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To the memory of David Gottlieb

Abstract. This article is a brief survey of David Gottlieb’s extraordinary research ca-
reer. It is impossible to give a thorough presentation of all his research and the impact
of his work, but we shall describe the main contributions and give examples of the
results in some of his papers. David was for many years the dominating person in the
development of spectral methods, and we devote much of the space in this article to
this field.
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1 Introduction

This article is a brief survey of David Gottlieb’s extraordinary research career. He pub-
lished 125 papers and two books, and made an outstanding contribution to the field of
numerical analysis. He had an unusual width in his work, and most types of numerical
methods for PDE are included in his work. Fig. 1 shows an approximate distribution of
his interest and production over the years.
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Figure 1: Distribution of David Gottlieb’s research.

The first part containing some theoretical results about ordinary differential equations
originates from his Master’s work at Tel Aviv University.

It is impossible to give a thorough presentation of all his research and the impact of
his work, but we shall describe the main contributions and give examples of the results in
some of his papers. David was for many years the dominating person in the development
of spectral methods, and we devote much of the space in this article to this field.

The list of publications at the end includes slightly more than a third of David’s pa-
pers, and is limited to references made in the text. There are certainly many other sig-
nificant papers, and many other coauthors who should be mentioned. But this would
require a more complete biography.

2 Life in two countries

Born in Tel Aviv 1944, David Gottlieb spent his first 28 years in Israel. Like everyone else
he had to make his military service, which lasted for three years. But not only that. He
hade to fight a war in 1967, a kind of experience that is not shared by many mathemati-
cians in the world.

Even if he was a talented mathematician, his main interest in early life was history.
When he was wandering around the campus of Tel Aviv University to look for the his-
tory department, he encountered a mathematics professor who was inquiring about his
errand. After a short conversation, David was invited to the mathematics department,
and that was the start of his academic career in mathematics. The Masters degree under
S. Breuer was followed by the PhD 1972 with Saul Abarbanel as the advisor.

Abarbanel had spent many years at MIT in Boston, and he arranged for David to visit
the Department of Applied Mathematics there as a postdoc. His thesis was about con-
struction of difference methods of split type for nonlinear partial differential equations,
and it was therefore quite natural to work with one of the world’s best specialists in that
topic, Gilbert Strang. However, things took a different turn when he met Steve Orszag,
who was interested in spectral methods for PDE. This came to be David’s main research
line.
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Figure 2: David Gottlieb at his office at Tel Aviv University 1977.

In 1973 the Institute of Computer Applications in Science and Engineering (ICASE)
was created, mainly sponsored by NASA and located at NASA Langley Research Center
in Hampton, Virginia. ICASE sponsored summer visits by researchers who were inter-
ested in applications, mainly fluid dynamics. David made his first visit there 1974, and it
was followed by frequent visits until the end of ICASE’ existence.

In 1976 it was time to decide whether or not to stay in USA. David and his wife had
strong ties to Israel, and the decision was to go back. He got a position as Senior Lec-
turer at the mathematics department of Tel Aviv University, and his career went straight
upwards from there. The picture above (Fig. 2) shows him at his office in Tel Aviv 1977.

His ties with USA remained, and every summer he visited ICASE. In 1985 he accepted
an offer from Brown University, and from then on, he and his family lived in Providence,
R.I., of course with many visits in Israel.

Fig. 3 is a sketch of David’s whereabouts over time.
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Figure 3: The whereabouts of David Gottlieb.

