THE SEMIGROUP OF DOUBLY-STOCHASTIC MATRICES by H. K. FARAHAT

OY N. K. FARANAI

(Received 21 July, 1965)

1. Introduction. The set D_n of all $n \times n$ doubly-stochastic matrices is a semigroup with respect to ordinary matrix multiplication. This note is concerned with the determination of the maximal subgroups of D_n . It is shown that the number of subgroups is finite, that each subgroup is finite and is in fact isomorphic to a direct product of symmetric groups. These results are applied in § 3 to yield information about the least number of permutation matrices whose convex hull contains a given doubly-stochastic matrix.

2. Groups of doubly-stochastic matrices. A square matrix with non-negative real elements is called *doubly-stochastic* if every row sum and every column sum is equal to unity. The set D_n of all $n \times n$ doubly-stochastic matrices is easily seen to be a semigroup with respect to ordinary matrix multiplication. The set P_n of all $n \times n$ permutation matrices (i.e. matrices obtained by permuting the columns of the identity matrix 1) is a subgroup of D_n which is obviously isomorphic to the symmetric group on n letters. We prove

(2.1) If a matrix and its inverse belong to D_n , they belong to P_n .

Proof. It is well known that the roots of a doubly-stochastic matrix lie in the closed unit disc. If $x \in D_n$, $x^{-1} \in D_n$, then, for every root λ of x we have $|\lambda| \leq 1$ and $|\lambda^{-1}| \leq 1$, and so $|\lambda| = 1$. This implies that $x \in P_n$ (see Lemma 1 and Theorem 5 of [7]).

For an arbitrary idempotent e of D_n we let G_e denote the maximal subgroup of D_n which contains e (cf. [3, Theorem 1]). When e = 1, the identity matrix, we have the group G_1 of all invertible elements of the semigroup D_n , i.e. of all invertible matrices of D_n whose inverses also belong to D_n . It follows from (2.1) that $G_1 = P_n$. We shall determine all subgroups G_e .

A mapping of the form $x \to u^{-1}xu$ defined by a permutation matrix u will be called a *cogredience*. Such a mapping obviously takes each maximal subgroup G_e to an isomorphic group $u^{-1}G_e u$, and the maximal subgroups thus fall into various cogrediency classes. In order to determine the structure of the subgroups G_e it is sufficient to consider one subgroup from each class. We begin by the determination of the possible idempotents. A matrix which is cogredient to one of the form

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$$

will be called *reducible*; otherwise it is called *irreducible*. It is easily seen that every cogredience maps D_n into itself and that a reducible member of D_n is *decomposable* in the sense that b is necessarily also zero. Thus for doubly-stochastic matrices the notions of reducibility and decomposability coincide.

(2.2) If e is an idempotent indecomposable doubly-stochastic $n \times n$ matrix, then every element of e is equal to 1/n.

Proof.[†] The roots of an idempotent matrix e are 1 or 0, and the number of roots equal to 1 is the rank of e. If e is indecomposable and doubly-stochastic, it follows from the Perron-Frobenius theorem on non-negative matrices (cf. [8]) that 1 is a simple root of e and hence that e has rank one. The result now follows easily.

Let us denote the $m \times m$ idempotent matrix all of whose elements are equal to 1/m by e(m). More generally, if $\lambda = (\lambda_1, ..., \lambda_k)$ is any partition of n, i.e. if $n = \lambda_1 + ... + \lambda_k$ with $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_k > 0$, let us denote by $e(\lambda)$ the idempotent $n \times n$ matrix which is the direct sum of $e(\lambda_1), ..., e(\lambda_k)$:

$$e(\lambda) = e(\lambda_1) \oplus \ldots \oplus e(\lambda_k).$$

Clearly $e(\lambda)$ is an idempotent member of D_n , and, according to (2.2), every idempotent is cogredient to some $e(\lambda)$. It is clear that the cogrediency class of $e(\lambda)$ corresponds uniquely to the partition λ (with decreasing parts $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k > 0$), so that distinct partitions λ yield non-cogredient idempotents $e(\lambda)$. Since P_n is finite and the number of partitions of n is also finite, it follows that D_n has only a finite number of idempotents. Hence

(2.3) The number of maximal subgroups of D_n is finite.

