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1. Introduction. The set Dn of all nxn doubly-stochastic matrices is a semigroup with
respect to ordinary matrix multiplication. This note is concerned with the determination of
the maximal subgroups of Dn. It is shown that the number of subgroups is finite, that each
subgroup is finite and is in fact isomorphic to a direct product of symmetric groups. These
results are applied in § 3 to yield information about the least number of permutation matrices
whose convex hull contains a given doubly-stochastic matrix.

2. Groups of doubly-stochastic matrices. A square matrix with non-negative real elements is
called doubly-stochastic if every row sum and every column sum is equal to unity. The set Dn

of all nxn doubly-stochastic matrices is easily seen to be a semigroup with respect to ordinary
matrix multiplication. The set Pn of all n x n permutation matrices (i.e. matrices obtained by
permuting the columns of the identity matrix 1) is a subgroup of Dn which is obviously iso-
morphic to the symmetric group on n letters. We prove

(2.1) If a matrix and its inverse belong to Dn, they belong to Pn.

Proof. It is well known that the roots of a doubly-stochastic matrix lie in the closed unit
disc. If xe Dn, x~l e Dn, then, for every root X of x we have | A | ^ 1 and | A"1 | ^ 1, and so
| A | = 1. This implies that x e Pn (see Lemma 1 and Theorem 5 of [7]).

For an arbitrary idempotent e of Dn we let Ge denote the maximal subgroup of Dn which
contains e (cf. [3, Theorem 1]). When e = 1, the identity matrix, we have the group Gl of all
invertible elements of the semigroup Dn, i.e. of all invertible matrices of Dn whose inverses
also belong to Dn. It follows from (2.1) that Gt = Pn. We shall determine all subgroups Ge.

A mapping of the form x-*u~1xu defined by a permutation matrix u will be called a
cogredience. Such a mapping obviously takes each maximal subgroup Ge to an isomorphic
group u~lGeu, and the maximal subgroups thus fall into various cogrediency classes. In order
to determine the structure of the subgroups Ge it is sufficient to consider one subgroup from
each class. We begin by the determination of the possible idempotents. A matrix which is
cogredient to one of the form

0\

will be called reducible; otherwise it is called irreducible. It is easily seen that every cogredience
maps Dn into itself and that a reducible member of Dn is decomposable in the sense that b is
necessarily also zero. Thus for doubly-stochastic matrices the notions of reducibility and
decomposability coincide.

(2.2) Ife is an idempotent indecomposable doubly-stochastic nxn matrix, then every element of e
is equal to \jn.
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Proofs The roots of an idempotent matrix e are 1 or 0, and the number of roots equal to
1 is the rank of e. If e is indecomposable and doubly-stochastic, it follows from the Perron-
Frobenius theorem on non-negative matrices (cf. [8]) that 1 is a simple root of e and hence that
e has rank one. The result now follows easily.

Let us denote the mxm idempotent matrix all of whose elements are equal to 1/w by
e(m). More generally, if A = (Xu ..., Xk) is any partition of n, i.e. if n = At+ ... + Xk with
Aj 2: X2 S; ... ^ Xk > 0, let us denote by e(X) the idempotent nxn matrix which is the direct
sum of e ^ ) , ...,e(Xk):

Clearly e(A) is an idempotent member of Dn, and, according to (2.2), every idempotent is
cogredient to some e(A). It is clear that the cogrediency class of e(A) corresponds uniquely to
the partition A (with decreasing parts At ^ A2 ^ ... ^ Xk > 0), so that distinct partitions A
yield non-cogredient idempotents e(A). Since Pn is finite and the number of partitions of n is
also finite, it follows that Dn has only a finite number of idempotents. Hence

