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Modular Abelian Varieties Over
Number Fields
Xavier Guitart and Jordi Quer

Abstract. The main result of this paper is a characterization of the abelian varieties B/K defined over
Galois number fields with the property that the L-function L(B/K; s) is a product of L-functions of
non-CM newforms over Q for congruence subgroups of the form Γ1(N). The characterization in-
volves the structure of End(B), isogenies between the Galois conjugates of B, and a Galois cohomology
class attached to B/K.

We call the varieties having this property strongly modular. The last section is devoted to the study
of a family of abelian surfaces with quaternionic multiplication. As an illustration of the ways in which
the general results of the paper can be applied, we prove the strong modularity of some particular
abelian surfaces belonging to that family, and we show how to find nontrivial examples of strongly
modular varieties by twisting.

1 Introduction

We will work in the category of abelian varieties up to isogeny, in which the objects
are abelian varieties, and the morphisms between two varieties A and B are the el-
ements of the Q-vector space Hom0(A,B) := Q ⊗Z Hom(A,B), where Hom(A,B)
denotes the usual Z-module of homomorphisms between abelian varieties. In par-
ticular, isogenies become isomorphisms in our category. We will use the standard
Hom,End, and Aut to denote morphisms up to isogeny (we will suppress the su-
perscripts to lighten the notation). As usual, a field as an index means morphisms
defined over that field. The notation A ∼ B will indicate that the abelian varieties
A and B are isogenous, and A ∼K B will indicate that they are isogenous with an
isogeny defined over the field K.

Let f =
∑

anqn be a weight-two newform for the congruence subgroup Γ1(N),
and let E f = Q({an}) be the number field generated by its Fourier coefficients.
Shimura attaches to f an abelian variety A f defined over Q , constructed as a sub-
variety of the Jacobian J1(N) of the modular curve X1(N). The variety A f has di-
mension equal to the degree [E f : Q], the algebra EndQ (A f ) of its endomorphisms
defined over Q is isomorphic to the number field E f , and the L-function L(A f /Q ; s)
is equivalent (i.e., coincides up to a finite number of Euler factors) with the product∏

L(σ f ; s) of the L-functions of the Galois conjugates of the form f [19, Section 7.5].
The abelian varieties A f and, more generally, all abelian varieties A/Q that are

isogenous over Q to A f for some f are known as modular abelian varieties. This
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modularity property has many important consequences and applications, for exam-
ple:

• modularity implies the Hasse conjecture for the L-function L(A/Q ; s);
• the theory of Heegner points and results by Gross–Zagier and Kolyvagin produce

partial results for the variety A/Q in the direction of the Birch and Swinnerton-
Dyer conjecture;

• the modularity of Frey’s elliptic curves can be used to solve certain Diophantine
equations of Fermat type.

As a result, modular abelian varieties have been intensively studied and exploited in
the last decades. In practice, one can easily compute and work with modular forms
and the corresponding modular abelian varieties thanks to the powerful tool pro-
vided by the theory of modular symbols; see [3] for elliptic curves and [20] for arbi-
trary dimension. The computer systems Magma and Sage include packages that are
able to perform many explicit computations with those objects.

In the other direction, one would like to characterize the modularity of a given
variety A/Q . In the one-dimensional case, the Shimura–Taniyama conjecture pre-
dicted that every elliptic curve over Q is modular, and its proof was completed in
[2] by Breuil, Conrad, Diamond, and Taylor, using generalizations and variants of
the ideas and techniques of Wiles [22] and Taylor–Wiles [21]. In [18] Ribet intro-
duced the concept of a variety of GL2-type as an abelian variety A/Q for which
EndQ (A) is a number field of degree equal to the dimension of A. He generalized
Shimura–Taniyama by conjecturing that every variety of GL2-type is modular over
Q and proved that this fact would be a consequence of Serre’s conjecture on the mod-
ularity of 2-dimensional mod p Galois representations [18, Theorem 4.4]. After the
proof of Serre’s conjecture by Khare and Wintenberger [9, Theorem 9.1], we now
know that modularity of an abelian variety over Q is equivalent to the property of
being of GL2-type.

The abelian varieties of GL2-type are not absolutely simple in general; they factor
up to isogeny as products of varieties defined over number fields. After some work
done by Elkies in the one-dimensional case and by Ribet in general, Pyle [13] gave
a characterization of the abelian varieties defined over number fields that appear in
the absolute decomposition of abelian varieties of GL2-type, which depends on the
structure of their endomorphism algebras and on the existence of isogenies between
their Galois conjugates. She uses the name building blocks for them (also known as
elliptic Q-curves in the one-dimensional case) and generalizes the use of the term
modular abelian variety to refer to an abelian variety B/K defined over a number
field K that is isogenous to a factor of some A f . In this sense, Ribet’s generalization
of the Shimura–Taniyama conjecture predicts that building blocks and absolutely
simple modular abelian varieties are the same up to isogeny, and now, after the work
of Khare and Wintenberger, this is known to be a fact.

In this way one gets a new family of abelian varieties defined over number fields
and is tempted to use their modularity in the same way as was done over Q . But the
key property of modularity that is used for many of the applications is the relation
of the L-function of the variety with modular forms, and this property is invariant
only by isogeny defined over the base field. Hence, to use modularity in the context
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of abelian varieties over number fields, it is natural to single out a class of abelian
varieties that we will term strongly modular.

Definition 1.1 Let K be a number field. An abelian variety B/K is strongly modular
over K if its L-function L(B/K; s) is equivalent to a product of L-series of newforms
over Q for Γ1(N).

In the next section we give a characterization (Proposition 2.4) of strong mod-
ularity as the property that the restriction of scalars to Q is a product of GL2-type
varieties. This can be taken as an alternative definition of strong modularity.

It is important to notice that strong modularity is a much more restrictive concept
than that of being a building block. For example, consider an elliptic curve over the
field of rational numbers B/Q . Then the extension of scalars of B to any number
field K is a building block, but B/K is strongly modular only in the case that K/Q is
an abelian extension. In this case we have that L(B/K; s) =

∏
χ L( f ⊗ χ; s), where f

is the newform such that L(B/Q ; s) = L( f ; s) and χ runs over the group of complex
characters of Gal(K/Q). Another less trivial example is the following. Consider the
elliptic curve B defined over the number field K = Q(

√
−3) by an equation of the

type

Y 2 = X3 + 4aX2 + 2(a2 +
√
−3b)X, a, b ∈ Q.

Then B/K is a building block but is not strongly modular; in fact, no curve isogenous
to B over Q and defined over the field K can be strongly modular. If we enlarge the
base field K to M = Q(

√
−3,
√
−2), then the curve B/M obtained by extension

of scalars is still not strongly modular but its quadratic twist corresponding to the
extension M(

√
2 +
√

6) is strongly modular. This example is obtained in [4, §3]
using the results of [14, 15], and is applied to the study of a family of Diophantine
equations of Fermat type. The strong modularity of the twisted model is fundamental
for this application. Examples of this same type but in higher dimension are given in
the last section of this paper as applications of our results.

Strongly modular abelian varieties over number fields can be studied as easily as
modular abelian varieties over Q . For instance, their L-series satisfy the Hasse conjec-
ture, Heegner cycles, and Gross–Zagier type results can be used to compute rational
points on them, and they can be used for solving Diophantine equations as in the
example cited in the previous paragraph.

Of course, for abelian varieties over number fields there are other concepts of
modularity that associate the L-function of the variety with more general modular
and automorphic forms. The case of abelian varieties over totally real number fields
and their relation to Hilbert modular forms is perhaps the best understood situation,
and many results generalizing the classical ones are known.

The purpose of this paper is to understand and characterize the abelian varieties
over number fields whose L-functions can be obtained in terms of classical elliptic
modular forms over Q for congruence subgroups Γ1(N), in the precise sense of our
definition of strong modularity. This characterization is given in our main theorem,
Theorem 5.3, in terms of the Galois group of the number field and of certain Ga-
lois cohomology class attached to the variety. The case of non-CM one-dimensional
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building blocks, i.e., of Q-curves without complex multiplication, was studied in
[14]. This paper is a generalization of [14] to arbitrary dimension; many ideas and
tools we will use here were introduced in [13, 14, 18].

It would also be desirable to have also methods to produce modular abelian vari-
eties without the use of modular forms, with the modularity being just a consequence
of their arithmetic and geometric properties. The one-dimensional case is of course
the most well known, and for this reason it has been the main source of applica-
tions up to now. All elliptic curves over Q are strongly modular. Over number fields
all CM elliptic curves are modular, and Elkies proved in [5] that non-CM modular
elliptic curves are parameterized up to isogeny by the (non-cusp, non-CM) ratio-
nal points of the modular curves X∗(N) quotient of X0(N) by the group of Atkin–
Lehner involutions, for squarefree values of N. A method to explicitly work-out this
parametrization when the moduli variety X∗(N) is of genus zero or one (this hap-
pens for 81 values of N in the range 2–238) is given in [6], and standard conjectures
suggest that only a finite number of isogeny classes is missing out of these genus 6 1
moduli curves. Once one has a modular elliptic curve the results in [14] can be used
to characterize the curves in its isogeny class that are strongly modular, and explicit
equations for them may be obtained using the methods developed in [15].

The non-modular construction of higher dimensional strongly modular abelian
varieties has been performed up to now only over Q . They appear either as Jacobians
of curves C/Q for which one is able to write down enough endomorphisms defined
over Q , or as the varieties corresponding to certain points in moduli varieties, espe-
cially Shimura curves. In the last section we consider a family of modular abelian
surfaces over number fields that are strictly non-rational examples, in the sense that
they cannot be obtained by just extending scalars from varieties defined over Q , and
we see how the main theorem of this paper can be used to distinguish (and to pro-
duce) strongly modular examples.