3 Spectral methods

Spectral methods is a very general concept that could apply to all sorts of applications.
For a one-dimensional problem the basic idea is to represent the solution u(x) to a certain
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problem as a series

u(x)=∑
j

cjφj(x),

where the basis functions φj(x) are known. The problem is to find the coefficients cj. For
theoretical purposes the sum may be infinite, but when computing it has to be finite. The
most well known basis functions are the Fourier modes eijx, and if the coefficients are
found from a given measured function f (x), we talk about spectral analysis. This tech-
nique has been known for centuries, but not as a numerical method for computing the
solution to PDE. In the late sixties, Steve Orszag was making the first attempts by using
Fourier series for problems in turbulence. In 1970 he was visiting National Center for
Atmospheric Research (NCAR) in Boulder, Colorado, and made the first large scale com-
putations on the powerful computer that was located there. His first publication was [53]
on the Galerkin version. At the same time Heinz Kreiss was visiting the computational
group at NCAR with Joe Oliger as one of the members, and they started looking into
this new class of methods from a more theoretical point of view. They advocated the col-
location spectral method, later called the Pseudospectral method, and the first publication
of their results was [51]. It was later followed by [17] written by Kreiss’ student Bengt
Fornberg.

David Gottlieb came to MIT as a postdoc 1972, and soon he started working with
Orszag on spectral methods. They had a broad approach, introducing polynomials as
basis functions as well. There are no publications from David on this topic, until the
170 page book [34] appeared 1977. This book came to be the main publication on spec-
tral methods for many years. After this book, David published around 50 papers on the
topic. A complete description of the state of the art was given in the new book [49] pub-
lished 2006 with his daughter Sigal Gottlieb and his coworker Jan Hesthaven at Brown
University.

Fig. 4 shows the distribution of his production on spectral methods. The feature with
a book at each end is striking.

1980 1990 20001975 2008

Book Book

Figure 4: Distribution of publications on spectral methods.
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Even if most of the basic concepts were described in the first book, there were many
fundamental difficulties remaining. The major ones were stability, formulation of bound-
ary conditions for polynomial methods, and handling of discontinuities which cause the
Gibbs phenomenon.

Beginning with the stability, there were new difficulties already with periodic prob-
lems and the Fourier method. The theory for difference methods for this class of prob-
lems was fairly complete at this time with the work of Lax and Kreiss as a fundamental
part. Fourier methods are of course very well adapted to Fourier analysis leading to the
von Neumann condition for constant coefficient equations, but with variable coefficients
things become worse. For a hyperbolic PDE

∂u

∂t
= a(x)

∂u

∂x
,

a semidiscrete approximation has the form

du

dt
= AQu,

where u is a vector containing the grid values. The matrix A contain the coefficient values
a(xj) in the diagonal, and the matrix Q has the form Q= F−1iωF, where F is the discrete
Fourier transform. If Q is a difference operator leading to stability for constant coeffi-
cients a(x) = a, then stability follows for variable Lipschitz continuous coefficients a(x)
by the commutation property QA(x) = A(x)Q+O(1). Unfortunately this relation does
not hold for Fourier methods, and other techniques must be used. There was particular
uncertainty about the case where a(x) changes sign in the computational domain. In [35]
the issue was settled, and it was shown that the solution satisfies the estimate

||uN(t)||≤ ect||uN(0)||+| f̂N |(ect−1),

where f̂N is the highest Fourier coefficient of the initial data. For practical purposes this
estimate may not be good enough, since it allows for exponentially growing solutions,
and in analogy with difference methods it may be necessary to introduce dissipativity by
damping out the higher frequencies.

Compared to difference methods, spectral methods have a more direct connection to
the underlying PDE, either by taking scalar products with the differential equation or
by requiring that the differential equation is satisfied at the discrete collocation points.
These points are carefully chosen for each class of polynomials, and in most cases they
are chosen as the so called Gauss-Lobatto points associated with numerical integration.
For Chebyshev methods they are xj =−cos(jπ/N). The explicit connection between the
continuous and discrete case is given by the relation

N

∑
j=0

p(xj)
√

1−x2
j

wj =
∫ 1

−1

p(x)√
1−x2

dx, xj =−cos
( jπ

N

)

,
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which holds for each polynomial p(x) of degree ≤2N−1 and certain positive weights wj.
By using this relation, David proved stability in the form

N

∑
j=0

u2
N(xj,t)

σ(xj)
wj ≤

N

∑
j=0

u2
N(xj,0)

σ(xj)
wj

for parabolic equations ut =σ(x)uxx with Dirichlet boundary conditions.

