991, pp. 13–24.

[3] A. J. Dean, An invariant for actions of R on UHF C∗-algebras. C. R. Math. Acad. Sci. R. Can.
23(2001), 91–96.

[4] , Classification of AF flows. Canadian Math. Bull. 46(2003), 164–177.
[5] R. S. Doran and J. M. G. Fell, Representations of *-Algebras, Locally Compact Groups, and Banach

*-Algebraic Bundles. Volumes I and II. Academic Press, Boston, MA, 1988.
[6] J. Dixmier, C∗-Algebras, North-Holland, Amsterdam, 1977.
[7] G. A. Elliott, On the classification of C∗-algebras of real rank zero. J. Reine Angew. Math. 443(1993),

179–219.
[8] G. A. Elliott and H. Su, K-theoretic classification for inductive limit Z2 actions on AF algebras.

Canadian J. Math. 48(1996), 946–958.
[9] D. Handelman and W. Rossmann, Product type actions of finite and compact groups. Indiana Univ.

Math. J. 33(1984), 479–509.
[10] , Actions of compact groups on AF C∗-algebras. Illinois J. Math. 29(1985), 51–95.
[11] A. Kishimoto, Actions of finite groups on certain inductive limit C∗-algebras. Internat. J. Math.

1(1990), 267–292.
[12] G. Pedersen, C∗-Algebras and Their Automorphism Groups. London Mathematical Society

Monographs 14, Academic Press, London, 1979.
[13] , The linear span of projections in simple C∗-algebras. J. Operator Theory 4(1980), 289–296.
[14] M. Sugiura, Unitary Representations and Harmonic Analysis. 2nd ed. North-Holland, Amsterdam,

1990.

Department of Mathematical Sciences

Lakehead University

955 Oliver Road

Thunder Bay, ON

P7B 5E1

e-mail: andrew.dean@lakeheadu.ca

https://doi.org/10.4153/CMB-2006-022-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-022-x