Remark on complex multiplication Shimura proved that a variety A f has a factor
with complex multiplication if and only if it is isogenous to a power of an elliptic
curve with complex multiplication. This is also equivalent to the fact that the new-
form f admits a twist by a quadratic character whose kernel is the field of complex
multiplication of the corresponding elliptic curve. The CM case requires a special
treatment, and, except for Section 2 in which the results hold in complete general-
ity, we will tacitly assume that all abelian varieties considered have no CM-factors up
to isogeny; when necessary we will stress this condition by writing non-CM abelian
variety.

2 Strong Modularity and GL2-type

The purpose of this section is to show that an abelian variety B/K is strongly mod-
ular if and only if the abelian variety A/Q obtained by restriction of scalars A =
ResK/Q (B) is isogenous over Q to a product of abelian varieties of GL2-type. Due
to the fact that this last property is the one that plays a key role in this paper, many
statements become simpler if we enlarge the definition of GL2-type to include vari-
eties that are not simple over Q .
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Definition 2.1 An abelian variety A/Q is of GL2-type if EndQ (A) contains a com-
mutative semisimple sub-Q-algebra of Q-dimension equal to dim A.

Note that the standard use of “GL2-type” in the literature corresponds to the vari-
eties that satisfy our definition and are simple. The relation between the two concepts
is analogous to the relation between arbitrary CM-abelian varieties and the simple
ones (cf. [11, p. 29]).

Lemma 2.2 An abelian variety is of GL2-type if and only if all its Q-simple factors are
of GL2-type.

Proof For an abelian variety A/Q let A ∼Q Ar1
1 × · · · × Arn

n be its decomposition
up to Q-isogeny into Q-simple factors. Put Di = EndQ (Ai), let Fi be the center of
Di and let ti = [Di :Fi]1/2 be its index. The decomposition of EndQ (A) into simple
algebras is

EndQ (A) ' Mr1 (D1)× · · · ×Mrn (Dn),

and the reduced degree of EndQ (A) over Q is [EndQ (A) : Q]red =
∑

riti[Fi : Q].
If every Ai is of GL2-type, then Di = Fi has degree [Fi : Q] = dim Ai . Every

field extension Ei/Fi of degree ri can be embedded in the matrix ring Mri (Fi), and
the product

∏
Ei is a commutative semisimple subalgebra of EndQ (A) of dimension∑

[Ei : Q] =
∑

ri[Fi : Q] =
∑

ri dim Ai = dim A, hence A is of GL2-type.
For the converse we will make use of the following basic facts about associative

algebras. For any semisimple k-algebra A the maximal commutative semisimple sub-
algebras E ⊆ A have dimension dimk E = [A :k]red, and for every faithful A-module
M one has dimk M > [A :k]red with the equality being possible only if all the simple
subalgebras of A are matrix algebras over fields (cf. [11, Propositions 1.3 and 1.2]).
The second fact applied to the space of tangent vectors Lie(B/Q) of an abelian variety
B/Q gives the inequality [EndQ (B) : Q]red 6 dim B = dim Lie(B/Q).

Assume now that A is of GL2-type. Let E ⊆ EndQ (A) be a commutative semisim-
ple subalgebra with [E : Q] = dim A. Then by the previous results

dim A = [E : Q] 6 [EndQ (A) : Q]red 6 dim A.

Hence each step is an equality, and EndQ (A) is product of matrix algebras over fields;
i.e., ti = 1 for all i.

Now, using the inequalities [EndQ (Ai) : Q]red 6 dim Ai for every i, we have

dim A =
[

EndQ (A) : Q
]

red
=
∑

ri[Fi : Q]

=
∑

ri

[
EndQ (Ai) : Q

]
red

6
∑

ri dim Ai = dim A;

the equality at each summand follows, from which one deduces [Fi : Q] = dim Ai for
all i, and so all simple factors Ai are of GL2-type.

Proposition 2.3 An abelian variety A/Q is strongly modular over Q if and only if it
is of GL2-type.
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Proof If A/Q is of GL2-type, by the previous lemma we have that A ∼Q Ar1
1 ×

· · · × Arn
n , where the Ai ’s are Q-simple abelian varieties of GL2-type. Results of Ribet

[18, Theorem 4.4] and Khare and Wintenberger [9, Theorem 10.1], together with
Faltings’s isogeny theorem, imply the existence of newforms fi such that Ai ∼Q A fi .
Then L(A/Q, s) ∼

∏
L(Ai/Q, s)ri ∼

∏
L(A fi/Q, s)ri , where ∼ denotes the equiva-

lence of L-functions. Since each L(A fi/Q, s) is the product of the L-functions of the
newforms that are Galois conjugates of fi , the variety A is strongly modular over Q .

Now we prove the converse. Let A/Q be a strongly modular abelian variety over
Q , and let f1, . . . , fn be newforms such that L(A/Q, s) =

∏
L( fi , s). Let Ei be the

field of Fourier coefficients of fi , and denote by E = E1E2 · · · En the composition. Let
m = [E : Q] and mi = [E :Ei], and denote by ΣE and ΣEi the corresponding sets of
complex embeddings. For every index i, the restriction of all the elements of ΣE to
the field Ei gives mi copies of every element of ΣEi .

We will make use of the following notation: if S =
∑

ann−s is a Dirichlet series
with an ∈ C and σ ∈ Aut(C), we denote by σS the series

∑
σann−s, that is, the series

obtained by applying σ to the coefficients an. Note that since L(A/Q, s) has rational
coefficients, we have that σL(A/Q, s) = L(A/Q, s). One has

L(Am/Q, s) = L(A/Q, s)m =
∏
σ∈ΣE

σL(A/Q, s) =
∏
σ∈ΣE

n∏
i=1

σL( fi , s)

=
n∏

i=1

∏
σ∈ΣE

L(σ fi , s) =
n∏

i=1

∏
σ∈ΣEi

L(σ fi , s)
mi

=
n∏

i=1
L(A fi/Q, s)mi = L

(( n∏
i=1

Ami
fi

)
/Q, s

)
.

Then by Faltings’s isogeny theorem the varieties Am and
∏

Ami
fi

are isogenous over Q .
By the uniqueness of decomposition up to Q-isogeny into the product of Q-simple
varieties, it follows that A is isogenous over Q to a product

∏
Aei

fi
for some exponents

ei > 0, and thus it is of GL2-type.

For other number fields strong modularity can be reduced to that of the restriction
of scalars.

Proposition 2.4 An abelian variety B/K over a number field K is strongly modular
over K if and only if ResK/Q (B/K) is of GL2-type.

Proof The equality of L-functions L(B/K, s) = L((ResK/Q B)/Q, s) implies that B is
strongly modular over K if and only if ResK/Q B is strongly modular over Q , and by
the previous proposition this is the case if and only if ResK/Q B is of GL2-type.

Combining Lemma 2.2 with this proposition, one immediately obtains the fol-
lowing consequence.

Corollary 2.5 An abelian variety is strongly modular over a number field K if and
only if all its K-simple factors are strongly modular over K.
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3 Q-abelian Varieties

The absolutely simple factors up to isogeny of non-CM abelian varieties of GL2-type
were studied by Ribet in [18] and by Pyle in [13]. A common property of the non-
CM abelian varieties of GL2-type and of their simple factors is that the object con-
sisting of the variety together with its endomorphisms has as field of moduli the field
of rational numbers. In order to deal with this property, the following definitions
are useful. For a given abelian variety B/Q and Galois automorphism σ ∈ GQ , an
isogeny µσ :

σ
B→ B is said to be compatible with the endomorphisms of B if the map

End(B)→ End(B) : ψ 7→ µσ ◦ σψ ◦ µ−1
σ is the identity, i.e., if the diagram

σ
B

µσ
//

σψ

��

B

ψ

��
σ

B
µσ

// B

is commutative for every ψ ∈ End(B).

Definition 3.1 ([13, p. 194]) A Q-abelian variety (or just Q-variety for short) is an
abelian variety B/Q such that for every σ ∈ GQ there exists an isogeny µσ :

σ
B → B

compatible with End(B).

Let F be the center of the endomorphism algebra End(B). It is easily seen that if
the isogeny µσ :

σ
B→ B is compatible with End(B), then all isogenies between these

two varieties compatible with End(B) are the maps of the form ψ ◦ µσ for ψ ∈ F∗;
also, if B is a Q-abelian variety, then all its endomorphisms belonging to the center F
are defined over every field of definition for B.

The Cocycle Class [cB]

Let B/Q be a Q-variety. Since the variety is defined over some number field, one can
always choose a set of isogenies {µσ :

σ
B → B}σ∈GQ compatible with the endomor-

phisms of B that is locally constant. Let cB be the map defined as

(3.1) cB : GQ × GQ → F∗, cB(σ, τ ) = µσ ◦ σµτ ◦ µ−1
στ .

In the following lemma we state some of the properties of cB, which can be straight-
forwardly checked.

Lemma 3.2 The map cB is a well-defined continuous 2-cocycle on GQ with values in
the group F∗, considered as a GQ -module with trivial action, and the cohomology class
[cB] ∈ H2(GQ , F∗) does not depend on the locally constant set of isogenies used to define
the cocycle cB. Moreover, the class [cB] depends only on the Q-isogeny class of B.

https://doi.org/10.4153/CJM-2012-040-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-040-2


Modular Abelian Varieties Over Number Fields 177

This invariant [cB] gives the obstruction to descending the variety and its endo-
morphisms over a given number field up to isogeny. The following result is stated as
[13, Proposition 5.2] for Q-abelian varieties that are building blocks, but in the proof
given there the structure of the endomorphism algebra plays no role, so we state it
here in full generality.

Proposition 3.3 (Ribet–Pyle) Let B/Q be a Q-variety and let K be a number field.
There exists an abelian variety defined over K and with all the endomorphisms defined
over K that is isogenous to B if and only if [cB] belongs to the kernel of the restriction
map Res : H2(GQ , F∗)→ H2(GK , F∗).