A similar relation opened up for a stability proof also for hyperbolic problems of the
type

∂u

∂t
= a(x)

∂u

∂x
, a(x)>0,

u(1,t)=0.

The results were presented in [23], where also the more difficult problem

∂u

∂t
=±x

∂u

∂x

was treated.

The time discretization of polynomial spectral methods is a challenge by itself. For
Chebyshev polynomials the clustering near the boundaries is obvious from the shape
of the cos-function. We have cos(∆x) = 1−O(∆x2), and for hyperbolic equations this
leads to severe stability limits of the form ∆t≤O(∆x2) for standard explicit difference ap-
proximations. For parabolic equations one gets even more severe conditions of the form
∆t≤O(∆x4). This makes the classical Du-Fort Frankel method an interesting candidate,
since it is unconditionally stable for the standard second order difference approximation
in space. Actually it was shown in an early paper [25] how to generalize it for the Fourier
collocation method. In [31] unconditional stability was proven for the Du-Fort Frankel
Chebyshev method.

A new approach was taken in the papers [32, 33], where the Kreiss theory based on
Laplace transform in time was used. Stability and convergence was proven for systems
of hyperbolic initial-boundary value problems.

In [42] stability is proven for Runge-Kutta methods up to order 3 for general Jacobi
polynomials including Chebyshev and Legendre polynomials. The article provides a
very insightful explanation of how the CFL-limit depends on the eigenvalues of the
Sturm-Liouville problem that is associated with the particular type of polynomial. As
a consequence, there is a precise stability criterion also for the variable coefficient case. If
the variable coefficient is a(x), the criterion has the form

∣

∣

∣

a(xj)∆t

∆xj

∣

∣

∣
≤ c
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for some constant c. If the coefficient a(x) is small where the grid points are clustered,
this is a less restrictive condition than

maxj |a(xj)|∆t

minj ∆xj
≤ c,

which is a common type of criterion when standard analysis is used.
The boundary conditions play an important role for the theory as well as for the im-

plementation of polynomial methods. For Galerkin methods, the basis functions are re-
quired to satisfy the boundary conditions given for the PDE. This requirement is relaxed
in the tau version, such that the combination of all basis functions forming the final nu-
merical solution satisfies the boundary condition, not each basis function by itself.

For the collocation version, this technique may be applied as well, but now with the
unknown coefficients determined by the collocation principle. But here is where a new
development took place. Penalty methods have been used extensively not only in opti-
mization problems, but also in Galerkin finite element methods. In [18], Daniele Funaro
introduced it as a way to enforce the boundary conditions for elliptic problems solved by
domain decomposition methods. This idea was now carried over to time dependent hy-
perbolic problems in joint work with David, see [19, 20]. The boundary point is included
as a collocation point, but an extra penalty term is added to the differential equation. For
the scalar case

∂u

∂t
=

∂u

∂x
, −1≤ x≤1,

u(1,t)= g(t),

and the polynomial approximation uN(x,t), we get the boundary equation

∂uN

∂t
(1,t)− ∂uN

∂x
(1,t)+α

(

uN(1,t)−g(t)
)

=0.

Stability and spectral accuracy is obtained if the coefficient α is chosen of the order N2.
This technique was later called SAT methods from Simultaneous Approximation Term.

It has become quite popular, and is now used as a standard technique also for difference
methods. For internal boundaries arising from material discontinuities or domain de-
composition methods, it is particularly convenient.

4 Gibbs phenomenon

When approximating a discontinuous function by a finite Fourier series, nonphysical
oscillations occur. No matter how many terms are used, there will always be a point next
to the discontinuity that has an O(1) error as shown in Fig. 5. This type of oscillations
will occur whenever spectral methods are used for PDE, if the solution has shocks or
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Figure 5: Fourier series approximation of a discontinuous function.

contact discontinuities. Because of the global character of polynomial methods, they will
show the same type of behavior as Fourier methods do. This is a serious limitation of
spectral methods, but David and others set out to do something about it.

