THE SEMIGROUP OF DOUBLY-STOCHASTIC MATRICES

by H. K. FARAHAT
(Received 21 July, 1965)

1. Introduction. The set D_{n} of all $n \times n$ doubly-stochastic matrices is a semigroup with respect to ordinary matrix multiplication. This note is concerned with the determination of the maximal subgroups of D_{n}. It is shown that the number of subgroups is finite, that each subgroup is finite and is in fact isomorphic to a direct product of symmetric groups. These results are applied in $\S 3$ to yield information about the least number of permutation matrices whose convex hull contains a given doubly-stochastic matrix.
2. Groups of doubly-stochastic matrices. A square matrix with non-negative real elements is called doubly-stochastic if every row sum and every column sum is equal to unity. The set D_{n} of all $n \times n$ doubly-stochastic matrices is easily seen to be a semigroup with respect to ordinary matrix multiplication. The set P_{n} of all $n \times n$ permutation matrices (i.e. matrices obtained by permuting the columns of the identity matrix 1) is a subgroup of D_{n} which is obviously isomorphic to the symmetric group on n letters. We prove
(2.1) If a matrix and its inverse belong to D_{n}, they belong to P_{n}.

Proof. It is well known that the roots of a doubly-stochastic matrix lie in the closed unit disc. If $x \in D_{n}, x^{-1} \in D_{n}$, then, for every root λ of x we have $|\lambda| \leqq 1$ and $\left|\lambda^{-1}\right| \leqq 1$, and so $|\lambda|=1$. This implies that $x \in P_{n}$ (see Lemma 1 and Theorem 5 of [7]).

For an arbitrary idempotent e of D_{n} we let G_{e} denote the maximal subgroup of D_{n} which contains e (cf. [3, Theorem 1]). When $e=1$, the identity matrix, we have the group G_{1} of all invertible elements of the semigroup D_{n}, i.e. of all invertible matrices of D_{n} whose inverses also belong to D_{n}. It follows from (2.1) that $G_{1}=P_{n}$. We shall determine all subgroups G_{e}.

A mapping of the form $x \rightarrow u^{-1} x u$ defined by a permutation matrix u will be called a cogredience. Such a mapping obviously takes each maximal subgroup G_{e} to an isomorphic group $u^{-1} G_{e} u$, and the maximal subgroups thus fall into various cogrediency classes. In order to determine the structure of the subgroups G_{e} it is sufficient to consider one subgroup from each class. We begin by the determination of the possible idempotents. A matrix which is cogredient to one of the form

$$
\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right)
$$

will be called reducible; otherwise it is called irreducible. It is easily seen that every cogredience maps D_{n} into itself and that a reducible member of D_{n} is decomposable in the sense that b is necessarily also zero. Thus for doubly-stochastic matrices the notions of reducibility and decomposability coincide.
(2.2) If e is an idempotent indecomposable doubly-stochastic $n \times n$ matrix, then every element of e is equal to $1 / n$.

Proof. \dagger The roots of an idempotent matrix e are 1 or 0 , and the number of roots equal to 1 is the rank of e. If e is indecomposable and doubly-stochastic, it follows from the PerronFrobenius theorem on non-negative matrices (cf. [8]) that 1 is a simple root of e and hence that e has rank one. The result now follows easily.

Let us denote the $m \times m$ idempotent matrix all of whose elements are equal to $1 / m$ by $e(m)$. More generally, if $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is any partition of n, i.e. if $n=\lambda_{1}+\ldots+\lambda_{k}$ with $\lambda_{1} \geqq \lambda_{2} \geqq \ldots \geqq \lambda_{k}>0$, let us denote by $e(\lambda)$ the idempotent $n \times n$ matrix which is the direct sum of $e\left(\lambda_{1}\right), \ldots, e\left(\lambda_{k}\right)$:

$$
e(\lambda)=e\left(\lambda_{1}\right) \oplus \ldots \oplus e\left(\lambda_{k}\right) .
$$