In fact, we can easily determine this number, by computing the number of idempotents cogredient to $e(\lambda)$. There are altogether n! idempotents $u^{-1}e(\lambda)u$ with $u \in P_n$, but each is repeated a number of times equal to the number of permutation matrices u which commute with $e(\lambda)$. If the partition λ has ρ_{α} parts equal to α ($1 \le \alpha \le n$), then it is easily seen that this number is equal to $\prod_{\alpha} (\alpha!)^{\rho_{\alpha}} \rho_{\alpha}!$. It follows that the number of distinct idempotents in D_n is equal to

$$\sum \frac{n!}{(1!)^{\rho_1} \rho_1! (2!)^{\rho_2} \rho_2! \dots (n!)^{\rho_n} \rho_n!}$$

where the sum extends over all partitions $n = \sum \rho_a \alpha$ of n.

We now proceed to determine the structure of the maximal group $G(\lambda) = G_{e(\lambda)}$ containing the idempotent $e(\lambda)$, where λ is a fixed partition of n. To this end, let e(p; q) denote the $p \times q$ matrix all of whose elements are equal to 1/q. Thus it is obvious that e(q; q) = e(q), and it is easily verified that e(p; q)e(q; r) = e(p; r). If $\lambda = (\lambda_1, ..., \lambda_k)$ is any partition of n, put[‡]

$$e(*\lambda) = e(1; \lambda_1) \oplus \ldots \oplus e(1; \lambda_k),$$
$$e(\lambda^*) = e(\lambda_1; 1) \oplus \ldots \oplus e(\lambda_k; 1),$$

so that $e(*\lambda)$ has k rows and n columns while $e(\lambda^*)$ has n rows and k columns. The preceding remarks concerning e(p; q) imply at once that

$$e(\lambda^*)e(*\lambda) = e(\lambda), \quad e(*\lambda)e(\lambda^*) = 1,$$

where of course 1 denotes the identity $k \times k$ matrix.

(2.4) If x is an $r \times s$ matrix satisfying e(r)x = x = xe(s), then x is a scalar multiple of e(r; s).

- † I owe this simple proof to Miss Hazel Perfect.
- \ddagger The direct sum $a \oplus b$ of rectangular matrices a, b is the matrix given in blocks (of obvious sizes) as follows:

$$a \oplus b = \left[\frac{a \mid 0}{0 \mid b}\right].$$

H. K. FARAHAT

Proof. The rows (and also the columns) of e(r) are all equal. From e(r)x = x it follows that the rows of x are all equal. Similarly, from x = xe(s) we deduce that all the columns of x are equal and hence that all the elements of x are equal. The result follows.

Now let $x \in G(\lambda)$, and partition x into blocks corresponding to the equation

$$n=\lambda_1+\ldots+\lambda_k.$$

Let x(i, j) denote the block in the *i*th horizontal and *j*th vertical strips. From the relations $e(\lambda)x = x = xe(\lambda)$, which are valid because $e(\lambda)$ is the neutral element of $G(\lambda)$, we conclude that

$$e(\lambda_i)x(i,j) = x(i,j) = x(i,j)e(\lambda_j)$$

for all i, j. It follows from (2.4) that

$$x(i,j) = \xi_{ij}e(\lambda_i; \lambda_j), \quad (1 \leq i, j \leq k),$$

where ξ is a suitable non-negative $k \times k$ matrix. We shall prove, in fact, that ξ is a permutation matrix. Note firstly that

$$x(i,j) = e(\lambda_i; 1)\xi_{ij}e(1; \lambda_j),$$

whence

(2.5)
$$x = e(\lambda^*)\xi e(*\lambda), \quad \xi = e(*\lambda)x e(\lambda^*).$$

Now each of $e(*\lambda)$, x, $e(\lambda^*)$ is clearly row-stochastic (i.e. all row sums are equal to unity). It follows that ξ itself is row-stochastic. Observe secondly that the mapping $x \to \xi$ is a multiplicative homomorphism. Thus, if y denotes the inverse of x in $G(\lambda)$, and $\eta = e(*\lambda)ye(\lambda^*)$, then we have

$$\xi \eta = e(*\lambda) x e(\lambda^*) e(*\lambda) y e(\lambda^*) = e(*\lambda) x e(\lambda) y e(\lambda^*)$$
$$= e(*\lambda) x y e(\lambda^*) = e(*\lambda) e(\lambda^*) e(\lambda^*) e(\lambda^*) = 1,$$