(2.3) The number of maximal subgroups of Dn is finite.
In fact, we can easily determine this number, by computing the number of idempotents

cogredient to e(A). There are altogether n! idempotents M~1e(A)« with uePn, but each is
repeated a number of times equal to the number of permutation matrices u which commute
with e(A). If the partition A has pa parts equal to a (1 ^ a ^ n), then it is easily seen that this
number is equal to ]~[ (a!)p"pa!. It follows that the number of distinct idempotents in Dn is
equal to "

where the sum extends over all partitions n = £p a a of n.
We now proceed to determine the structure of the maximal group G(X) = GeW containing

the idempotent e(A), where A is a fixed partition of n. To this end, let e(p; q) denote the pxq
matrix all of whose elements are equal to l/q. Thus it is obvious that e(q; q) = e{q), and it is
easily verified that e(p; q)e(q; r) = e(p; r). If A = (At, ..., Xk) is any partition of n, putj

e(A*) = e(Ai; 1 ) 0 . . . © e(A,; 1),

so that e(*A) has k rows and n columns while e(A*) has« rows and k columns. The preceding
remarks concerning e(p; q) imply at once that

e(X*)e(*X) = e(X), e(*X)e(X*) = 1,

where of course 1 denotes the identity kxk matrix.

(2.4) If x is an rxs matrix satisfying e(r)x = x = xe(s), then x is a scalar multiple of e(r; s).

11 owe this simple proof to Miss Hazel Perfect.
t The direct sum a © b of rectangular matrices a, b is the matrix given in blocks (of obvious sizes) as follows:
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Proof. The rows (and also the columns) of e(r) are all equal. From e(r)x = x it follows
that the rows of x are all equal. Similarly, from x = xe(s) we deduce that all the columns of x
are equal and hence that all the elements of x are equal. The result follows.

Now let x e G(X), and partition x into blocks corresponding to the equation

« = Aj+ ... + Xk.

Let x(ij) denote the block in the /th horizontal andyth vertical strips. From the relations
e(X)x = x = xe(X), which are valid because e(X) is the neutral element of G(X), we conclude
that

e(A;M'">./) = x(i,j) = x(i,j)e(Xj)

for all i,j. It follows from (2.4) that

x(i,j)=tiJe(Xi; Xj), (IZiJZk),

where £ is a suitable non-negative k x k matrix. We shall prove, in fact, that £ is a permutation
matrix. Note firstly that

x{i,j) = e(Xt; l)«,yc(l; Xj),
whence

(2.5) x = e{X*)&{*X), { = e{*X)xe{X*).

Now each of e(*X), x, e(X*) is clearly row-stochastic (i.e. all row sums are equal to unity). It
follows that t, itself is row-stochastic. Observe secondly that the mapping x -> I, is a multi-
plicative homomorphism. Thus, if y denotes the inverse of x in G(X), and r\ — e(*X)ye(X*),
then we have

ft, = e(*X)xe(X*)e(*X)ye(X*) = e(*X)xe(X)ye(X*)

= e(*X)xye(X*) = e(*X)e(X*)e(*X)e(X*) = 1,

and similarly r\t, = 1. This means that £, r\ are both non-negative row-stochastic matrices and
£, = >/-1. It follows by an argument similar to that used in the proof of (2.1) that both £ and
t\ are permutation matrices (cf. the proof of Theorem 5 in [7], where the argument clearly applies
to row-stochastic matrices.) We shall however indicate this proof briefly. The function

|| z | | = max £ | z y |

is a matrix normf, and every row-stochastic matrix has unit norm: | | ^ | | = | | J J | | = 1. But,
for any matrix norm, we have || z || _ | a | for every root a of z. It now follows that £ and
i\ = <^-1 have all their roots on the unit circle. But Schur's inequality states that the sum of the
squares of the moduli of the roots of a matrix does not exceed the sum of the squares of the
moduli of the elements. Hence

u
t The axioms for a matrix norm are

(i) | | z | | > O f o r z * 0 , (ii) | | z ' + z " | | S |
(iii) | | Z H > | | S | | Z | | | M I , (iv) ||Az|| = | A |

They clearly imply that || z \\ S | a \ whenever zx=ax, x ^ 0.

https://doi.org/10.1017/S2040618500035401 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035401


THE SEMIGROUP OF DOUBLY-STOCHASTIC MATRICES 181

since £?• ̂  £fJ-, and hence equality holds throughout, so that <!;?• = £tJ for all i,j and £ is a
permutation matrix.

We have now established that, for every x e G(X), the matrix £, = e[*X)xe(X*) is a permuta-
tion matrix. We can say more about £ however. As before, let X stand for the row (Xt, ...; Xk).
Then clearly Xe(*X) = (1, 1, ..., 1), and because x is doubly-stochastic we find that

« = (1, ..., l)e(X*) = X.

