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On the norming constants occurring

in convergent Markov chains

Harry Cohn

Several theorems concerning the norming constants {a } and

[b } making a normed Markov chain {a (x *b ) : n > 0}

convergent in distribution (or in probability) are given. It is

shown that if Renyi 's mixing condition holds, lim a la = 1

and lim a (b -b ) = 0 , whereas in the general case

lim a la = a with a t 0 and lim a [b -b J = B exist and

are finite. Examples regarding maxima of independent and

identically distributed random variables, random walk, and

branching processes are considered.

1 . I n t r o d u c t i o n and r e s u l t s

Let (ft, F, P) be a probability space and {X : n > o} a real

valued Markov chain assuming stationary transition probabilities defined on

this space. Let y be the initial probability distribution and P(x, B)

the transition probability function of the chain, y is defined on the

family 8 of the borelean sets of the real line R and P{x, B)

satisfies the conditions:

(i) P{x, •) is a probability on 8 for every x € R ,

( i i ) P(', B) is a Borel measurable function for each S € 8 .
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I 94 Harry Cohn

The n-step transition probability function is defined recursively by

setting P1(x, B) = P(x, B) and Pn(x, B) = j P*"1^, dy)P(y, B) . Write

{y : n 5 0} for the sequence of absolute probability distributions of the

chain; that is y (B) = P{x € Bj for B (. 8 and n = 0, 1, . . . . Then

(1) P^Cx, B) = P{xn IB \ Xm=x)

almost surely with respect to y , where by an abuse of notation we have

denoted by P(x € B \ X = x) a variaht of the conditional probability of

the event {X € B] with respect to the a-field generated by X

Besides the originally defined probability measure P corresponding

to a Markov chain assuming the initial probability measure y and the

transition function P(x, B) , we shall also consider the probability

measure P corresponding to a chain assuming the initial probability

measure e and the transition function P(x, B) . Here £ is defined

by e (B) = 1 if y f B and 0 if j { J for B € 8 .

CO

Denote by r the a-field generated by the random variables

oo

X , X . , ... and by T = D F°° the tail a-field of the given chain. T
n * + 1 «=0 n

will be said to be trivial if it contains' only events of probability 0 or

1 . T will be said to be finite if there are only a finite number of non-

equivalent events in T , whereas A and B are called equivalent if

P(A A B) = 0 , A being the symmetric difference of two sets. Set

Y = a [X +b ) , n = 0, 1, ... where {a } with a > 0 and {b } are

two sequences of constants.

According to Renyi [6] we shall say that a sequence of random

variables {Y : n - o} is mixing with limiting distribution F , if F

is a nondegenerate distribution function such that

(2) lim P[{y 5 x} n fl) = F{x)P(B)
«-**> n

for any B € 8 and x any continuity point of F .
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Let H be the Hahn set occurring in the Lebesgue decomposition of

U with respect to y , that is the set satisfying the equality

(3) Vn(B) = un{B n Hn) + y j f l n flj)

„ {A
for any B € B , where H i s the complementary se t of H , y n \n \ = 0

n n n—1 \ n]
and y (• n H ) is absolutely continuous with respect to y .

THEOREM 1. Suppose that

(i) {¥ : n 2 o} is mixing with limiting distribution F ,

(ii) lim p (B 1 = 1 .
n n

Then lim a la -, = 1 and lim a [b -b A = 0 .
w w+l MV n n+i^rt+1

Proof. We shall prove that lim P[a (z +b ) 5 x) = F{x) for x any

continuity point of F . Toward this aim, let us first notice that

= 1*1
If we write now A = {Y - x} and make use of (l) and (3), we obtain

L
m+1

L
Further (2) y i e l d s

m+1

For the second integral in (h) we get the inequality

P\X - — - b I
( n+1 a w

*m+l
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Now using (ii) in (5) and (6) and taking into account (U) we deduce that

{a [X +. ••£> ) : n > 0} converges in distribution to F and the theorem

follows from a well known result due to Khintchine (see Loeve [4] ,

Corollary, p. 205).

REMARK I . A condition of type (ii) relating the absolute probability

distributions of the chain seems necessary for the validity of Theorem 1.