Clearly $e(\lambda)$ is an idempotent member of D_{n}, and, according to (2.2), every idempotent is cogredient to some $e(\lambda)$. It is clear that the cogrediency class of $e(\lambda)$ corresponds uniquely to the partition λ (with decreasing parts $\lambda_{1} \geqq \lambda_{2} \geqq \ldots \geqq \lambda_{k}>0$), so that distinct partitions λ yield non-cogredient idempotents $e(\lambda)$. Since P_{n} is finite and the number of partitions of n is also finite, it follows that D_{n} has only a finite number of idempotents. Hence
(2.3) The number of maximal subgroups of D_{n} is finite.

In fact, we can easily determine this number, by computing the number of idempotents cogredient to $e(\lambda)$. There are altogether $n!$ idempotents $u^{-1} e(\lambda) u$ with $u \in P_{n}$, but each is repeated a number of times equal to the number of permutation matrices u which commute with $e(\lambda)$. If the partition λ has ρ_{α} parts equal to $\alpha(1 \leqq \alpha \leqq n)$, then it is easily seen that this number is equal to $\prod_{\alpha}(\alpha!)^{\rho_{\alpha}} \rho_{\alpha}!$. It follows that the number of distinct idempotents in D_{n} is equal to

$$
\sum \frac{n!}{(1!)^{\rho_{1}} \rho_{1}!(2!)^{\rho_{2}} \rho_{2}!\ldots(n!)^{\rho_{n} \rho_{n}!}}
$$

where the sum extends over all partitions $n=\sum \rho_{a} \alpha$ of n.
We now proceed to determine the structure of the maximal group $G(\lambda)=G_{e(\lambda)}$ containing the idempotent $e(\lambda)$, where λ is a fixed partition of n. To this end, let $e(p ; q)$ denote the $p \times q$ matrix all of whose elements are equal to $1 / q$. Thus it is obvious that $e(q ; q)=e(q)$, and it is easily verified that $e(p ; q) e(q ; r)=e(p ; r)$. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is any partition of n, put \ddagger

$$
\begin{aligned}
& e(* \lambda)=e\left(1 ; \lambda_{1}\right) \oplus \ldots \oplus e\left(1 ; \lambda_{k}\right) \\
& e(\lambda *)=e\left(\lambda_{1} ; 1\right) \oplus \ldots \oplus e\left(\lambda_{k} ; 1\right)
\end{aligned}
$$

so that $e(* \lambda)$ has k rows and n columns while $e\left(\lambda^{*}\right)$ has n rows and k columns. The preceding remarks concerning $e(p ; q)$ imply at once that

$$
e(\lambda *) e(* \lambda)=e(\lambda), \quad e(* \lambda) e(\lambda *)=1,
$$

where of course 1 denotes the identity $k \times k$ matrix.
(2.4) If x is an $r \times s$ matrix satisfying $e(r) x=x=x e(s)$, then x is a scalar multiple of $e(r ; s)$.
\dagger I owe this simple proof to Miss Hazel Perfect.
\ddagger The direct sum $a \oplus b$ of rectangular matrices a, b is the matrix given in blocks (of obvious sizes) as follows:

$$
a \oplus b=\left[\frac{a \mid 0}{0 \mid b}\right] .
$$

Proof. The rows (and also the columns) of $e(r)$ are all equal. From $e(r) x=x$ it follows that the rows of x are all equal. Similarly, from $x=x e(s)$ we deduce that all the columns of x are equal and hence that all the elements of x are equal. The result follows.