Generalizing the terminology introduced in [14] for elliptic Q-curves we will say
that a Q-variety B is completely defined over a Galois number field K if the variety
B and all its endomorphisms are defined over K, and there exist isogenies between
Galois conjugates compatible with End(B) that are all defined over K. In this case, let
µs : sB→ B be an isogeny compatible with the endomorphisms of B for each element
s ∈ G = Gal(K/Q). Then, as for (3.1), one sees that the map

(3.2) cB/K : G× G −→ F∗, cB/K (s, t) = µs ◦
s
µt ◦ µ−1

st

is a well-defined 2-cocycle on G with values in the trivial G-module F∗ whose co-
homology class [cB/K ] ∈ H2(K/Q, F∗) is an invariant of the K-isogeny class of the
variety B.

Proposition 3.4 Let B/Q be a Q-variety and let K be a Galois number field. There
exists an abelian variety completely defined over K that is isogenous to B if and only if
[cB] belongs to the image of the inflation map Inf : H2(K/Q, F∗)→ H2(GQ , F∗).

Moreover, if [cB] = Inf([c]) for some cocycle class [c] ∈ H2(K/Q, F∗), then there
exists such a variety B0/K such that [cB0/K ] = [c].

Proof Since the image of the inflation lies in the kernel of the restriction, by Propo-
sition 3.3 we can suppose that B and all of its endomorphisms are defined over K.

Assume that [cB] = Inf([c]). Modifying the 2-cocycle c by a coboundary we can
assume that it is normalized, i.e., takes the value c(1, 1) = 1, and as a consequence
of the cocycle condition this implies that also c(s, 1) = c(1, s) = 1 for every s ∈
Gal(K/Q). Moreover, by changing the choice of isogenies compatible with End(B)
used in (3.1) to define cB, we can also suppose that inf(c) coincides with the cocycle
cB. This implies that cB(σ, τ ) = 1 whenever σ or τ belong to the subgroup GK . It
follows that the map σ 7→ µσ is a one-cocycle on the group GK with values in the
group Aut(B), viewed as a module with the natural Galois action of GK , which is in
fact the trivial action, since all the elements of End(B) are defined over K.

Let B0 be the twist of B by this one-cocycle. It is an abelian variety B0 defined over
K together with an isogeny κ : B → B0 such that µσ = κ−1 ◦ σκ for all σ ∈ GK . We
will see that this variety satisfies the conditions of the proposition.

Every endomorphism of B0 is of the form κ◦ψ ◦κ−1 for some ψ ∈ End(B). Since
all endomorphisms of B are defined over K and the isogenies µσ are compatible with
End(B), for every σ ∈ GK one has

σ(κ ◦ ψ ◦ κ−1) = σκ ◦ σψ ◦ σκ−1 = κ ◦ µσ ◦ σψ ◦ µ−1
σ ◦ κ−1 = κ ◦ ψ ◦ κ−1,
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and the endomorphisms of B0 are also defined over K.
A calculation shows that the maps νσ := κ ◦ µσ ◦ σκ−1 are isogenies

σ
B0 → B0

compatible with End(B0) for every σ ∈ GQ , and the relation of µσ = κ−1 ◦ σκ for
elements σ ∈ GK shows that νσ = 1 for the σ fixing the field K. The cocycle cB0

computed from this set of isogenies is related to cB by cB0 (σ, τ ) = κ ◦ cB(σ, τ ) ◦ κ−1

for all σ, τ ∈ GQ . Since cB is the inflation of c and this cocycle is normalized, one
deduces that cB0 (σ, τ ) = 1 if either σ or τ belong to the subgroup GK . Applying this
fact to a pair σ ∈ GQ and τ ∈ GK one deduces that

cB0 (σ, τ ) = νσ ◦ σντ ◦ ν−1
στ = νσ ◦ ν−1

στ = 1 =⇒ νστ = νσ,

which means that νσ depends only on the action of σ on K (i.e., on the class of σ
modulo the normal subgroup GK ). Now, applying the identity to a pair σ ∈ GK and
τ ∈ GQ one has

νσ ◦ σντ ◦ ν−1
στ = σντ ◦ ν−1

στ = σντ ◦ ν−1
τ = 1 =⇒ σντ = ντ

proving that the isogenies νσ are also defined over K for every σ ∈ GQ .
Finally, for every element s ∈ Gal(K/Q) let νs be the isogeny νσ for any σ ∈

GQ whose action on K is given by the element s. In this way one obtains a set of
isogenies compatible with End(B0) defined over the field K and the cocycle cB0/K

computed using this set is the cocycle cB0/K (s, t) = κ ◦ c(s, t) ◦ κ−1. Hence, under
the isomorphism between the centers of the endomorphisms of the varieties B0 and
B given by conjugation by the isogeny κ between them, the cohomology class [cB0/K ]
is the class [c] we started with.

Simple Q-varieties of the First Kind

Up to now we have put no restrictions in the Q-abelian varieties considered; in par-
ticular, we have not assumed that the varieties are simple. If B ∼

∏
Bmi

i is the decom-
position up to isogeny into simple varieties, then it is easy to see that B is a Q-abelian
variety if and only if all its simple factors have this property, but we will not need this
fact here. For the study of the modular abelian varieties we are interested in, the case
of interest is when the center F of End(B) is a totally real number field; this is equiv-
alent to saying that the previous decomposition has a unique simple factor that is a
variety of the first kind in the standard terminology employed for the classification of
simple abelian varieties according to the type of their endomorphism algebras as alge-
bras with involution (cf. [12, p. 193]). We also recall that the endomorphism algebras
of simple varieties of the first kind are either a totally real number field (type I vari-
eties) or a quaternion algebra over such a field, that may be either totally indefinite
(type II) or totally definite (type III). So we assume from now on that F = Z(End(B))
is a totally real number field; we could also assume that B is absolutely simple, but in
fact that is not necessary and everything below works for varieties that are powers of
simple varieties of the first kind.

Generalizing to our situation the definitions given first by Ribet in [17, p. 113] for
simple varieties of type I, and then by Pyle in [13, p. 218] for building blocks, one
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can define for every isogeny µσ : σB→ B compatible with End(B) its “degree” δ(µσ),
which is a totally positive element of the field F whose reduced norm as an element
of the Q-algebra End(B) is the usual degree of the isogeny µσ . Moreover, from the
definition of this map and the fact that the Rosati involution fixes the elements of the
center F one gets, exactly as in [13, 17], the identity

(3.3) cB(σ, τ )2 = δ(µσ)δ(µτ )δ(µστ )−1,

which shows that the cohomology class [cB] belongs to the 2-torsion subgroup
H2(GQ , F∗)[2].

Now, the structure of the group H2(GQ , F∗)[2] is particularly simple, and a num-
ber of consequences about fields of definition can be deduced just by looking at it.
As described in [17, p. 114] (see also [16, Section 2]), if one starts with any group
isomorphism F∗ ' {±1}×F∗/{±1} and uses basic facts of group cohomology, one
obtains a decomposition

(3.4) H2(GQ , F
∗)[2] ' H2(GQ , {±1})×Hom(GQ , F

∗/{±1}F∗2)

under which every 2-torsion cohomology class ξ ∈ H2(GQ , F∗) has two components
ξ = (ξ±, ξ). The sign component ξ± ∈ H2(GQ , {±1}) ' Br2(Q) is an element of
the 2-torsion of the Brauer group of Q . The degree component ξ is a group homo-
morphism GQ → F∗/{±1}F∗2. Note that the decomposition of the cohomology
group depends on the decomposition of the (trivial) GQ -module F∗ we have chosen,
but it is easy to see that the degree component does not depend on it, and also that,
for the classes [cB] attached to Q-varieties B, the degree component is just the map
σ 7→ δ(µσ) mod {±1}F∗2 (hence the name).

Given an element ξ ∈ H2(GQ , F∗)[2] we will denote by KP the field fixed by the
kernel of the degree component ξ; since this morphism takes values in a 2-torsion
group, the field KP is an abelian extension of exponent 2 of the field Q .

Proposition 3.5 Let B be a Q-abelian variety with F = Z(End(B)) a totally real
number field. Let KP be the field fixed by the kernel of [cB].

(i) If B0 ∼ B with B0 and End(B0) defined over K, then KP ⊆ K.
(ii) There exist isogenous varieties B0 ∼ B defined over fields of the form K = KP ·

Q(
√

a) for some a ∈ Q , with End(B0) also defined over K.
(iii) There exist isogenous varieties B0 ∼ B completely defined over fields of the form

K = KP ·Q(
√

a,
√

b) for some a, b ∈ Q .

Proof The decomposition (3.4) has analogues for the group H2(GK , F∗)[2] for every
number field K, and for the group H2(K/Q, F∗)[2] for every Galois number field
K. The restriction and inflation maps respect the corresponding decompositions. It
follows that the class [cB] belongs to the kernel (resp. the image) of the restriction to
the first group (resp. of the inflation from the second group) if and only if the two
components sign and degree belong to the corresponding kernels (resp. images).

As for the degree component [cB] ∈ Hom(GQ , F∗/{±1}F∗2) each of the two con-
ditions either on the inflation or on the restriction are equivalent to the fact that
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KP ⊆ K. Every element of H2(GQ , {±1}) ' Br2(Q) can be identified with a quater-
nion algebra that can be written as a pair (a, b)Q with a, b ∈ Q∗ using the standard
notation. Such an element always can be trivialized by restriction to a (at most)
quadratic extension, for example the extension Q(

√
a). Also, this element can be in-

flated from a cohomology class defined on the Galois group of a (at most) biquadratic
extension, for example the extension Q(

√
a,
√

b) (see [15, Section 2]).