and similarly $\eta \xi = 1$. This means that ξ , η are both non-negative row-stochastic matrices and $\xi = \eta^{-1}$. It follows by an argument similar to that used in the proof of (2.1) that both ξ and η are permutation matrices (cf. the proof of Theorem 5 in [7], where the argument clearly applies to row-stochastic matrices.) We shall however indicate this proof briefly. The function

$$||z|| = \max_{i} \sum_{j} |z_{ij}|$$

is a matrix norm[†], and every row-stochastic matrix has unit norm: $||\xi|| = ||\eta|| = 1$. But, for any matrix norm, we have $||z|| \ge |\alpha|$ for every root α of z. It now follows that ξ and $\eta = \xi^{-1}$ have all their roots on the unit circle. But Schur's inequality states that the sum of the squares of the moduli of the roots of a matrix does not exceed the sum of the squares of the moduli of the elements. Hence

$$k \leq \sum_{i,j} \left| \xi_{ij} \right|^2 = \sum_{i,j} \xi_{ij}^2 \leq \sum_i \left(\sum_j \xi_{ij} \right) = k,$$

† The axioms for a matrix norm are

(i)
$$||z|| > 0$$
 for $z \neq 0$, (ii) $||z'+z''|| \le ||z'|| + ||z''||$,
(iii) $||zw|| \le ||z|| ||w||$, (iv) $||\lambda z|| = |\lambda| ||z||$.

They clearly imply that $||z|| \ge |\alpha|$ whenever $zx = \alpha x, x \ne 0$.

since $\xi_{ij}^2 \leq \xi_{ij}$, and hence equality holds throughout, so that $\xi_{ij}^2 = \xi_{ij}$ for all *i*, *j* and ξ is a permutation matrix.

We have now established that, for every $x \in G(\lambda)$, the matrix $\xi = e(*\lambda)xe(\lambda^*)$ is a permutation matrix. We can say more about ξ however. As before, let λ stand for the row $(\lambda_1, ..., \lambda_k)$. Then clearly $\lambda e(*\lambda) = (1, 1, ..., 1)$, and because x is doubly-stochastic we find that

$$\lambda \xi = (1, ..., 1)e(\lambda *) = \lambda.$$

Of course, ξ is a permutation matrix, and the elements of λ are positive integers. As before, suppose that ρ_{α} of these elements are equal to α . The equation $\lambda \xi = \lambda$ then implies that ξ belongs to $P(\lambda) = P_{\rho_n} \oplus P_{\rho_{n-1}} \oplus \ldots \oplus P_{\rho_1}$, i.e., that ξ is the direct sum of permutation matrices of degrees $\rho_n, \rho_{n-1}, \ldots, \rho_1$ (obviously terms with $\rho_{\alpha} = 0$ are to be ignored). Conversely, it is plain that, if $\xi \in P(\lambda)$, then $x = e(\lambda)\xi e(*\lambda)$ belongs to the group $e(\lambda)P(\lambda)e(*\lambda)$, which must be $G(\lambda)$ because it contains $e(\lambda)e(*\lambda) = e(\lambda)$. We have therefore proved the following:

(2.6) THEOREM. For any partition λ of n, the mapping

$$x \in G(\lambda) \rightarrow \xi \in P(\lambda),$$

where $\xi = e(*\lambda)xe(\lambda*)$, is a group isomorphism. In particular $G(\lambda)$ is a finite group of order $\rho_1! \dots \rho_n!$.

Note that, when λ is the partition of *n* into *n* parts (each equal to 1), $e(\lambda)$ is the identity matrix 1 and $G(\lambda)$ is the group P_n of all $n \times n$ permutation matrices.

3. An application. Since the mappings $x \to \xi$, $\xi \to x$ described above are both linear, they establish an isomorphism between the convex hull $H(\lambda)$ of the elements of the group $G(\lambda)$ and the convex hull of the group $P(\lambda)$. Of course both of these are semigroups. It is well known that the convex hull of P_n is D_n (this is Birkhoff's theorem; cf. [1]). Thus the convex hull of $P(\lambda) = P_{\rho_n} \oplus P_{\rho_{n-1}} \oplus \ldots \oplus P_{\rho_1}$ is simply $D(\lambda) = D_{\rho_n} \oplus D_{\rho_{n-1}} \oplus \ldots \oplus D_{\rho_1}$. Thus we have

(3.1) The semigroup $H(\lambda)$ is isomorphic with $D(\lambda)$.