Now let $x \in G(\lambda)$, and partition x into blocks corresponding to the equation

$$
n=\lambda_{1}+\ldots+\lambda_{k} .
$$

Let $x(i, j)$ denote the block in the i th horizontal and j th vertical strips. From the relations $e(\lambda) x=x=x e(\lambda)$, which are valid because $e(\lambda)$ is the neutral element of $G(\lambda)$, we conclude that

$$
e\left(\lambda_{i}\right) x(i, j)=x(i, j)=x(i, j) e\left(\lambda_{j}\right)
$$

for all i, j. It follows from (2.4) that

$$
x(i, j)=\xi_{i j} e\left(\lambda_{i} ; \quad \lambda_{j}\right), \quad(1 \leqq i, j \leqq k)
$$

where ξ is a suitable non-negative $k \times k$ matrix. We shall prove, in fact, that ξ is a permutation matrix. Note firstly that

$$
x(i, j)=e\left(\lambda_{i} ; 1\right) \xi_{i j} e\left(1 ; \lambda_{j}\right)
$$

whence

$$
\begin{equation*}
x=e(\lambda *) \xi e(* \lambda), \quad \xi=e(* \lambda) x e(\lambda *) \tag{2.5}
\end{equation*}
$$

Now each of $e(* \lambda), x, e\left(\lambda^{*}\right)$ is clearly row-stochastic (i.e. all row sums are equal to unity). It follows that ξ itself is row-stochastic. Observe secondly that the mapping $x \rightarrow \xi$ is a multiplicative homomorphism. Thus, if y denotes the inverse of x in $G(\lambda)$, and $\eta=e(* \lambda) y e(\lambda *)$, then we have

$$
\begin{aligned}
\xi \eta & =e(* \lambda) x e(\lambda *) e(* \lambda) y e(\lambda *)=e(* \lambda) x e(\lambda) y e(\lambda *) \\
& =e(* \lambda) x y e(\lambda *)=e(* \lambda) e(\lambda *) e(* \lambda) e(\lambda *)=1
\end{aligned}
$$

and similarly $\eta \xi=1$. This means that ξ, η are both non-negative row-stochastic matrices and $\xi=\eta^{-1}$. It follows by an argument similar to that used in the proof of (2.1) that both ξ and η are permutation matrices (cf. the proof of Theorem 5 in [7], where the argument clearly applies to row-stochastic matrices.) We shall however indicate this proof briefly. The function

$$
\|z\|=\max _{i} \sum_{j}\left|z_{i j}\right|
$$

is a matrix norm \dagger, and every row-stochastic matrix has unit norm: $\|\xi\|=\|\eta\|=1$. But, for any matrix norm, we have $\|z\| \geqq|\alpha|$ for every root α of z. It now follows that ξ and $\eta=\xi^{-1}$ have all their roots on the unit circle. But Schur's inequality states that the sum of the squares of the moduli of the roots of a matrix does not exceed the sum of the squares of the moduli of the elements. Hence

$$
k \leqq \sum_{i, j}\left|\xi_{i j}\right|^{2}=\sum_{i, j} \xi_{i j}^{2} \leqq \sum_{i}\left(\sum_{j} \xi_{i j}\right)=k,
$$

\dagger The axioms for a matrix norm are
(i) $\|z\|>0$ for $z \neq 0$,
(ii) $\left\|z^{\prime}+z^{\prime \prime}\right\| \leqq\left\|z^{\prime}\right\|+\left\|z^{\prime \prime}\right\|$,
(iii) $\|z w\| \leqq\|z\|\|w\|$,
(iv) $\|\lambda z\|=|\lambda|\|z\|$.

They clearly imply that $\|z\| \geqq|\alpha|$ whenever $z x=\alpha x, x \neq 0$.
since $\xi_{i j}^{2} \leqq \xi_{i j}$, and hence equality holds throughout, so that $\xi_{i j}^{2}=\xi_{i j}$ for all i, j and ξ is a permutation matrix.