The first paper on this topic was [41], where an improvement of the original oscil-
latory solution was obtained by convolution with a regularization kernel, see also [5].
In [9] even better solutions were obtained by adding a sawtooth function to the original
Fourier modes. The improvement here was the removal of the error also in the immediate
neighborhood of the discontinuity.

Ami Harten was at the time one of the leading researchers in shock capturing finite
difference methods, and a collaboration with him and David’s former student Wei Cai
produced an essentially nonoscillating Chebyshev method, [8]. The central problem here
is the transformation between point values and cell averages. This is a trivial operation
for finite difference and Fourier methods, but not for Chebyshev polynomials.

The paper [10] started a new approach by considering the basic approximation prob-
lem of representing a discontinuous function by a finite spectral expansion. By using
a least square procedure for constructing one-sided filters, the Gibbs phenomenon was
removed. This was followed up in a fruitful cooperation with Chi-Wang Shu, which re-
sulted in no less than 5 papers called ”On the Gibbs Phenomenon I,II,III,IV,V”, see [36–
40]. The main approach is the introduction of Gegenbauer polynomials, which satisfy

∫ 1

−1
(1−x2)λ− 1

2 φλ
j (x)φλ

k (x)dx=0, j 6= k,

where λ is a free parameter. The Fourier series, which converges poorly, is postprocessed
by expanding it in a Gegenbauer series. The authors prove that this results in an expo-
nentially accurate solution in any subinterval where the solution is analytic.

The Galerkin case is treated in the first four papers, while the collocation case is
treated in the fifth one. The whole series of papers is pure approximation theory without
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Figure 6: Nozzle flow.

any connection to differential equations. The basic question is how to get a good ap-
proximation of a given discontinuous function, with known location of the discontinuity.
When solving PDE with spectral methods, the location is part of the solution, and the first
problem is to find it. Various methods have been used for this including edge detection
techniques applied by David’s former student Anne Gelb and others. The situation today
is quite satisfactory for problems in one space dimension, but in several dimensions we
are not yet there.

The difficulties with discontinuities are not limited to numerical solutions obtained
by spectral methods, they show up with all shock capturing methods. Many well work-
ing difference methods based on some form of upwinding have been developed during
the last decades. However, there is one remaining difficulty. If one family of characteris-
tics is propagating through the shock, the accuracy deteriorates on the downstream side
regardless of the formal high order accuracy of the basic method. The nozzle problem
with flow governed by the Euler equations is such an example. Subsonic flow is entering
from the left, goes supersonic at the throat, and goes subsonic again across a shock, see
Fig. 6. Here David came up with a new idea together with his daughter Sigal Gottlieb
and Chi-Wang Shu. The steady state nozzle problem was solved in [47] by using a high
order WENO difference scheme. In order to recover the high accuracy downstream, the
grid values of the numerical solution are used as the basis for Fourier interpolation. This
Fourier series is then used for Gegenbauer reconstruction as described above, and the
numerical results are very good.

This is a nice example of the influence of David’s work. The work on Gibbs phe-
nomenon was initiated by the difficulties with spectral methods. However, the results did
not only influence the use of spectral methods, but also helped solving the well known
difficulty with accuracy deterioration for shock capturing difference methods.

5 High order difference methods

When David came to MIT, he had just completed his PhD thesis. It was about so called
Strang type difference methods

un+1 = L1(un)L2(un)···Ld(un)
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for nonlinear conservation laws

∂u

∂t
=

d

∑
j=1

∂Fj(u)

∂xj
,

and he came to the right place since Gilbert Strang was a real specialist on this type of
methods. In [21] there is a thorough analysis of new schemes regarding accuracy, stability
and efficacy.

He followed up with a series of papers on stability and other key properties of various
schemes, in most cases for multidimensional problems, see [1,6,15,44,45,54]. Let us take
a look at the last one treating the conservation law

∂u

∂t
=

∂f(u)

∂x
+

∂g(u)

∂y
.