Of course, £, is a permutation matrix, and the elements of X are positive integers. As before,
suppose that px of these elements are equal to a. The equation XI, = X then implies that £
belongs to P(X) = PPn © PPn_, © ... © Ppi, i.e., that t, is the direct sum of permutation matrices
of degrees pn, pn_, , ..., p , (obviously terms with px = 0 are to be ignored). Conversely, it is
plain that, if £, e P(A), then x = e(X*)&(*X) belongs to the group e(X*)P(X)e(*X), which must be
G(X) because it contains e(A*)e(*A) = e(X). We have therefore proved the following:

(2.6) THEOREM. For any partition X of n, the mapping

where t; = e(*X)xe(X*), is a group isomorphism. In particular G(X) is a finite group of order

Pll...pnl
Note that, when X is the partition of n into n parts (each equal to 1), e(X) is the identity

matrix 1 and G(X) is the group Pn of all n x n permutation matrices.

3. An application. Since the mappings x ->^, i -* x described above are both linear, they
establish an isomorphism between the convex hull H{X) of the elements of the group G(X) and
the convex hull of the group P(X). Of course both of these are semigroups. It is well known
that the convex hull of Pn is Dn (this is Birkhoff's theorem; cf. [1]). Thus the convex hull of
P(X) = PPn © PPn_t © ... © PP1 is simply D(X) = DPn © DPn_t © ... © Dpi. Thus we have

(3.1) The semigroup H(X) is isomorphic with D{X).
In this section we are interested in the least number v(x) of permutation matrices whose

convex hull contains a given doubly-stochastic matrix x. For a review of what is known about
v(x), see [6, p. 324, 325]. The main tool in giving an upper estimate for v(x) is a theorem of
Caratheodory (cf. [2, p. 35]), which may be stated in the following form (see also [4, Lemma
6]):

(3.2) (Caratheodory). Let Xbe a finite subset of a linear variety of dimension d. Then every point
of the convex hull of X lies in the convex hull ofd+1 suitable points of X. The number d+l is
best possible.

It is evident that Dn is contained in a linear variety of dimension (« — I)2, and therefore the
above theorem gives the estimate

(3.3) v ( x ) g ( « - l ) 2 + l.

If no further information is given concerning x, this estimate is best possible. However, an
estimate is obtained in [5] for indecomposable x, namely

(3.4) v(x)^c(-c-lj +1,
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where c denotes the number of roots of JC of unit modulus. We shall obtain a bound for
v(x), given that x e H(X).

(3.5) Let xu ...,x,,yu ...,ym be elements of a real vector space V. Then every point in the
convex hull of the points Xi+yj (I g / ^ / , 1 g j ^ m) lies in the convex hull of I+m — \ of them.

Proof. The direction of the linear variety in V generated by the Im points xt+yj is the
vector space spanned by all differences (xt+yj) — (xa+y^) = (xt—xa) + (yj—yp). The dimension
of this linear variety (i.e. the dimension of its direction) is therefore not more than
( / - l) + (m-1) = l+m-2. The result now follows from (3.2).

(3.6) IfxeDa,ye Db, then v(x ©y) ^ v(x) + v(y)-l.

Proof Since x e Da, x lies in the convex hull of v(x) permutation matrices JC, (say).
Similarly, y lies in the convex hull of v(y) permutation matrices yj. Let x = £ a,*,, y =
where a;, /?,- ^ 0, J] af = 1, £/?,- = 1. Then clearly

so that x © y lies in the convex hull of the permutation matrices

The result now follows from (3.5).
For x e H(X), let vA (x) denote the smallest number of elements of G(A) whose convex hull

contains x. When A has n parts equal to 1, vx(x) coincides with v(x). We prove

(3.7) Let x e H{X) and suppose that the non-zero px are pXl pai (ax > ... > a(). Then

v»<l+£(/>„,-1)2.

Proof. According to the remarks made at the beginning of this section, the matrix
£ = e(*X)xe(X*) belongs to D(X), and has the form f = ^ © ... © £t, where £, e DPa. Thus, by
(3.3), v(<̂ ,) ̂  (pai — I)2 +1> an<l by repeated application of (3.6) we have

as required.