In this section we are interested in the least number v(x) of permutation matrices whose convex hull contains a given doubly-stochastic matrix x. For a review of what is known about v(x), see [6, p. 324, 325]. The main tool in giving an upper estimate for v(x) is a theorem of Carathéodory (cf. [2, p. 35]), which may be stated in the following form (see also [4, Lemma 6]):

(3.2) (Carathéodory). Let X be a finite subset of a linear variety of dimension d. Then every point of the convex hull of X lies in the convex hull of d+1 suitable points of X. The number d+1 is best possible.

It is evident that D_n is contained in a linear variety of dimension $(n-1)^2$, and therefore the above theorem gives the estimate

(3.3)
$$v(x) \leq (n-1)^2 + 1.$$

If no further information is given concerning x, this estimate is best possible. However, an estimate is obtained in [5] for indecomposable x, namely

(3.4)
$$v(x) \leq c \left(\frac{n}{c} - 1\right)^2 + 1,$$

H. K. FARAHAT

where c denotes the number of roots of x of unit modulus. We shall obtain a bound for v(x), given that $x \in H(\lambda)$.

(3.5) Let $x_1, ..., x_l, y_1, ..., y_m$ be elements of a real vector space V. Then every point in the convex hull of the points $x_i + y_j$ $(1 \le i \le l, 1 \le j \le m)$ lies in the convex hull of l+m-1 of them.

Proof. The *direction* of the linear variety in V generated by the *lm* points $x_i + y_j$ is the vector space spanned by all differences $(x_i + y_j) - (x_a + y_\beta) = (x_i - x_a) + (y_j - y_\beta)$. The dimension of this linear variety (i.e. the dimension of its direction) is therefore not more than (l-1)+(m-1) = l+m-2. The result now follows from (3.2).

(3.6) If $x \in D_a$, $y \in D_b$, then $v(x \oplus y) \leq v(x) + v(y) - 1$.

Proof. Since $x \in D_a$, x lies in the convex hull of v(x) permutation matrices x_i (say). Similarly, y lies in the convex hull of v(y) permutation matrices y_j . Let $x = \sum \alpha_i x_i$, $y = \sum \beta_j y_j$, where $\alpha_i, \beta_j \ge 0, \sum \alpha_i = 1, \sum \beta_j = 1$. Then clearly

$$x \oplus y = \sum_{i, j} (\alpha_i \beta_j) (x_i \oplus y_j),$$

so that $x \oplus y$ lies in the convex hull of the permutation matrices

$$x_i \oplus y_j \quad (1 \leq i \leq v(x), 1 \leq j \leq v(y)).$$

The result now follows from (3.5).

For $x \in H(\lambda)$, let $v_{\lambda}(x)$ denote the smallest number of elements of $G(\lambda)$ whose convex hull contains x. When λ has n parts equal to 1, $v_{\lambda}(x)$ coincides with v(x). We prove

(3.7) Let $x \in H(\lambda)$ and suppose that the non-zero ρ_{α} are $\rho_{\alpha_1}, ..., \rho_{\alpha_t}$ ($\alpha_1 > ... > \alpha_t$). Then

$$v_{\lambda}(x) \leq 1 + \sum_{t=1}^{t} (\rho_{a_t} - 1)^2$$

Proof. According to the remarks made at the beginning of this section, the matrix $\xi = e(*\lambda)xe(\lambda^*)$ belongs to $D(\lambda)$, and has the form $\xi = \xi_1 \oplus ... \oplus \xi_i$, where $\xi_i \in D_{\rho_{\alpha_i}}$. Thus, by (3.3), $v(\xi_i) \leq (\rho_{\alpha_i} - 1)^2 + 1$, and by repeated application of (3.6) we have

$$v_{\lambda}(x) = v(\xi) \leq \sum_{i=1}^{t} v(\xi_i) - (t-1) \leq \sum_{i=1}^{t} (\rho_{\alpha_i} - 1)^2 + 1,$$

as required.