The method of lines was at the time (and still is) very popular. It means that a dis-
cretization is first done in space, followed up by an application of an ODE-solver to the
resulting system of ordinary differential equations. Explicit Runge-Kutta methods are
often chosen for the ODE-solver. However, there is one complication here. Fourth or-
der accuracy in space results in a 5-point stencil for first order PDE, but for each stage
in the Runge-Kutta procedure, the width increases by 4 points. A fourth order method
with four stages results in a 17 point stencil in each space dimension. When boundaries
are involved, the analysis becomes complicated. More compact schemes are obtained
by using the Lax-Wendroff principle, and David and his coworkers picked up this idea,
but in a more advanced form. Their final scheme has four stages in each step just like
the standard Runge-Kutta scheme, but by keeping each stage as compact as possible, the
complete computational stencil reduces from 289 to 16 points in two space dimensions,
see Fig. 7. In three space dimensions the reduction is of course even stronger.

x

t

y

Runge−Kutta methods

New method

Figure 7: Reduction of computational stencil size.

The stability analysis for the linear case is not easy for this scheme, but the authors
manage to derive the explicit form of the amplification factor in Fourier space after ”con-
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siderable amount of manipulation”. The final stability criterion has the simple form

∆t

∆x
ρ(f′)≤1,

∆t

∆y
ρ(g′)≤1,

where ρ(f′) and ρ(g′) denote the Jacobians.
Difference methods dominated the first part of David’s production, and reoccurred a

few times later as well. He was much interested in the so called Summation By Parts
(SBP) difference operators that lead to energy estimates (for a general description of
these operators, see for example [48]). In [27] the connection between compact finite
difference operators and finite element methods is used to analyze the problem of con-
structing high order numerical boundary conditions for hyperbolic problems. In [11]
the SAT technique mentioned in Section 3 is introduced for difference approximations
of advection-diffusion problems. The computational domain is partitioned into subdo-
mains, and continuity is enforced by using the SAT method for the internal boundaries.

6 Open boundaries and the PML method

Many problems are defined over infinite domains, and for computational purposes, arti-
ficial boundaries must be introduced as in the example shown in Fig. 8. Many attempts
to solve the problem of constructing boundary conditions at these boundaries have been
made, and there is a wide variety of different techniques. Berenger presented the Per-
fectly Matched Layer (PML) method for problems in electromagnetics 1994 in [7], and
this has come to be one of the most frequently used methods. The idea is to extend the
computational domain by an extra layer, where the system of differential equations is
modified such that the waves are absorbed. The technique was designed for electromag-
netics, but it was quickly generalized to other applications. However, a few less well
behaving computations with this method were observed, and together with Saul Abar-
banel, David set out to analyze the new modified differential equations without applying
any discretization. In the first paper [2] they showed that the modified PDE for electro-
magnetics, to be used in the extra layer, is not strongly well posed, i.e., the symbol has a
multiple eigenvalue that causes trouble. It was followed up by another paper [3], where
they construct a new modified set of PDE with an extra equation, where the source of
trouble is removed.

However, the problem was still not completely solved. Even for the new method,
some computations showed that after a very long time, the solution began growing in
a way that destroyed the absorbing property. In [4] this behavior was analyzed, and
again there is a double eigenvalue even for the new equations, but now originating from
the zero order term. The suggested cure is to split these eigenvalues into two separated
ones by introducing a small parameter ε. However, as the authors point out, there is a
balancing problem here. The parameter ε must be kept small to keep the absorption of
waves complete, while at the same time it must be large enough to keep the solution
bounded.
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Boundary
condition?

Figure 8: A problem requiring an artificial boundary.

David had also an interesting article [14] together with Adi Ditkowski on the classical
Engquist-Majda absorbing boundary conditions. They derived the same type of bound-
ary conditions for the wave equation by using a different technique. But this technique is
more general, and it allowed them to derive the corresponding type of conditions to the
three-dimensional Maxwell equations as well as for the advection-diffusion equation.

7 Other areas

David was active in many different research areas, and in this section we shall very briefly
mention some of his work that has not been described above.