In [17] Ribet proved that for varieties with End(B) = F a totally real number field
of odd degree [F : Q] = dim B the field KP already trivializes the sign component,
so that there are always B0 ∼ B with End(B0) defined over KP. It is easily seen that
his argument, in fact, works for all Q-varieties of the first kind of odd dimension
without the assumption on the size of their endomorphisms. On the contrary, for
even dimension this fact is not true any more, as the modular examples given in [16]
show.

4 K-building Blocks

Since we want to study abelian varieties over a number field K that are quotients up to
K-isogeny of varieties of GL2-type, we slightly adapt the definition of building block
given by Pyle in [13, p. 195] in order to keep track of their decomposition over K and
not merely over Q .

Definition 4.1 Let K/Q be a Galois extension. We say that a (non-CM) abelian
variety B/K is a K-building block if

(i) B is a Q-variety admitting isogenies µσ :
σ
B → B compatible with End(B) de-

fined over K for every σ ∈ GQ , and
(ii) EndK (B) is a division algebra with center a number field E, having index t 6 2

and reduced degree t[E : Q] = dim B.

We note the following remarks:

• The requirement that EndK (B) be a division algebra implies that K-building blocks
are K-simple abelian varieties, but they may factor over larger fields.
• The Q-building blocks are the (non-CM) Q-simple abelian varieties of GL2-type.
• The Q-building blocks are the building blocks in the sense of Pyle’s definition; we
will also sometimes use this terminology without a prefix field.
• For Q-building blocks the field E is necessarily a totally real field, equal to the
center of End(B). In general it may be either totally real or a CM-field, and the center
F of End(B) is a (necessarily totally real) subfield of E.
• We do not require B to have all its endomorphisms defined over K. This means
that a K-building block is not necessarily a Q-variety completely defined over K.

Proposition 4.2 Let A/Q be a Q-simple abelian variety of GL2-type without CM and
let K/Q be a Galois extension. Then the extension of scalars A/K is K-isogenous to a
power Bn of a K-building block B/K.

Proof Let A ∼K Bn1
1 ×· · ·×Bnr

r be the decomposition up to K-isogeny into K-simple
varieties. Since EndQ (A) is a subfield of End(A) it acts on each isotypical factor Bni

i ,
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hence [EndQ (A) : Q] | 2ni dim Bi . But [EndQ (A) : Q] = dim A =
∑

ni dim Bi , and
this implies that either [EndQ (A) : Q] = ni dim Bi or [EndQ (A) : Q] = 2ni dim Bi for
each index. The second case is not possible, since we are assuming that no subvariety
of A has CM, and so [EndQ (A) : Q] = ni dim Bi , which implies that there is only one
isotypical factor and A ∼K Bn.

Next, we prove that EndQ (A) is a maximal subfield of EndK (A) or, equivalently,
that EndQ (A) is its own centralizer in EndK (A). Let ϕ be an element of EndK (A)
that commutes with EndQ (A). The image ϕ(A) is isogenous to Br for some r. Since
ϕ commutes with EndQ (A), the field EndQ (A) acts on Br, and this implies that
[EndQ (A) : Q] | 2r dim B. This gives only two options: either [EndQ (A) : Q] = r dim B
or [EndQ (A) : Q] = 2r dim B. Again, the second is not allowed, since Br cannot have
CM. This means that r = n and ϕ is an isogeny. Hence, C(EndQ (A)) is a field, and
therefore C(EndQ (A)) = EndQ (A).

Set E = Z(EndK (B)) and let t be the index of EndK (B). We can prove now that
t[E : Q] = dim B. This comes from the decomposition A ∼K Bn, which translates
into an isomorphism EndK (A) ' Mn(EndK (B)). Since EndQ (A) is a maximal sub-
field of EndK (A), taking dimensions over E we have that [EndQ (A) :E] = nt , and
multiplying both sides of this expression by [E : Q] gives [EndQ (A) : Q] = nt[E : Q].
Since [EndQ (A) : Q] = dim A = n dim B, we see that dim B = t[E : Q].

Since B is K-simple, EndK (B) is a division algebra acting on H1(B,Q); therefore,
[EndK (B) : Q] | 2 dim B. This means that t2[E : Q] | 2 dim B, and by the relation
t[E : Q] = dim B, we see that t dim B | 2 dim B, showing that t 6 2.

Finally, we have to show that B is a Q-variety with isogenies between Galois con-
jugates defined over K. The argument is the same as in the proof of [13, Proposi-
tion 1.4], but starting from an isogeny between AK and Bn defined over K. It only
has to be noticed that the isogenies α(σ) : A → A that appear in that proof are de-
fined over Q , and this implies that the isogenies defined in [13, p. 195] are defined
over K.

Corollary 4.3 If a K-simple variety is strongly modular over a Galois number field K,
then it is a K-building block.

Proof Let B be a K-simple strongly modular variety. By Proposition 2.3, since B is
strongly modular over K, ResK/Q (B) is of GL2-type. Since

ResK/Q (B) ∼K
∏

s∈Gal(K/Q)

s
B,

the variety B is a K-simple factor of a Q-simple variety of GL2-type, and then it is a
K-building block by the previous proposition.

The converse of this corollary is not true. A K-building block needs extra con-
ditions to be strongly modular. These conditions are related to a cohomology class
[cB/K ] attached to B that is defined in a similar way to (3.2) as follows. Let B be a K-
building block over a Galois number field K; put G = Gal(K/Q), E = Z(EndK (B))
and F = Z(End(B)). Let {µσ}σ∈GQ be a set of isogenies compatible with End(B)
defined over K. For each s ∈ G choose a representative s̃ in GQ and define

cB/K : G× G→ E∗, cB/K (s, t) = µs̃ ◦ s̃µt̃ ◦ µ−1
s̃t
.
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When all the endomorphisms of B are defined over K, this cocycle cB/K (s, t) coincides
with (3.2). Since we are not requiring the field K to be a field of definition of all the
endomorphisms of B, we can only guarantee that cB/K (s, t) lies in E∗ but not in F∗ as
it happens when the variety is completely defined over K. In the next lemma we state
the main properties of this cocycle.

Lemma 4.4 The map cB/K is a 2-cocycle on G with values in E∗, considered as a
module with trivial action. The cohomology class [cB/K ] ∈ H2(K/Q, E∗) depends
neither on the lift s 7→ s̃ nor on the choice of the isogenies µs̃. Moreover, the in-
flation of [cB/K ] to H2(GQ , E∗) coincides with the image of [cB] under the morphism
H2(GQ , F∗)→ H2(GQ , E∗) induced by the embedding F∗ ↪→ E∗.

Proof Let ϕ be an element of EndK (B). Since s̃t = s̃ t̃ τ for some τ ∈ GK , we have

cB/K (s, t) ◦ ϕ = µs̃ ◦ s̃µt̃ ◦ µ−1
s̃t
◦ ϕ = µs̃ ◦ s̃µt̃ ◦ s̃tϕ ◦ µ−1

s̃t
=

= µs̃ ◦ s̃µt̃ ◦ s̃ t̃ τϕ ◦ µ−1
s̃t

= µs̃ ◦ s̃µt̃ ◦ s̃ t̃ϕ ◦ µ−1
s̃t

=

= µs̃ ◦ s̃ϕ ◦ s̃µt̃ ◦ µ−1
s̃t

= ϕ ◦ µs̃ ◦ s̃µt̃ ◦ µ−1
s̃t

= ϕ ◦ cB/K (s, t),

and this shows that cB(s, t) lies in E. In the same way we can prove the cocycle con-
dition, and the independence on the set {µσ}σ∈GQ is seen in a way analogous to the
case of the cocycle cB.

Observe that, if σ ∈ GQ is such that σ|K = s̃|K , then µσ ◦ µ−1
s̃ commutes with the

elements in EndK (B); therefore, we can write µσ = λσ ◦ µs̃ for some λσ ∈ E∗. Using
this it is immediate to see that the use of another lift from Gal(K/Q) to GQ would
modify the cocycle cB/K by a coboundary.

We now prove the last statement in the lemma. Take σ, τ ∈ GQ and put s =
σ|K , t = τ |K . We use the same name for the cocycles and for their images for the
morphisms involved; namely, cB/K is the inflation to GQ of cB/K and cB is the image
of cB in Z2(GQ , E∗). By the definitions cB(σ, τ ) = µσ ◦ σµτ ◦ µ−1

στ and cB/K (σ, τ ) =

µs̃ ◦ s̃µt̃ ◦ µ−1
s̃t

. Since σ|K = s̃|K , we see that µσ = µs̃ ◦ λσ for some λσ ∈ E. Now

cB(σ, τ ) = cB/K (σ, τ ) ◦ λσ ◦ λτ ◦ λ−1
στ , and the two cocycles are cohomologous.

Restriction of Scalars of K-building Blocks

Our objective now is to compute the endomorphism algebra EndQ (ResK/Q (B)) for
a K-building block B. What we obtain is a generalization of the expression found
by Ribet in [18, Lemma 6.4] for the case of Q-curves, giving the algebra as a twisted
group algebra. The main difference is that in our case the algebra is obtained by a
construction that mimics the standard twisted group algebra definition, which we
first describe in abstract terms.

Let A be a central E-algebra and let c ∈ Z2(G, E∗) be a two-cocycle on a finite
group G with values in the multiplicative group E∗ viewed as a module with triv-
ial action. One defines the E-algebra Ac[G] by generalizing the usual definition of
twisted group algebra: it is the free left A-module

⊕
s∈G A · λs with basis a set of
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symbols λs indexed by the elements s ∈ G and multiplication defined by the relations

(4.1)
a · λs = λs · a, for a ∈ A,

λs · λt = c(s, t) · λst .

The cocycle condition for c is used to check that this definition makes sense and
produces an associative algebra, and of course its isomorphism class depends only on
the cohomology class of the cocycle c. This algebra is related with the twisted group
algebra Ec[G] through the isomorphism

Ac[G] ' A⊗E Ec[G] as E-algebras.