Indeed, if we do not assume any restriction on {y } , we may have a

situation when all u and y with m + n are singular; that is the
m n

set of values assumed by the chain variables are pairwise almost surely

disjoint. The stationarity of the transition probabilities is in such a

case of no use whatsoever and we can easily imagine converging chains of

this kind for which the constants \a } and \b } do not behave in the

way described in the above theorem.

REMARK 2. Condition (ii) may be replaced by the requirement that y

is absolutely continuous with respect to p . The proof in this case is

much easier and is left to the reader. This result is related to an

example given^by Renyi and Revesz [7], p. 392, where they proved that if

lim P [Y 5 x) = Fix) for all x continuity points of F and y € H

with uQ(#) = 1 and if lim a la = 1 , lim a (b -b ) = 0 , then

{Y : n > 0] is mixing with limiting distribution F . .As we have seen in

Remark 1 the restriction Pn(#)
 = 1 is not sufficient and was due to an

oversight; in fact in their proof Rê nyi and ReVe"sz used that p is

absolutely continuous with respect to \i for all n . The latter

condition can be shown to be implied by the assumption that y is

absolutely continuous with respect to p . Indeed Pn(<4) = 0 implies

U±(A) = 0 . But

= I P(x, A)\iQ(dx) .

It follows that P(x, A) = 0 almost surely, both with respect to y and
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y . Since

r
\x^{A) = P(x, A)\x Adx) ,

we get y?(.4) = 0 , and so on. Thus we have

THEOREM 2. Suppose that

(i) for almost all y with respect to y , \Y : n > 0}

converges in distribution, under the probability measure

P , to a nondegenerate distribution function F ,

(ii) y is absolutely continuous with respect to u. .

Then lim a la = 1 and lim a [b -b ) = 0 is a necessary and

sufficient condition for {X : n > 0} to be mixing with limiting

distribution F .

We shall next deal with the case when the limiting distribution

function of {Y : n > o} considered under the probability measure P

depends on y when y varies in the set of values assumed by X .

THEOREM 3. Suppose that

(i) for almost all y with respect to yQ , {Y : n > 0}

converges in distribution, under the probability measure

P , to a continuous and strictly increasing distribution

function F ,

(ii) y is absolutely continuous with respect to y_ .

Then there exist.the limits lim a la , = a and lim a [b -b ..) = 8

_̂ _ n n+1 nK n n+lJ

n-xx> n-xx>

with -°° < a, 8 < °° and a # 0 .

Proof. Plainly, for any x ,
(T) P(rn s *) = | P{Yn 5 x \ XQ = y)vo(dy) .

According to Cij , lim P(l 5 i | I = j) = F
u ^ f o r a l m o s t a 1 1 2/
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with respect to \i and, therefore, by the dominated convergence theorem,

(8) lim P{Y 5 x) = F(x) = [ F (x)v(dy) .

It is easy to check that F is a continuous distribution function and

hence that {Y : .« - 0} converges in distribution to a nondegenerate F

-Further by the Markov property and (ii) we get

(9) *(«n(*B + 1*B)
s 'I - J *(*B+1 = r - K

= j ̂  ^ xh

where X = du /du. is the Radon-Nicodym derivative of u. with respect to

u. . Using (i.) in (9) .we get that {a [X • +b ) • n - 0} converges in

distribution to a nondegenerate limit distribution and the theorem now

follows from KhintcMne's Theorem concerning convergence of types (see

Loeve 141, p. 203).

The assumption (i) of Theorem 3 is not always satisfied in practice.

On the other hand, to modify the initial probability distribution in order

to make the chain satisfy (i) is not always feasible, since some convergent

properties of the chain may not be invariant under the change of the

initial distribution. In such cases we need to consider conditions of a

different type. The next theorem will provide a result of this kind.

THEOREM 4. Suppose that

(i) {l : n 2 0} converges in probability to a random variable

Y assuming a nondegenerate distribution function F ,

(ii) lim p [H ) = 1 .•
«-**> n n

Then there exist the limits lim a la , = a and lim a [b -b , J = B
__ n n+1 _^ nK n n+1'
n**> w-*°°

with -°° < a, 8 < oo j and a t 0 .