Remark. If we suppose in this proof that each ξ_i is indecomposable and that ξ_i has c_i roots of unit modulus, then we can use (3.4) instead of (3.3) and obtain the inequality

(3.8)
$$v_{\lambda}(x) = v(\xi) \leq 1 + \sum_{i=1}^{t} c_i (\rho_{\alpha_i}/c_i - 1)^2.$$

Finally in this section we prove

(3.9) Suppose that x is an indecomposable member of $H(\lambda)$. Then the parts of λ are equal: $\lambda_1 = \ldots = \lambda_k = l$ (say). Furthermore, if x has c roots of unit modulus, then

$$v(x) \leq lc \left(\frac{k}{c}-1\right)^2 + l.$$

RICES 183 permutation π of

We have $x(i,j) = \xi_{ij}e(\lambda_i; \lambda_j)$. If ξ were decomposable, a permutation π of Proof. 1, ..., k and integers β , β' would exist such that $\xi_{\pi i, \pi j} = 0$ whenever $i \leq \beta, j \geq \beta'$. But then $x(\pi i, \pi j) = 0$ for $i \leq \beta, j \geq \beta'$, so that x itself would be decomposable. Thus, if x is indecomposable then ξ is also indecomposable, and in particular the number t occurring in the proof of (3.7) must be 1. Hence $\rho_{\alpha} = 0$ except for one value of α , say $\alpha = l$, and $\rho_{l} = k$. This proves the first assertion. Suppose now in addition that x has exactly c roots of unit modulus. We show that the same is true of ξ , indeed that x and ξ have the same non-zero roots with the same multiplicities. Let R_{α} denote the vector space of all real column matrices with α elements. Then $z \in R_n \to xz \in R_n$ and $y \in R_k \to \xi y \in R_k$ are linear transformations, and it is easy to check that the mapping $y \in R_k \to e(\lambda^*) y \in R$ is an "operator isomorphism" because $e(\lambda^*)\xi = xe(\lambda)^*$. The linear transformation x restricted to the subspace $e(\lambda^*)R_k$ of R_n has therefore the same roots and multiplicities as the matrix ξ . Since $e(\lambda) = e(\lambda^*)e(*\lambda)$ and $e(\lambda^*) = e(\lambda)e(\lambda^*)$, we have $e(\lambda^*)R_k = e(\lambda)R_n$; it follows that R_n is the direct sum of $e(\lambda^*)R_k$ and $(1-e(\lambda))R_n$. But x vanishes on the latter. Hence x and ξ have the same non-zero roots, with the same multiplicities, as asserted. Now we have that $\xi \in D_k$ is indecomposable and has c roots of unit modulus. It follows from (3.4) that $v_{\lambda}(x) = v(\xi) \leq c(k/c-1)^2 + 1$. Now, in this case of equal parts, we have $\lambda_1 = \dots = \lambda_k = l$ and so $x(i, j) = \xi_{ij} e(l; l) = \xi_{ij} e(l)$, that is, $x = \xi \otimes e(l)$, where \otimes denotes the tensor product (or Kronecker product). But obviously $v(e(l)) \leq l$, because e(l) lies in the convex hull of the matrices 1, z, z^2 , ..., z^{l-1} , where z is the $l \times l$ permutation matrix corresponding to the cycle of length *l*, i.e.

This implies that x lies in the convex hull of the matrices $\xi \otimes z^i$ $(0 \le i \le l-1)$, and hence $v(x) \le l[c(k/c-1)^2+1]$, as required.

REFERENCES

1. G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tacumán, Rev. Ser. A, 5 (1946), 147-150.

2. H. G. Eggleston, Convexity (Cambridge, 1958).

3. H. K. Farahat and L. Mirsky, Group membership in rings of various kinds, Math. Z. 70 (1958), 231-244.

4. H. K. Farahat and L. Mirsky, Permutation endomorphisms and a refinement of a theorem of Birkhoff, *Proc. Cambridge Philos. Soc.* 56 (1960), 322–328.

5. M. Marcus, H. Minc and B. Moyls, Some results on non-negative matrices, J. Res. nat. Bur Standards 65 B (1961), 205-209.

6. L. Mirsky, Results and problems in the theory of doubly-stochastic matrices. Z. Wahrscheinlichkeitstheorie 1 (1963), 319-334.

7. Hazel Perfect and L. Mirsky, Spectral properties of doubly-stochastic matrices, *Monatsh.* Math. 69 (1965), 35-57.

8. H. Wielandt, Unzerlegbare nicht-negative Matrizen, Math. Z. 52 (1950), 642-648.

THE UNIVERSITY, SHEFFIELD