Indeed, if we let Ec[G] =
⊕

s∈G E · λs, then the map

a⊗
∑

xs · λs 7→
∑

(axs) · λs : A⊗E Ec[G]→ Ac[G]

is an isomorphism of E-algebras.

Proposition 4.5 Let B be a K-building block over a Galois number K field with group
G = Gal(K/Q). Let D = EndK (B) and E = Z(D). Then,

EndQ (ResK/Q (B)) ' D⊗E EcB/K [G].

Proof Call A the variety ResK/Q (B). For each s ∈ G fix a representative s̃ for s in GQ

imposing that 1̃ = 1. Let {µσ}σ∈GQ be a locally constant set of isogenies compatible
with End(B) defined over K in which we have chosen µ1 to be the identity. We know
that A ∼K

∏
s∈G

s̃B, and that by the universal property of the restriction of scalars
functor EndQ (A) ' HomK (A,B). Hence,

EndQ (A) ' HomK (A,B) '
∏
s∈G

HomK (s̃B,B) '
∏
s∈G

D · µs̃,

and we see that EndQ (A) is a left D-module of dimension [K : Q]. We shall determine
now its structure as an algebra. For s ∈ G, define λs to be the endomorphism of A that
sends t̃ sB to t̃B via t̃µs̃. It is fixed by all elements in GQ and so it is an endomorphism
of A defined over Q . Since we forced 1̃ to be 1, we can identify λ1 with the identity
endomorphism of EndQ (A).

We can embed D in EndQ (A) by sending each d ∈ D to the morphism whose
components are the diagonal maps s̃d : s̃B → s̃B. Hence, we can multiply the λs by
elements d in D in the following way, depending on whether we left or right multiply:

d ◦ λs : t̃ sB
t̃µs̃

−→ t̃B
t̃d
−→ t̃B, λs ◦ d : t̃ sB

t̃ sd
−→ t̃ sB

t̃µs̃

−→ t̃B.

By the compatibility of the isogenies it is clear that these two maps coincide, and
therefore d ◦ λs = λs ◦ d. Also the compatibility of the isogenies gives us the formula
λs ◦ λt = cB/K (s, t) ◦ λst . That is, multiplication in EndQ (A) is given in terms of
this basis by formulas (4.1) with cocycle cB/K , so that this algebra is isomorphic to
DcB/K [G].
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5 Strongly Modular Abelian Varieties

Let B be a K-building block over a Galois number field K with Galois group G =
Gal(K/Q). Let D = EndK (B), E = Z(D), and t the index of D. Recall that in the pre-
vious section we have associated with B/K a cohomology class [cB/K ] ∈ H2(G, E∗).
In this section we characterize when B is strongly modular over K in terms of that
class.

Lemma 5.1 Let B be a K-building block over a Galois number field K. If A =
ResK/Q (B) is an abelian variety of GL2-type, then

A ∼Q At
1 × · · · × At

n,

with the Ai pairwise non-isogenous Q-simple abelian varieties of GL2-type.

Proof A priori we know that

(5.1) A ∼Q Ar1
1 × · · · × Arn

n

for some ri > 0 and with the Ai being non-isogenous Q-simple abelian varieties of
GL2-type. If we set Ei = EndQ (Ai), then EndQ (A) ' Mr1 (E1)× · · · ×Mrn (En).

First we show that each ri is at least t . If t = 1, this is clear, so we suppose now
that t = 2. There is an injection of algebras EndK (B) ↪→ EndQ (A), and so EndK (B)
injects into each simple component Mri (Ei) of EndQ (A). If t = 2 then EndK (B) is
non-commutative, and so each ri must be at least 2.

Now we show that each ri is in fact equal to t . On the one hand we know, by the
universal property of the restriction of scalars, that EndQ (A) ' HomK (AK ,B), and
using that AK ∼K

∏
s∈Gal(K/Q)

sB we have that

EndQ A ' HomK (AK ,B) ' HomK

(∏ sB,B
)
'

⊕
s∈Gal(K/Q)

HomK (sB,B).

Since B is a K-building block, each sB is K-isogenous to B, and so we have an isomor-
phism of D-modules HomK (sB,B) ' D. Since D is a Q-vector space of dimension
t2[E : Q] = t dim B, one obtains dimQ EndQ (A) = |G|t dim B = t dim A.

On the other hand, we can use expression (5.1) to calculate the same dimension.
We have shown that ri > t for all i. Suppose that for some i we had ri > t . Then we
would find that

dimQ EndQ A = r2
1 dim A1 + · · · + r2

n dim An > tr1 dim A1 + · · · + trn dim An

= t(r1 dim A1 + · · · + rn dim An) = t dim A,

which contradicts the first calculation we made.

Lemma 5.2 Let B be a K-building block over a Galois number field with G =
Gal(K/Q). Then B is strongly modular if and only if the algebra EcB/K [G] is commuta-
tive.
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Proof First suppose that EcB/K [G] is commutative. Then it is a product of fields so
that EcB/K [G] =

∏
Ei . Call A the variety ResK/Q (B). By Proposition 4.5 we know that

EndQ (A) ' D⊗E EcB/K [G] '
∏

D⊗E Ei ,

with D ⊗E Ei a central simple Ei-algebra with index ti dividing t . Corresponding to
this decomposition of EndQ (A) there is a decomposition of A up to Q-isogeny: A ∼Q∏

Ai , and EndQ (Ai) ' D ⊗E Ei . As AK '
∏

sB ∼K B|G|, each Ai is K-isogenous to
Bni for some ni . We claim that ni equals [Ei :E]. To prove the claim, first we observe
that the natural inclusion EndQ (Ai) ↪→ EndK (Ai) gives an injective morphism D⊗E

Ei ↪→ Mni (D). Looking at the reduced degrees of these algebras over E we see that
t[Ei :E] 6 tni , and then [Ei :E] 6 ni . To see the equality, we can use that on the one
hand, as EndQ (A) '

⊕
s∈G Hom(

s
B,B) '

⊕
s∈G D, we have that[

EndQ (A) :E
]

= |G|t2 = t2
∑

ni .

But, on the other hand we have that

[EndQ (A) :E] = [D⊗E
∏

Ei :E] = t2
∑

[Ei :E],

and this gives that [Ei :E] = ni .
Returning to the proof of the lemma, since EndQ (Ai) ' D⊗E Ei is a central simple

algebra of index ti |t , there exists a division Ei-algebra Di of index ti acting on the
differentials of Ai . The space of differentials of Ai is a Q-vector space of dimension
equal to the dimension of Ai , and so we have that [Di : Q]| dim Ai . But [Di : Q] =
t2

i [Ei :E][E : Q] and dim Ai = ni dim B = nit[E : Q] = t[Ei :E][E : Q], because ni =
[Ei :E]. This means that

t2
i [Ei :E][E : Q] | t[Ei :E][E : Q],

so t2
i |t , which implies ti = 1. This means that D ⊗E Ei ' Mt (Ei), and therefore

Ai ∼Q (A ′i )t , for some abelian variety A ′i with EndQ (A ′i ) ' Ei . Finally, A ′i ∼K Bni/t ,
which gives that

[Ei : Q] = ni[E : Q] =
ni

t
t[E : Q] =

ni

t
dim B = dim A ′i ,

showing that each A ′i is a variety of GL2-type.
In order to prove the other implication, by the previous lemma we can suppose

that A ∼Q At
1 × · · · × At

n, and as a consequence that

(5.2) EndQ (A) ' Mt (E1)× · · · ×Mt (En),

where the notation is the same as in the first part of the proof. On the other hand,

EndQ (A) ' D⊗E EcK [G] = D⊗E
∏

Mri (Ci),

where the Ci are division algebras. But (5.2) forces ri = 1 and Ci ' Ei for each i.
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Now we state our main result, giving a characterization of strong modularity.

Theorem 5.3 Let K be a Galois number field and let B/K be a K-simple abelian
variety. Then B is strongly modular over K if and only if it is a K-building block, the
extension K/Q is abelian, and [cB/K ] belongs to the subgroup Ext(G, E∗) ⊆ H2(G, E∗)
consisting of symmetric cocycle classes.

Proof By Corollary 4.3 being a K-building block is a necessary condition, and in that
case the previous lemma says that being strongly modular is equivalent to the fact that
the algebra EcB/K [G] is commutative. A twisted group algebra Ec[G] is commutative
if and only if the group G is abelian and the cocycle c is symmetric.

Strongly Modular Simple Varieties

The previous theorem shows that strong modularity puts very restrictive conditions
on varieties. In what follows, we consider the setting in that B/Q is a Q-building
block. Given a Galois number field K, using Theorem 5.3 we want to give necessary
and sufficient conditions to guarantee the existence, in the Q-isogeny class of B, of
some variety which is completely defined over K and strongly modular over K.

For that, let B be a Q-building block and let D = End(B). The center F = Z(D)
is a totally real number field, and D is either equal to F, in which case t = 1 and
[F : Q] = dim B, or it is a totally indefinite quaternion algebra over F, with t = 2 and
[F : Q] = 1

2 dim B. Let ξ = [cB] ∈ H2(GQ , F∗) be the cohomology class attached to
B.