Remark. If we suppose in this proof that each ^ is indecomposable and that f, has c, roots
of unit modulus, then we can use (3.4) instead of (3.3) and obtain the inequality

(3-8) vA(x) = v ( O ^ l + E c i ( p a i / c i - l ) 2 .
f = i

Finally in this section we prove

(3.9) Suppose that x is an indecomposable member of H(X). Then the parts of X are equal:
At = ... = Xk = / (say). Furthermore, ifx has c roots of unit modulus, then
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Proof. We have x(i,j) = fye(A,; Xf). If £ were decomposable, a permutation jt of
1, ..., k and integers p, /?' would exist such that <!;„,_ „; = 0 whenever j g /?, j ^ /?'. But then
x(n/, Jty) = 0 for i ^p,j ^. /}', so that x itself would be decomposable. Thus, if x is indecom-
posable then £ is also indecomposable, and in particular the number t occurring in the proof of
(3.7) must be 1. Hence pa = 0 except for one value of a, say a = /, and p, = k. This proves
the first assertion. Suppose now in addition that x has exactly c roots of unit modulus. We
show that the same is true of £, indeed that x and f have the same non-zero roots with the same
multiplicities. Let Ra denote the vector space of all real column matrices with a elements.
Then z e Rn -* xz e Rn and yeRk-*£yeRk are linear transformations, and it is easy to check
that the mapping yeRk -*• e(X*)yenRis a n " operator isomorphism " because e(X*)£ = xe(X)*.
The linear transformation x restricted to the subspace e(X*)Rk of Rn has therefore the same
roots and multiplicities as the matrix £. Since e(X) = e(X*)e(*X) and e(X*) = e(X)e(X*), we
have e{X*)Rk = e(X)Rn; it follows that Rn is the direct sum of e(X*)Rk and (1 - e(X))Rn. But x
vanishes on the latter. Hence x and £ have the same non-zero roots, with the same multiplicities,
as asserted. Now we have that £, e Dk is indecomposable and has c roots of unit modulus. It
follows from (3.4) that vx(x) =v(£) ^ c(k/c—l)2 + l. Now, in this case of equal parts, we have
X{ = ... = Xk = / and so x(i,j) = £ye(/; /) = £ije(l), that is, *=<!; ® e(/), where ® denotes the
tensor product (or Kronecker product). But obviously v(e(/)) ^ /, because e(l) lies in the
convex hull of the matrices 1, z, z2, ..., z'"1, where z is the / x / permutation matrix correspond-
ing to the cycle of length /, i.e.

0
0

1
0

0 .
1 .

. 0

. 0

0 . . . 0 1
. 1 0 . . 0 0,

This implies that x lies in the convex hull of the matrices £ (g) z' (0 ^ / g / - 1 ) , and hence
V(AT) g /[c(/r /c-l)2 + l ] , as required.

REFERENCES
1. G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tacumdn, Rev. Ser. A, 5

(1946), 147-150.
2. H. G. Eggleston, Convexity (Cambridge, 1958).
3. H. K. Farahat and L. Mirsky, Group membership in rings of various kinds, Math. Z. 70

(1958), 231-244.
4. H. K. Farahat and L. Mirsky, Permutation endomorphisms and a refinement of a theorem of

Birkhoff, Proc. Cambridge Philos. Soc. 56 (1960), 322-328.
5. M. Marcus, H. Mine and B. Moyls, Some results on non-negative matrices, / . Res. nat. Bur

Standards 65 B (1961), 205-209.
6. L. Mirsky, Results and problems in the theory of doubly-stochastic matrices. Z. Wahrschein-

Uchkeitstheorie 1 (1963), 319-334.
7. Hazel Perfect and L. Mirsky, Spectral properties of doubly-stochastic matrices, Monatsh.

Math. 69 (1965), 35-57.
8. H. Wielandt, Unzerlegbare nicht-negative Matrizen, Math. Z. 52 (1950), 642-648.

THE UNIVERSITY, SHEFFIELD

https://doi.org/10.1017/S2040618500035401 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035401