Spectral polynomial methods have a disadvantage in the sense that the distribution of
grid points is determined by the polynomials themselves, not by the structure of the so-
lution. For example, the Chebyshev polynomials concentrate the points near the bound-
aries, whether or not the solution has any boundary layers. This makes it natural to
partition the domain into subdomains with different polynomials defined in each one
of them. In this way the smallest grid size can be kept above a certain reasonable level.
This may have been a reason for David’s interest in domain decomposition methods,
see [13, 16, 28, 29, 46].

In the nineties, David started working with Roger Temam on nonlinear Galerkin

methods. It was natural for them to use spectral methods for this new formulation, and
some of the results are presented in [12, 43].

A different problem, not connected to PDE at all, was presented to David by this au-
thor. Most methods for computer tomography are based on Fourier transforms, and the
speed is essential. In [26] a variant of the so called Direct Fourier Method is presented,
with a new type of interpolation in Fourier space, that improves the image quality with-
out slowing down the computation too much.

During the last years, he also went into stochastic problems, discontinuous Galerkin

methods and particle methods.
Finally we would like to point out David’s strong interest in various applications.
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Figure 9: The von Karman plate.

Due to his connection to NASA Langley Research Center, fluid dynamics was the most
common application in his work, but he got involved in many other applications as well.
We mention one such example here. The application by others of Chebyshev methods to
the von Karman plate problem had not turned out well. The problem is to compute the
displacements u,v,w when a force is applied to the center as shown in Fig. 9.

The first differential equation in the system is

wtt+cwt+∆2w−12
((

ux+
1

2
w2

x

)

(wxx+νwyy)

+
(

vy+
1

2
w2

y

)

(wyy+νwxx)+(1−ν)(vx +uy+wxwy)wxy

)

= g.

The basic difficulty with the computations was the strong filtering that seemed to be nec-
essary in order to keep the computation stable. There was a general belief that the non-
linear terms in the differential equation were the cause of the problem. However, David
became involved, and a stability analysis showed that there was an instability even for
the linearized system due to the mixed derivative terms. Furthermore, this instability
could be removed by switching to Legendre polynomials. There was still a nonlinear
instability, but it could be taken care of by a different and weaker form of filter as pre-
sented in [50]. It is a nice example out of many, where David helped to advance the
understanding of a difficult problem in applications, and to speed up its solution.

8 Conclusions

David Gottlieb’s research career is a success story, in particular the work on spectral
methods, as well as the related Gibbs phenomenon. He took the idea of spectral methods
to new levels of refinement, and was the first one to carry out a theoretical analysis of
polynomial methods. He was the one who introduced spectral methods to the European
scientific community by giving a course in France 1979. This resulted in a fast expand-
ing interest from several young researchers in France and Italy. Christine Bernardi, Yvon
Maday, Claudio Canuto and Alfio Quarteroni were among the pioneers who carried the
theory further, resulting in new variants of spectral methods as well as application to
new problems.

What was David’s special properties that made him such an excellent researcher and
scholar? It goes without saying that he was very sharp and creative. But there are also
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other ingredients. This author was often impressed by his deep and broad knowledge
in classical and applied mathematics, that turned out to be such an important tool in his
work. Not to talk about his skill in calculus. He was able to quickly find integrals of some
complicated function, or alternatively, to immediately find the place in some book where
to find it. And he had an unusual talent in seeing patterns that untied a complicated
mathematical expression or equation.

David was always curious about other’s work and other research areas. And he was
open-minded and generous. Whoever came with a new problem, student, colleague or
representative for a high tech laboratory, he always took a genuine interest, sharing his
ideas with others. It is hard to find mathematicians on his level with so many collabora-
tors. His 125 papers have 59 different coauthors, which is impressive when taking into
account that there are few papers with more than one coauthor.

His teaching abilities are well known, as well as his guidance of graduate students.
He led 22 PhD students to completed degree.

David Gottlieb was an extraordinary man. This article is completed right after the
conference in honor of him took place. There was no doubt that all the nice remarks
about him were genuine and came from the heart of the speakers. Not only was he an
excellent researcher and scholar, he was also an extremely kind and generous person. We
would like to quote Antony Jameson at the conference banquet: ”I don’t think that David
ever thought a mean thought”.
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