Proof. From the convergence in probability it follows that if we

denote A = {Y - x] , then lim P[A A A ) = 0 whenever x is a continuity
v n'
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point of F . Therefore

(10) lim p{An | Xm = y] = p(A \ \ = h)

almost surely with respect to u
m

F u r t h e r , i n v iew of ( 3 ) ,

P{\ \Xm = „) = P(an{Xn+1+bn) S x

almost surely on Hn

Therefore

+ P(a (X +b } 5 x
J v nK n+1 nJ

On the other hand (10) yields

m+1 ^ 1

For the second integral of the right member of (ll) we get the inequality

m+1

Thus, by (11), (12), and (13) we obtain

Taking into account that the first member of this inequality does not

depend on m and making use of (ii) we get that

(15) lim P[an[Xn+1+bn) 5 x) = Fx(x) (say)

exists for x any continuity point of F .

Because F is clearly a monotone function, to prove that it is a

distribution function we need only check that F (-°°) = 0 and F {<*>) = 1
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We choose to prove that F (°°) = 1 . To that aim let us notice that by the

dominated convergence theorem

(16) xim j P[A I Xm = y m+X'
"m+X

Taking now in (ll) the limit as n •* °° and then the limit as x •*• °° and

using (12) and (16), we get

which by (ii) tends to 1 as m •* °° .

Next, we shall prove that F is a nondegenerate distribution

function. To do this it will be sufficient to show that for any interval

(a, b] with the property P[l € (a, b]) > 0 one has F (b) - F (a) > 0 ,

because by the assumption (i) there must exist at least two such intervals.

But, as above, we can prove that

(IT) FAb) - F (a) > P[Y € (a, b] \ X = y
± ± JH m

m+X

On the other hand, it is easy to see that

(18) vm{{x : P[Y € (a, b] | ̂ = y) > 0}) 5 P{Y € (a, b]) .

In view of the fact that y and y are subjected to the restriction
m m+X

(ii) , (IT) and (18) together yield FAb) - FAa) > 0 . ' Now the theorem

follows from the same result of Khintchine mentioned in the proof of

Theorem 3.

THEOREM 5. Suppose that

(i) {Y : n 5 0} with b = 0 for all n converges in

probability to a random variable Y with P(Y t 0) > 0 ,

(ii) lim y [H ) = 1 .
nK n1

Then lim a /a = a with a 4- 0 exists and is finite and if a i- 1 , Y

assumes an infinity of values.
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Proof. Notice first that the condition (i) differs from the

corresponding one of Theorem k by the supplementary restriction b = 0

for all n , whereas Y is not required to have a nondegenerate

distribution function. However, we can still obtain that lim a la = a

exists and is finite, because the whole proof of Theorem k can be copied

here unchanged, except for Khintchine's result which can be replaced by the

following

LEMMA. Suppose that {a X : n 5 0} with {a } a sequence of

constants converges in distribution to a limiting distribution function F

with the property F(0) - F(O-) < 1 . If {a1} is another sequence of

constants such that {a'X : n >*o} converges in distribution to a

limiting distribution function F' which has the same property as that of

F mentioned above, then lim a la' = a with a # 0 exists and is finite.

The proof of this lemma is simpler than that of Khintchine's Theorem

and is left to the reader.

Turning now to the proof of the theorem, we notice that it remains

only to prove that if a / 1 , Y assumes an infinity of values. If F

is strictly increasing and continuous in a certain interval of the real

line, there is nothing to prove. Therefore, suppose that there exists a

value a such that P(Y = a) > 0 . According to (i) we can take a # 0 .

By an argument similar to that used before to prove the positivity of (17)

we can deduce that if Y' stands for the limit in probability of

{a X + : n 2 0} (as n -* °° ) then P(Y' = a) > 0 . But Y = aY' , and

therefore Y assumes with positive probability the value aa . Further,

as we have seen before, the same will hold for Y' . Hence Y will assume

2 n
with positive probability the values a, aa, a a, ..., a a, ..., and the

theorem follows.

COROLLARY. Suppose that

(i) [Y : n 5 0} with b = 0 for all n converges in

probability to a random variable Y with P(Y # 0) > 0 ,
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(ii) lim u [H) = 1 ,

(Hi) the tail a-field T is finite.