We have now established that, for every $x \in G(\lambda)$, the matrix $\xi=e(* \lambda) x e(\lambda *)$ is a permutation matrix. We can say more about ξ however. As before, let λ stand for the row $\left(\lambda_{1}, \ldots ; \lambda_{k}\right)$. Then clearly $\lambda e(* \lambda)=(1,1, \ldots, 1)$, and because x is doubly-stochastic we find that

$$
\lambda \xi=(1, \ldots, 1) e(\lambda *)=\lambda .
$$

Of course, ξ is a permutation matrix, and the elements of λ are positive integers. As before, suppose that ρ_{α} of these elements are equal to α. The equation $\lambda \xi=\lambda$ then implies that ξ belongs to $P(\lambda)=P_{\rho_{n}} \oplus P_{\rho_{n-1}} \oplus \ldots \oplus P_{\rho_{1}}$, i.e., that ξ is the direct sum of permutation matrices of degrees $\rho_{n}, \rho_{n-1}, \ldots, \rho_{1}$ (obviously terms with $\rho_{\alpha}=0$ are to be ignored). Conversely, it is plain that, if $\xi \in P(\lambda)$, then $x=e(\lambda *) \xi e(* \lambda)$ belongs to the group $e(\lambda *) P(\lambda) e(* \lambda)$, which must be $G(\lambda)$ because it contains $e(\lambda *) e(* \lambda)=e(\lambda)$. We have therefore proved the following:
(2.6) Theorem. For any partition λ of n, the mapping

$$
x \in G(\lambda) \rightarrow \xi \in P(\lambda),
$$

where $\xi=e(* \lambda) x e(\lambda *)$, is a group isomorphism. In particular $G(\lambda)$ is a finite group of order $\rho_{1}!\ldots \rho_{n}!$.

Note that, when λ is the partition of n into n parts (each equal to 1), $e(\lambda)$ is the identity matrix 1 and $G(\lambda)$ is the group P_{n} of all $n \times n$ permutation matrices.
3. An application. Since the mappings $x \rightarrow \xi, \xi \rightarrow x$ described above are both linear, they establish an isomorphism between the convex hull $H(\lambda)$ of the elements of the group $G(\lambda)$ and the convex hull of the group $P(\lambda)$. Of course both of these are semigroups. It is well known that the convex hull of P_{n} is D_{n} (this is Birkhoff's theorem; cf. [1]). Thus the convex hull of $P(\lambda)=P_{\rho_{n}} \oplus P_{\rho_{n-1}} \oplus \ldots \oplus P_{\rho_{1}}$ is simply $D(\lambda)=D_{\rho_{n}} \oplus D_{\rho_{n-1}} \oplus \ldots \oplus D_{\rho_{1}}$. Thus we have
(3.1) The semigroup $H(\lambda)$ is isomorphic with $D(\lambda)$.

In this section we are interested in the least number $v(x)$ of permutation matrices whose convex hull contains a given doubly-stochastic matrix x. For a review of what is known about $v(x)$, see $[6, \mathrm{p} .324,325]$. The main tool in giving an upper estimate for $v(x)$ is a theorem of Carathéodory (cf. [2, p. 35]), which may be stated in the following form (see also [4, Lemma 6]):
(3.2) (Carathéodory). Let Xbe a finite subset of a linear variety of dimension d. Then every point of the convex hull of X lies in the convex hull of $d+1$ suitable points of X. The number $d+1$ is best possible.

It is evident that D_{n} is contained in a linear variety of dimension $(n-1)^{2}$, and therefore the above theorem gives the estimate

$$
\begin{equation*}
v(x) \leqq(n-1)^{2}+1 \tag{3.3}
\end{equation*}
$$

If no further information is given concerning x, this estimate is best possible. However, an estimate is obtained in [5] for indecomposable x, namely

$$
\begin{equation*}
v(x) \leqq c\left(\frac{n}{c}-1\right)^{2}+1 \tag{3.4}
\end{equation*}
$$

where c denotes the number of roots of x of unit modulus. We shall obtain a bound for $v(x)$, given that $x \in H(\lambda)$.
(3.5) Let $x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{m}$ be elements of a real vector space V. Then every point in the convex hull of the points $x_{i}+y_{j}(1 \leqq i \leqq l, 1 \leqq j \leqq m)$ lies in the convex hull of $l+m-1$ of them.