We fix an embedding F ↪→ Q . By a theorem of Tate it is known that the group
H2(GQ ,Q

∗
) is trivial (here GQ acts trivially in Q), so there exist continuous maps

α : GQ → Q
∗

such that cB(σ, τ ) = α(σ)α(τ )α(στ )−1 for all σ, τ ∈ GQ ; two such
maps differ by a Galois character. The map α : GQ → Q

∗
/F∗ obtained viewing the

values of α modulo elements of F∗ is a morphism; let Kα denote the fixed field of
its kernel, which is an abelian extension of Q . Using the identity (3.3) we see that
the map εα(σ) = α(σ)2/δ(µσ) is a Galois character GQ → Q

∗
; two such characters

differ by the square of a Galois character. Let Kεα be the fixed field of ker εα; the fact
that δ(µσ) is real implies that Kεα ⊆ Kα. Let Eα = F({α(σ)}σ∈GQ ) be the number
field generated over F by the values of α; from the identity defining εα(σ) it easily
follows that Eα/F is an abelian extension. Even though the splitting maps α depend
on the cocycle cB (or, what is the same, on a system of isogenies between conjugates
of B) the morphisms α, the fields Kα and Eα, and the characters εα do not depend
on that choice. We will call the maps α splitting maps, the fields Kα splitting fields,
and the characters εα splitting characters for the building block B. The isogeny class
of a building block determines a set of morphisms α ∈ Hom(GQ ,Q

∗
/F∗) that is

an orbit by the action of the group of Galois characters Hom(GQ ,Q
∗
), and a set of

splitting characters εα ∈ Hom(GQ ,Q
∗
) that is an orbit by the action of the subgroup

of squares Hom(GQ ,Q
∗
)2.

For every Galois character ε : GQ → Q
∗

choose square roots of its values and
define

cε(σ, τ ) =
√
ε(σ)

√
ε(τ )

√
ε(στ )

−1
.
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This is a 2-cocycle on GQ with values in {±1}. Its cohomology class

[cε] ∈ H2
(

GQ , {±1}
)
' Br2(Q)

gives the obstruction to the existence of a square root of ε. If two characters ε, ε ′

differ by the square of a character, then [cε] = [cε ′]. If ξ = [cB] ∈ H2(GQ , F∗) is the
class attached to a building block B, then ξ± = [cε] with ε any splitting character for
B (see [16, Theorem 2.6]).

Theorem 5.4 Let B/Q be a building block and let K/Q be an abelian extension. There
exists an abelian variety isogenous to B that is completely defined and strongly modular
over the field K if and only if K contains a splitting field for [cB].

Proof The proof is essentially the same as the one given in [14, Proposition 5.2] for
the case of Q-curves.

Suppose that K contains the splitting field Kα corresponding to some splitting map
α. For every element s ∈ Gal(K/Q) choose an element α(s) as any of the values α(σ)
for σ ∈ GQ an automorphism restricting to s, and define c(s, t) = α(s)α(t)α(st)−1.
Then [c] is an element of H2(K/Q, F∗) whose inflation equals [cB]. By Proposi-
tion 3.4 there exists an abelian variety B0 isogenous to B that is completely defined
over the field K and with [cB0/K ] = [c]. By construction the cocycle c is symmetric,
hence [cB0/K ] ∈ Ext(K/Q, F∗) and by Theorem 5.3 the variety B0 is strongly modular
over K.

Conversely, assume that there is a variety isogenous to B that is strongly modular
over the field K. Let cB0/K be a cocycle on G = Gal(K/Q) attached to this variety.
Then by Theorem 5.3 the algebra FcB0/K [G] is commutative. Hence the Q-algebra
Q

cB0/K [G] = Q ⊗F FcB0/K [G] is also commutative, and by a property of twisted group
algebras over algebraically closed fields (cf. [8, Chapter 2, Corollary 2.5]), it follows
that the image of the class [cB0/K ] in the Schur multiplier group H2(G,Q

∗
) is trivial.

Hence there exists a map s 7→ α(s) : G→ Q
∗

such that cB0/K (s, t) = α(s)α(t)α(st)−1

and its inflation to the group GQ is a splitting map for the variety that factors through
the group G, hence Kα ⊆ K.

6 QM Jacobian Surfaces

In this section we illustrate the previous general results with applications to the study
of concrete abelian surfaces with quaternionic multiplication. The surfaces we will
be dealing with are obtained as Jacobians of a family of genus two curves defined
in [7]. We will use some results on their arithmetic that appear in [1] to compute
the cocycles needed for the characterization of their strong modularity, and for the
computation of Q-endomorphism algebras of their restriction of scalars.

Since we will need quadratic twists later, we begin with a technical lemma de-
scribing the effect of such a twist in the cohomology classes of interest. For every
abelian variety B/K over a number field K and element γ ∈ K∗, let Bγ denote the
K(
√
γ)-quadratic twist of the variety B over K. In the standard classification of twists

by elements of the first Galois cohomology group with values in the automorphism
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group of the object, this variety corresponds to the homomorphism in H1(GK , {±1})
whose kernel has K(

√
γ) as fixed field, which is given by the formula σ 7→ σ√γ/√γ.

Note that here we interpret ±1 as automorphisms of B. In other words, Bγ is the
abelian variety determined up to K-isomorphism by the fact that there exists an iso-
morphism φ : Bγ → B defined over K(

√
γ) such that φ ◦ σφ−1 = σ√γ/√γ for every

σ ∈ GK .
For hyperelliptic Jacobians the quadratic twists are easily computed: if C is a hy-

perelliptic curve defined by the equation Y 2 = F(X), then for every γ ∈ K∗ the
equation γY 2 = F(X) defines an hyperelliptic curve that is the K(

√
γ)-quadratic

twist of C over K. The Jacobian Jac(Bγ) is the K(
√
γ)-quadratic twist of the abelian

variety Jac(B) over K.

Lemma 6.1 Let B/K be a Q-variety completely defined over a Galois number field
K, and let γ ∈ K∗. The twist Bγ is completely defined over K if and only if the field
K(
√
γ) is Galois over Q . In this case, [cB/K ] and [cBγ/K ] differ by the cohomology class in

H2(Gal(K/Q), {±1}) corresponding to the group extension given by the exact sequence

(6.1) 1 −→ Gal(K(
√
γ)/K) ' {±1} −→ Gal(K(

√
γ)/Q) −→ Gal(K/Q) −→ 1.

In particular, quadratic twisting affects only the sign components of the cohomology
classes and leaves the degree components unchanged.

Proof Note that the cohomology classes [cB/K ] and [cBγ/K ] we want to compare take
values in groups F∗ consisting of automorphisms of the varieties. The cohomology
class attached to the group extension of the statement takes values in the group {±1},
which must be identified with a subgroup of F∗ by the (canonical) identification of
its elements as automorphisms of the variety.

Let φ : Bγ → B be the isomorphism corresponding to the twist. Then φ−1 is
an isomorphism giving B as the K(

√
γ)-twist of Bγ and for every σ ∈ GQ the map

σφ : σ(Bγ) → σB is an isomorphism giving σ(Bγ) as the K(
√
σγ)-twist of σB. Every

isogeny νσ : σBγ → Bγ compatible with End(B) is of the form νσ = φ−1 ◦ µσ ◦ σφ
for an isogeny µσ : σB → B compatible with End(B), which by hypothesis is defined
over K. For τ ∈ GK one has

τνσ = τφ−1 ◦ τµσ ◦ τσφ = τφ−1 ◦ φ ◦ νσ ◦ σφ−1 ◦ τσφ =

√
γ

τ√γ
◦ νσ ◦

√
σγ

τ
√
σγ
,

which equals νσ if and only if the two other maps, each equal to±1, coincide. But

√
γ

τ√γ
=

√
σγ

τ
√
σγ

⇐⇒
√
γ

√
σγ

=
τ√γ
τ
√
σγ

⇐⇒ τ fixes
√
σγ/
√
γ.

Hence the isogeny νσ is defined over K if and only if
√
σγ/
√
γ ∈ K, and this condi-

tion is satisfied for every σ ∈ GQ exactly when the extension K(
√
γ)/Q is Galois.
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Now assume that the condition is satisfied. For each s ∈ Gal(K/Q) fix a lift s̃ of s
in Gal(K(

√
γ)/Q). Then

cBγ/K (s, t) = νs̃ ◦ s̃νt̃ ◦ ν−1
s̃t

= φ−1 ◦ µs̃ ◦ s̃φ ◦ s̃φ
−1 ◦ s̃µt̃ ◦ s̃t̃φ ◦ s̃tφ

−1
◦ µ−1

s̃t
◦ φ

= φ−1 ◦ µs̃ ◦ s̃µt̃ ◦ s̃t (s̃t−1 s̃t̃φ ◦ φ−1) ◦ µ−1
s̃t
◦ φ

= φ−1 ◦ µs̃ ◦ s̃µt̃ ◦ µ−1
s̃t
◦ φ ◦ (s̃t−1 s̃t̃φ ◦ φ−1)

= cB/K (s, t) ◦ (s̃t−1 s̃t̃φ ◦ φ−1) = cB/K (s, t) ·
s̃t−1 s̃t̃√γ
√
γ

,

and the factor in the right is a cocycle associated with the group extension (6.1).

We now recall some notation and results from [1]. If a, b ∈ Q , we denote by
(a, b)Q the quaternion algebra over Q generated by ı, j with ı2 = a, j2 = b and
ıj + jı = 0. Let Q6 = (2, 3)Q be the quaternion algebra of discriminant 6 over Q ,
and let O = Z[ı, (1 + j)/2], which is a maximal order of Q6. We also define the
subrings R2 = Z[ı] ' Z[

√
2], R3 = Z[j + ıj] ' Z[

√
−3], and R6 = Z[µ] ' Z[

√
6],

where µ = 2j + ıj. A curve C is said to be a QM-curve with respect to O if O can
be embedded into the endomorphism ring of its Jacobian. If (B, ρ)/Q is a polarized
abelian variety and R is a subring of End(B), the field of moduli kR is defined to be the
smallest number field such that for any σ ∈ Gal(Q/kR) there exists an isomorphism
φσ : σB → B with φ∗σ(ρ) = σρ and such that r ◦ φσ = φσ ◦ σr for all r ∈ R. In
other words, kR is the field of moduli of the object consisting of the polarized abelian
variety (B, ρ) together with the ring of endomorphisms R ⊆ End(B).