Then l im a la . = 1 .
M W + 1

Proof. It suffices to notice that because Y is T-measurable, Y

must assume at most a finite number of values if T is finite and then to

apply Theorem 5•

2. Examples

1 . Any normed Markov chain converging in distribution to a non-

degenerate limit distribution and assuming a trivial tail a-field for

every initial distribution satisfies the assumptions of Theorem 1. Indeed,

we need o.ly check condition (ii) . By a result due to Jamison and Orey

(Orey [5], p. 20) for any probability measures X and v ,

(19) lim ||XP"-vPn|| = 0 ,
tt-»°

where by ||n|| we mean the norm of the signed measure n ; that is

INI = 2 sup | n ( B ) | •
B€B

If we take X = uQ and v = y_P in (19), we get lim ||u -u || = 0 ,

and (ii) follows.

2. The Markov chain {x : n > 0} with X = max(Y , ..., Y ) and

{Y : n > o} a sequence of independent and identically distributed random

variables also satisfies the assumptions of Theorem 1, if it converges in

distribution to a nondegenerate F . Indeed, it is easy to see that

{u : n > o} are equivalent measures, whereas the tail a-field of the

chain is trivial by the Hewitt-Savage 0 - 1 law (see Hewitt and Savage

[2]). In this case,the conclusion of Theorem 1 has been previously

obtained by Richter (see Richter [S], Folgerung T.k and Richter [9], the

proof of Satz h). However his method does not seem extendable to a more

general context, because it leans heavily on the particular form of the

sequence of maxima considered.
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3. Condition (ii) of Theorem 1 is sometimes not satisfied by some

types of Markov chains for which nevertheless its conclusion holds. Take

for example the random walk case, that is X = Y + ... + Y , where

{Y : n 2 l} is a sequence of independent and identically distributed

random variables. The tail a-field of such a sequence is also trivial by

the Hewitt-Savage above mentioned 0 - 1 law, but may fail to stay trivial

under a different initial distribution. Indeed if Y^ is Bernoulli

distributed with values -1 and +1 assuming the probabilities p and q

then we can easily see that y an(i u n
 a r e singular for each n .

However we can modify the initial distribution of the chain by taking

instead a measure assuming positive probability for any state

i = ..., -1, 0, 1, ... . The new Markov chain obtained in this way is also

mixing with the same limiting distribution F , but now {p : n i 0} are

equivalent measures and condition (ii) of Theorem 1 is satisfied.

4. We shall next consider examples pertaining to Theorems 3 and h.

Let {Z : n 2 O} be a simple branching process and {p. : i. > o} its

oo

offspring distribution. It has been shown that if m = Y, £p• > 1 , then
i=l %

there exist some norming constants {C } such that {Z /C } converges

almost surely to a nondegenerate limit (see Seneta [10] and Heyde [3])5

whereas lim C /C , = m . Recently some properties asserting the

convergence in distribution of {log(Z +l) /C } for suitably chosen

constants {C } were found in the case m = °° (Darling [/] and SenetaC }

Because {log(z +l) : n 2 0} is also a Markov chain with stationary

transition probabilities, it raises the question whether lim C +-,/C
 = ot

for a certain a > 0 . This question can be answered in the positive in

the case when Z = 1 almost surely, and {log(z +l) /C } converges in

distribution to a continuous and strictly increasing distribution function

(Seneta [ H ] ) . Indeed, as before we can choose a new initial distribution
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y such that yQ(i) > 0 for all i = 0, 1, ... . Then

P.(log(z +l) /C 5 x) converges in distribution to the convolution of i

random variables, each of them assuming the distribution function

lim P(log(z +l)/C 5 x) and the conditions of Theorem 3 are satisfied. We
n-m

 n

mention that results of such a kind are proved in the branching processes

literature by complicated analytical methods involving the study of the

iterates of the generating function.

REMARK. It is interesting to note by comparing the results and

examples given above that a Markov chain satisfying Renyi's mixing

condition, and in particular one assuming a trivial tail o-field, may admit

in general a slower convergence rate than a Markov chain of a different

type, if the chains converge in the sense mentioned in the conditions

considered here. However, one should not conclude that a Markov chain can-

not grow more quickly than geometrically, because a counterexample of this

assertion would be provided by the branching processes with infinite mean

for which {log(Z +l)/C } converges to a nondegenerate limiting

distribution (Example k) . The rates of growth stated by the results given

here pertain only to the case when convergence in distribution (or

probability) holds.
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