Proof. The direction of the linear variety in V generated by the $l m$ points $x_{i}+y_{j}$ is the vector space spanned by all differences $\left(x_{i}+y_{j}\right)-\left(x_{\alpha}+y_{\beta}\right)=\left(x_{i}-x_{\alpha}\right)+\left(y_{j}-y_{\beta}\right)$. The dimension of this linear variety (i.e. the dimension of its direction) is therefore not more than $(l-1)+(m-1)=l+m-2$. The result now follows from (3.2).
(3.6) If $x \in D_{a}, y \in D_{b}$, then $v(x \oplus y) \leqq v(x)+v(y)-1$.

Proof. Since $x \in D_{a}, x$ lies in the convex hull of $v(x)$ permutation matrices x_{i} (say). Similarly, y lies in the convex hull of $v(y)$ permutation matrices y_{j}. Let $x=\sum \alpha_{i} x_{i}, y=\sum \beta_{j} y_{j}$, where $\alpha_{i}, \beta_{j} \geqq 0, \sum \alpha_{i}=1, \sum \beta_{j}=1$. Then clearly

$$
x \oplus y=\sum_{i, j}\left(\alpha_{i} \beta_{j}\right)\left(x_{i} \oplus y_{j}\right),
$$

so that $x \oplus y$ lies in the convex hull of the permutation matrices

$$
x_{i} \oplus y_{j} \quad(1 \leqq i \leqq v(x), 1 \leqq j \leqq v(y))
$$

The result now follows from (3.5).
For $x \in H(\lambda)$, let $v_{\lambda}(x)$ denote the smallest number of elements of $G(\lambda)$ whose convex hull contains x. When λ has n parts equal to $1, v_{\lambda}(x)$ coincides with $v(x)$. We prove
(3.7) Let $x \in H(\lambda)$ and suppose that the non-zero ρ_{α} are $\rho_{\alpha_{1}}, \ldots, \rho_{\alpha_{1}}\left(\alpha_{1}>\ldots>\alpha_{1}\right)$. Then

$$
v_{\lambda}(x) \leqslant 1+\sum_{i=1}^{t}\left(\rho_{\alpha_{t}}-1\right)^{2}
$$

Proof. According to the remarks made at the beginning of this section, the matrix $\xi=e(* \lambda) x e\left(\lambda^{*}\right)$ belongs to $D(\lambda)$, and has the form $\xi=\xi_{1} \oplus \ldots \oplus \xi_{t}$, where $\xi_{i} \in D_{\rho_{a_{i}}}$. Thus, by (3.3), $v\left(\xi_{i}\right) \leqq\left(\rho_{a_{i}}-1\right)^{2}+1$, and by repeated application of (3.6) we have

$$
v_{\lambda}(x)=v(\xi) \leqq \sum_{i=1}^{t} v\left(\xi_{i}\right)-(t-1) \leqq \sum_{i=1}^{t}\left(\rho_{\alpha_{i}}-1\right)^{2}+1
$$

as required.
Remark. If we suppose in this proof that each ξ_{i} is indecomposable and that ξ_{i} has c_{i} roots of unit modulus, then we can use (3.4) instead of (3.3) and obtain the inequality

$$
\begin{equation*}
v_{\lambda}(x)=v(\xi) \leqq 1+\sum_{i=1}^{t} c_{i}\left(\rho_{a_{i}} / c_{i}-1\right)^{2} \tag{3.8}
\end{equation*}
$$

Finally in this section we prove
(3.9) Suppose that x is an indecomposable member of $H(\lambda)$. Then the parts of λ are equal: $\lambda_{1}=\ldots=\lambda_{k}=l($ say $)$. Furthermore, if x has c roots of unit modulus, then