The family of surfaces we are going to consider is the following. For every algebraic
number j ∈ Q let C j be the genus 2 curve with equation

C j : Y 2 =
(
−4 + 3

√
−6 j

)
X6 − 12(27 j + 16)X5 − 6 (27 j + 16)

(
28 + 9

√
−6 j

)
X4

+ 16(27 j + 16)2X3 + 12(27 j + 16)2
(

28− 9
√
−6 j

)
X2

− 48(27 j + 16)3X + 8(27 j + 16)3
(

4 + 3
√
−6 j

)
Let B j = Jac(C j) be its Jacobian with the canonical principal polarization induced by
C j . Some properties of these objects proved in [1] are summarized in the following
statement.

Theorem 6.2 (Baba-Granath)

• The curve C j has field of moduli Q( j). For every σ ∈ GQ( j) such that
σ√−6 j =

−
√
−6 j, the map

(x, y) 7−→
( −2(27 j + 16)

x
,

y(−2(27 j + 16))3/2

x3

)
is an isomorphism

σ
C j → C j .
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• The field Q(
√
−6 j)kO is a field of definition of the endomorphisms of B j .

• The curves C j are QM-curves with respect to O. Moreover, for all j ∈ Q but for 26
values, End0(B j) ' Q6. Under this isomorphism the Rosati involution ′ attached
to the canonical polarization of B j is given by ϕ ′ = µ−1ϕ∗µ, where ∗ indicates the
canonical conjugation of Q6.

• The fields of moduli kR for the canonically polarized Jacobian B j and several rings of
endomorphisms of interest are given in the following diagram:

kO = Q(
√

j,
√
−(27 j + 16))

mmm
mmm

mmm
mmm

QQQ
QQQ

QQQ
QQQ

Q

kR2 = Q(
√
−(27 j + 16)) kR6 = Q(

√
j) kR3 = Q(

√
− j(27 j + 16))

kZ = Q( j).

QQQQQQQQQQQQQ

mmmmmmmmmmmmm

When j ∈ Q the abelian surfaces B j have the property that for every σ ∈ GQ

there exists an isomorphism φσ : σB j → B j , but this isomorphism does not need to
be compatible with End(B j) (indeed, in general it is not compatible with End(B j)).
However, if the algebra of endomorphisms of B j is isomorphic to Q6, then we can
always find isogenies compatible with End(B j). More generally, we have the following
result.

Proposition 6.3 Let B/Q be an abelian variety whose algebra of endomorphisms is a
central simple Q-algebra. Let σ ∈ GQ . If σB and B are isogenous then there exists an
isogeny σB→ B compatible with End(B).

Proof Call D the endomorphism algebra of B, and let φσ : σB → B be an isogeny.
The map ϕ 7→ φσ ◦ σϕ ◦ φ−1

σ is a Q-algebra automorphism of D, since it fixes the
center, which is Q by hypothesis. Then the Noether–Skolem Theorem implies that it
is inner; that is, there exists an elementψσ ∈ D such that φσ◦σϕ◦φ−1

σ = ψ−1
σ ◦ϕ◦ψσ .

Then the isogeny µσ = ψσ ◦ φσ is compatible with D.

Hence, we see that if j belongs to Q and the endomorphism algebra of B j is iso-
morphic to Q6, then B j is a building block completely defined over the field

K = Q
(√
−6 j,

√
j,
√
−(27 j + 16),

√
−2(27 j + 16)

)
.

From now on we assume that End(B j)⊗Q ' Q6. Now we aim to compute the coho-
mology class [cB j ]. The degree component [cB j ] belongs to Hom(GQ ,Q∗/{±1}Q∗2),
and we use the following notation to indicate the elements of this group: for t, d ∈
Q∗ we denote by (t, d)P the homomorphism that sends an element σ ∈ GQ to
d · {±1}Q∗2 if σ

√
t = −

√
t and has trivial image otherwise. An expression of the

form (t1, d1)P · (t2, d2)P · . . . · (tr, dr)P denotes the product of such homomorphisms,
and all elements in Hom(GQ ,Q∗/{±1}Q∗2) admit a (non-unique) expression of
this kind.
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Proposition 6.4 The degree and sign components of [cB j ] are given by

[cB j ] =
(
−(27 j + 16), 3

)
P
·
(
− j(27 j + 16), 2

)
P
,(6.2)

[cB j ]± =
(
−(27 j + 16), 3

)
Q
·
(
− j(27 j + 16), 2

)
Q
· (2, 3)Q .(6.3)

Proof Recall that the degree component is the map σ 7→ δ(µσ) mod {±1}Q∗2,
where µσ is any isogeny µσ : σB j → B j compatible with End(B j). If σ ∈ Gal(Q/kO),
by the definition of kO there exists an isomorphism φσ : σB j → B j compatible with
End(B j) such thatφ∗σ(ρ) = σρ, where ρ is the polarization of B j given by C j . Applying
the definition of δ (see [13, p. 220]) we find that

δ(φσ) = φσ ◦ σρ−1 ◦ φ̂σ ◦ ρ = φσ ◦ φ−1
σ ◦ ρ−1 ◦ φ̂−1

σ ◦ φ̂σ ◦ ρ = 1.

Hence, the degree component is the inflation of a map defined in Gal(kO/Q). Now,
since kO = kR2 · kR3 , we just need to compute δ(µσ) for σ ∈ Gal(Q/kRd ) for d = 2, 3.

Let σ be an element in Gal(Q/kRd ) that does not fix kO. Since

kR2 = Q
(√
−(27 j + 16)

)
and kR3 = Q

(√
− j(27 j + 16)

)
,

in order to prove (6.2) we just need to see that δ(µσ) ≡ d (mod Q∗2). By the defini-
tion of kRd there exists an isomorphism φσ : σB → B compatible with the endomor-
phisms in Rd, but not necessarily compatible with all the endomorphisms. However,
we know from Proposition 6.3 that we can find ψσ ∈ Q6 such that µσ = ψσ ◦ φσ is
an isogeny compatible with all the endomorphisms. Moreover, from the proof of this
proposition we see that ψσ is characterized by the property that

φσ ◦ σϕ ◦ φ−1
σ = ψ−1

σ ◦ ϕ ◦ ψσ, for every ϕ ∈ Q6.

But if we take ϕ ∈ Rd, this particularizes to ϕ = ψ−1
σ ◦ ϕ ◦ ψσ , so ψd commutes with

every element in Rd, which implies that ψd belongs to Rd ⊗ Q . Hence, if we write
Rd = Z[cd], with c2 = ı and c3 = j + ıj, we have that ψd = a + bcd for some a, b ∈ Q .
In fact, b 6= 0 because otherwise the isomorphism ψσ would be compatible with all
the endomorphisms of B j , and this is not the case since we are assuming that σ does
not fix kO. Using the definition of δ(µσ) we see that

δ(µσ) = δ(ψσ ◦ φσ) = ψσ ◦ φσ ◦ σρ−1 ◦ ψ̂σ ◦ φσ ◦ ρ

= ψσ ◦ φσ ◦ φ−1
σ ◦ ρ−1 ◦ φ̂−1

σ ◦ φ̂σ ◦ ψ̂σ ◦ ρ

= ψσ ◦ ρ−1 ◦ ψ̂σ ◦ ρ = ψσ ◦ ψ ′σ.

Now we know that if ϕ ∈ Q6, its Rosati involution is given by ϕ ′ = µ−1ϕ∗µ. Hence,

δ(µσ) = ψσ ◦ ψ ′σ = (a + bcd)(a + bcd) ′ = (a + bcd)µ−1(a− bcd)µ

= (a + bcd)2 = a + db2 + 2abcd,
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and since δ(µσ) must lie in Q∗ and b 6= 0, we see that a = 0 and δ(µσ) ≡ d
(mod Q∗2).

Now, to prove the identity (6.3) we use [16, Theorem 2.8], which gives a formula
for the Brauer class of the endomorphism algebra of a building block. Specialized to
our case, and having computed the degree component, this formula gives

(2, 3)Q = [cB j ]± ·
(
−(27 j + 16), 3

)
Q
·
(
− j(27 j + 16), 2

)
Q
,

and from this (6.3) follows.

A Concrete Example: j = 1/81

Let us now consider the example corresponding to this value of the parameter; let
C = C j and B = Jac(C). We remark that B is QM and not CM, i.e., End(B)⊗Q ' Q6.
Then B is a building block completely defined over K = Q(

√
−6,
√
−3) and it is

strongly modular over K if and only if [cB/K ] ∈ Ext(K/Q,Q∗), that is, if and only
if it can be represented by a symmetric cocycle. In fact, since the degree component
is always symmetric (over an abelian extension), we need to check this property only
for the sign component [cB/K ]± ∈ H2(K/Q, {±1}).

For d = −3,−6 we denote by εd the non-trivial character εd : Gal(Q(
√

d)/Q)→
{±1}. The group H2(K/Q, {±1}) admits a basis as a Z/2Z-vector space consisting of
the classes of three 2-cocycles that we call cε−6 , cε−3 , and c−6,−3 (see for instance [15,
Section 2] for the definition of these cocycles and their properties). Hence, we have
that

(6.4) [cB/K ]± = [cε−6 ]a · [cε−3 ]b · [c−6,−3]c

for some a, b, c ∈ {0, 1}, and [cB/K ] lies in Ext(K/Q, {±1}) if and only if c = 0.
We know that Inf[cB/K ]± = [cB]±, which in this case turns out to be trivial by (6.3).
Since

Inf[cε−6 ] = (−6,−1)Q , Inf[cε−3 ] = (−3,−1)Q , and Inf[c−6,−3] = (−6,−3)Q ,

the only possibilities are a = b = c = 0 or a = b = 1, c = 0. In both cases
c = 0, which implies that [cB/K ]± lies in Ext(K/Q, {±1}), and therefore B is strongly
modular over K.