$$
v(x) \leqq l c\left(\frac{k}{c}-1\right)^{2}+l .
$$

Proof. We have $x(i, j)=\xi_{i j} e\left(\lambda_{i} ; \lambda_{j}\right)$. If ξ were decomposable, a permutation π of $1, \ldots, k$ and integers β, β^{\prime} would exist such that $\xi_{n i, \pi j}=0$ whenever $i \leqq \beta, j \geqq \beta^{\prime}$. But then $x(\pi i, \pi j)=0$ for $i \leqq \beta, j \geqq \beta^{\prime}$, so that x itself would be decomposable. Thus, if x is indecomposable then ξ is also indecomposable, and in particular the number t occurring in the proof of (3.7) must be 1. Hence $\rho_{\alpha}=0$ except for one value of α, say $\alpha=l$, and $\rho_{l}=k$. This proves the first assertion. Suppose now in addition that x has exactly c roots of unit modulus. We show that the same is true of ξ, indeed that x and ξ have the same non-zero roots with the same multiplicities. Let R_{α} denote the vector space of all real column matrices with α elements. Then $z \in R_{n} \rightarrow x z \in R_{n}$ and $y \in R_{k} \rightarrow \xi y \in R_{k}$ are linear transformations, and it is easy to check that the mapping $y \in R_{k} \rightarrow e(\lambda *) y \epsilon_{n} R$ is an " operator isomorphism " because $e\left(\lambda^{*}\right) \xi=x e(\lambda)$. The linear transformation x restricted to the subspace $e(\lambda *) R_{k}$ of R_{n} has therefore the same roots and multiplicities as the matrix ξ. Since $e(\lambda)=e(\lambda *) e(* \lambda)$ and $e(\lambda *)=e(\lambda) e\left(\lambda^{*}\right)$, we have $e\left(\lambda^{*}\right) R_{k}=e(\lambda) R_{n}$; it follows that R_{n} is the direct sum of $e\left(\lambda^{*}\right) R_{k}$ and (1-e($\left.\left.\lambda\right)\right) R_{n}$. But x vanishes on the latter. Hence x and ξ have the same non-zero roots, with the same multiplicities, as asserted. Now we have that $\xi \in D_{k}$ is indecomposable and has c roots of unit modulus. It follows from (3.4) that $v_{\lambda}(x)=v(\xi) \leqq c(k / c-1)^{2}+1$. Now, in this case of equal parts, we have $\lambda_{1}=\ldots=\lambda_{k}=l$ and so $x(i, j)=\xi_{i j} e(l ; l)=\xi_{i j} e(l)$, that is, $x=\xi \otimes e(l)$, where \otimes denotes the tensor product (or Kronecker product). But obviously $v(e(l)) \leqq l$, because $e(l)$ lies in the convex hull of the matrices $1, z, z^{2}, \ldots, z^{i-1}$, where z is the $l \times l$ permutation matrix corresponding to the cycle of length l, i.e.

$$
z=\left(\begin{array}{cccccc}
0 & 1 & 0 & . & . & 0 \\
0 & 0 & 1 & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & . & . & . & 0 & 1 \\
1 & 0 & . & . & 0 & 0
\end{array}\right)
$$

This implies that x lies in the convex hull of the matrices $\xi \otimes z^{i}(0 \leqq i \leqq l-1)$, and hence $v(x) \leqq l\left[c(k / c-1)^{2}+1\right]$, as required.

REFERENCES

1. G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tacumán, Rev. Ser. A, 5 (1946), 147-150.
2. H. G. Eggleston, Convexity (Cambridge, 1958).
3. H. K. Farahat and L. Mirsky, Group membership in rings of various kinds, Math. Z. 70 (1958), 231-244.
4. H. K. Farahat and L. Mirsky, Permutation endomorphisms and a refinement of a theorem of Birkhoff, Proc. Cambridge Philos. Soc. 56 (1960), 322-328.
5. M. Marcus, H. Minc and B. Moyls, Some results on non-negative matrices, J. Res. nat. Bur Standards 65 B (1961), 205-209.
6. L. Mirsky, Results and problems in the theory of doubly-stochastic matrices. Z. Wahrscheinlichkeitstheorie 1 (1963), 319-334.
7. Hazel Perfect and L. Mirsky, Spectral properties of doubly-stochastic matrices, Monatsh. Math. 69 (1965), 35-57.
8. H. Wielandt, Unzerlegbare nicht-negative Matrizen, Math. Z. 52 (1950), 642-648.

The University, Sheffield