Let ξ1, ξ2 ∈ H2(K/Q,Q∗) be the cohomology classes with degree component
ξ1 = ξ2 = (−3, 6)P and sign component ξ1± = 1, ξ2± = [cε−6 ] · [cε−3 ], and let
A = ResK/Q B. We have seen that either [cB/K ] = ξ1 or [cB/K ] = ξ2. By direct
computation we see that

Qξ1 [G] ' Q(
√

6)×Q(
√

6) and Qξ2 [G] ' Q(
√

6,
√
−6),

where G = Gal(K/Q). By Proposition 4.5 we see that if [cB/K ] = ξ1, then A ∼Q

A2
g × A2

h for some newforms g and h with EndQ (Ag) ' EndQ (Ah) ' Q(
√

6). On the

other hand, if [cB/K ] = ξ2, then A ∼Q A2
f for some newform f with EndQ (A f ) '
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Q(
√

6,
√
−6). If p is a prime of K, let Lp(B/K,T) be the numerator of the zeta

function of the reduction of B modulo p, and let

Lp(B/K,T) =
∏

p | p

Lp(B/K,TNp),

which is in fact equal to Lp(A/Q,T). By counting points in the reduction of B mod-
ulo primes of K we have computed some of these local factors:

p Lp(B/K,T)−1 = Lp(A/Q,T)−1

5 (1− 4T2 + 52T4)4

7 (1− 2T + 7T2)8

11 (1− 16T2 + 112T4)4

13 (1− 25T2 + 132T4)4

17 (1− 20T2 + 172T4)4

19 (1− 37T2 + 192T4)4

23 (1 + 40T2 + 232T4)4

29 (1− 34T2 + 292T4)4

31 (1− T + 31T2)8

37 (1− 10T2 + 372T4)4

41 (1 + 58T2 + 412T4)4

Some of these factors are of the form (1+epT2 + p2T4)4, and if we had A ∼Q A2
g×A2

h
for some newforms g =

∑
bnqn and h =

∑
cnqn, this would imply that

1 + epT2 + p2T4 = (1− bpT + pT2)(1− σbpT + pT2),

being σ the non-trivial automorphism of Q(
√

6)/Q . A similar relation would hold
for the coefficients cp. But this relation implies that b2

p = c2
p = 2p − ep, which

is impossible for the computed values of ep, because then the coefficients bp and cp

would not lie in Q(
√

6). Therefore, the actual cohomology class is [cB/K ] = ξ2 and

A ∼Q A2
f for some newform f =

∑
anqn with the an generating Q(

√
6,
√
−6).

However, Proposition 3.3 tells us that there also exists a variety in the Q-isogeny class
of B completely defined over K and with cohomology class ξ1. We will find such a
variety as the Jacobian of a quadratic twist of C .

Let γ = 2 −
√

2. The extension K(
√
γ)/Q is Galois, and an easy computation

shows that the cohomology class associated with (6.1) in this particular case is [cε−6 ] ·
[cε−3 ]. Hence, the variety Bγ is completely defined over K and [cBγ/K ] = cB/K · [cε−6 ] ·
[cε−3 ] = ξ1. Arguing as before we see that Aγ = ResK/Q Bγ is Q-isogenous to the
square of a product of two modular abelian varieties with field of Fourier coefficients
equal to Q(

√
6). In S2(Γ0(24 ·35)) we find a newform with field of Fourier coefficients

Q(
√

6) and Fourier expansion

g = q +
√

6q5 − 2q7 +
√

6q11 − q13 + 3
√

6q17 + q19 −
√

6q23 + · · · .
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Let ε be the quadratic Dirichlet character of conductor 8 satisfying ε(3) = ε(5) =
−1. Let h = g ⊗ ε, which is a newform in S2(Γ0(26 · 35)). In the following table we
list some local factors of the L-functions corresponding to the varieties Bγ/K, Ag/Q ,
and Ah/Q .

p Lp(Bγ/K,T)−1 = Lp(Aγ/Q,T)−1 Lp(Ag/Q,T)−1 Lp(Ah/Q,T)−1

5 (1 + 4T2 + 52T4)4 (1 + 4T2 + 52T4) (1 + 4T2 + 52T4)

7 (1 + 2T + 7T2)8 (1 + 2T + 7T2)2 (1 + 2T + 7T2)2

11 (1 + 16T2 + 112T4)4 (1 + 16T2 + 112T4) (1 + 16T2 + 112T4)

13 (1 − T + 13T2)4(1 + T + 13T2)4 (1 + T + 13T2)2 (1 − T + 13T2)2

17 (1 − 20T2 + 172T4)4 (1 − 20T2 + 172T4) (1 − 20T2 + 172T4)

19 (1 − T + 19T2)4(1 + T + 19T2)4 (1 − T + 19T2)2 (1 + T + 19T2)2

23 (1 + 40T2 + 232T4)4 (1 + 40T2 + 232T4) (1 + 40T2 + 232T4)

29 (1 + 34T2 + 292T4)4 (1 + 34T2 + 292T4) (1 + 34T2 + 292T4)

31 (1 − T + 31T2)8 (1 − T + 31T2)2 (1 − T + 31T2)2

37 (1 − 8T + 37T2)4(1 + 8T + 37T2)4 (1 − 8T + 37T2)2 (1 + 8T + 37T2)2

41 (1 + 58T2 + 412T4)4 (1 + 58T2 + 412T4) (1 + 58T2 + 412T4)

We have checked the equality of the local factors of the L-functions of Aγ and A2
g×A2

h
for all primes p < 1000 (p 6= 2, 3) and this suggests that Aγ ∼Q A2

g × A2
h.

Comparing the local factors Lp(B/K,T) and Lp(Bγ/K,T) we can also find a mod-
ular form f such that A ∼Q A2

f as a twist of g. More precisely, let ψ be the Dirichlet

character of order 4 and conductor 16 such that ψ(3) = −
√
−1 and ψ(5) =

√
−1.

The modular form f = g⊗ψ is a newform in S2(Γ0(28 ·35), ψ2) and the local factors
Lp(B/K,T) and Lp(A f ,T)2 coincide for all primes p < 1000 (p 6= 2, 3).

A Concrete Example: j = −4/27

We now consider another example, corresponding to the stated value of j. The
Jacobian B of the curve C j is also a building block completely defined over K =
Q(
√
−6,
√
−3), but a similar analysis shows that in this case the only possibilities for

[cB/K ]± have c = 1 in the expression (6.4), and therefore [cB/K ]± is not symmetric.
This means that no variety in the isogeny class of B is strongly modular over K. If we
let, for instance, L = K(

√
−1), it is easy to see that there exist symmetric elements

of H2(L/Q, {±1}) whose inflation to GQ is [cB]±, and then by Proposition 3.4 and
Theorem 5.3 there exists a variety isogenous to B completely defined and strongly
modular over L.

Thus, in this case we have seen that it is enough to go to a quadratic extension
L of K to find a variety in the isogeny class of B that is strongly modular over L.
However, in the family {B j} j∈Q we can find varieties where any minimal field L with
this property is arbitrarily large. In fact, by Theorem 5.4 this is equivalent to find in
this family varieties where the degree of any splitting field is arbitrarily large. We will
see this by means of the following lemma.

Lemma 6.5 Let r > 2 be an integer and let p be a prime such that p ≡ 1 (mod 2r)
and p ≡ −1 (mod 3). Then the order of any splitting character for B1/p is at least 2r.
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Proof For simplicity we call B the variety B1/p, and let [cB] be its attached cohomol-
ogy class. By (6.3) the sign component [cB]± is given as the following product of
quaternion algebras:

[cB]± =
(
−(27 + 16p)/p, 3

)
Q
·
(
−(27 + 16p), 2

)
Q
· (2, 3)Q .

Applying the formulas for computing the local Hilbert symbols at p we find that(
−(27 + 16p)/p, 3

)
p

= −1,
(
−(27 + 16p), 2

)
p

= 1, (2, 3)p = 1,

and this implies that the local component of [cB]± at the prime p is−1. But [cB]± =
[cε], where ε is the splitting character associated with any splitting map α for B. We
can identify ε with a primitive Dirichlet character of a certain conductor N, and if
εp denotes the component of ε modulo the largest power of p dividing N, then the
local component of [cε] at p is given by εp(−1). The value εp(−1) = −1 is taken by
the characters of order multiple of 2ord2(p−1), and it follows that ord(ε) > ord(εp) >
2ord2(p−1), which is at least 2r by our choice of p.

Proposition 6.6 For any integer r there exists a variety B in the family {B j} j∈Q such
that any splitting field for B has degree at least 2r.

Proof Take a prime p as in the previous lemma, and take as B the variety B1/p. Let
α be any splitting map for B, and let ε be its associated splitting character. Then we
have that [Kα : Q] > [Kε : Q] > 2r.

From Lemma 6.5 we can derive another interesting consequence.

Proposition 6.7 Let g be any natural number. There exist varieties B in the family
{B j} j∈Q such that every Q-simple abelian variety A of GL2-type having B as its simple
factor is of dimension dim A > g.

Proof Let r be an integer such that ϕ(2r) = 2r−1 > g, and take B = B1/p with p
a prime as in Lemma 6.5. If A is a simple abelian variety of GL2-type that has B as
its simple factor, the field E = End0

Q (A) is isomorphic to Eα for some splitting map
α for B. The field Eα contains the values of the splitting character ε associated with
α. Therefore, it contains the 2r-th cyclotomic extension, and we have that dim A =
[Eα : Q] > ϕ(2r) > g.
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Lectures, 1, Publications of the Mathematical Society of Japan, 11, Iwanami Shoten, Publishers,
Tokyo; Princeton University Press, Princeton, NJ, 1971.

[20] W. Stein. Modular forms: A computational approach. With an appendix by Paul Gunnells. Graduate
Studies in Mathematics, 79, American Mathematical Society, Providence, RI, 2007.

[21] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. 141(1995),
no. 3, 553–572. http://dx.doi.org/10.2307/2118560

[22] A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141(1995), no. 3,
443–551. http://dx.doi.org/10.2307/2118559

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany and Departament de Matemàtica
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