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Abstract

This paper proposes an approach to diagnosing the skill of a machine-learning prediction model based on finding
combinations of variables that minimize the normalized mean square error of the predictions. This technique is
attractive because it compresses the positive skill of a forecast model into the smallest number of components. The
resulting components can then be analyzed much like principal components, including the construction of regression
maps for investigating sources of skill. The technique is illustrated with a machine-learning model of week 3–4
predictions of western US wintertime surface temperatures. The technique reveals at least two patterns of large-scale
temperature variations that are skillfully predicted. The predictability of these patterns is generally consistent between
climate model simulations and observations. The predictability is determined largely by sea surface temperature
variations in the Pacific, particularly the region associated with the El Nino-Southern Oscillation. This result is not
surprising, but the fact that it emerges naturally from the technique demonstrates that the technique can be helpful in
“explaining” the source of predictability in machine-learning models.

Impact Statement

Machine learning has emerged as a powerful tool for climate prediction, but the resulting models often are too
complex to interpret. Methods for extracting meaningful knowledge from machine-learning models have been
developed (e.g., explainable AI), but most of these methods apply only to low-dimensional outputs. In contrast,
many climate applications require predicting spatial fields. This paper proposes an approach to reducing the
dimension of the output by finding components with the most skill. This technique is illustrated by training
separate machine-learning models at hundreds of spatial locations, and then using this technique to show that
only a few patterns are predicted with significant skill. Individual patterns can then be analyzed using regression
techniques to diagnose the source of the skill.

1. Introduction

Machine-learning techniques can produce climate forecasts that outperform predictions made by state-of-
the-art numerical forecast models (Hwang et al., 2019). Nevertheless, machine-learning models are
criticized because they are not based on physics and are often difficult to interpret. Regardless of these
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criticisms, if amachine-learningmodel consistently outperforms the best physics-basedmodel, then it has
the potential to lead to deeper scientific understanding of processes driving predictable variations in the
climate system. The question arises as to how to extract scientifically meaningful information from
machine-learning models. Methods for extracting such information are often called explainable Artificial
Intelligence, or explainable AI.

A variety of approaches have been proposed in explainable AI. One approach is to examine the
sensitivity of amachine-learningmodel to changes in the training set. For instance, if certain predictors are
critical to the skill of a model, then removing them ought to reduce the skill of themodel. Various methods
for ranking predictor importance involve sequential forward and backward selection methods and
permutation methods (McGovern et al., 2019). Unfortunately, such methods are computationally inef-
fective to implement in deep learning models (McGovern et al., 2019; Toms et al., 2020). Also, it is well
known that forward and backward selection lead to misleading interpretations in linear regression (see
Harrell, 2001, p. 56), and these problems will certainly be amplified in machine learning where thousands
of predictors are common. Moreover, predictor importance typically varies with predictand, which
complicates interpretability in multivariate prediction.

Another approach to explainable AI is backward optimization. This method determines the input
pattern that most closely reproduces a given output from a trained neural network (e.g., McGovern et al.,
2019; Toms et al., 2020). This approach may provide clues as to which features in the input of a neural
network are important for producing a given output. On the other hand, the result may be difficult to
interpret if multiplemodes of variability contribute to the output, inwhich case the input pattern represents
a mixture of modes. A related technique is layer-wise relevance propagation, which produces a heat map
in the dimensions of the original input that identifies the input features most relevant for the network
output (Toms et al., 2020). Both methods are often used in classification problems with few output
categories (Gange et al., 2019; McGovern et al., 2019; Toms et al., 2020). However, for climate
predictions targeting large geographical area, there are a large number of outputs, in which case it is
unclear how effective these methods would be in aiding in interpretation.

In this paper, we are concerned with diagnosing and interpreting the skill of a model that predicts an
entire spatial field, such as surface temperature over a geographic region. We are particularly interested in
sub-seasonal predictions, for instance, predicting week 3–4 temperature, where the skill is low when
measuredwith respect to local measures of normalizedmean square error (NMSE) or correlation. The low
skill locally does not preclude the existence of predictable large-scale patterns, since a significant source
of sub-seasonal predictability comes from large-scale atmospheric teleconnections (National Academies
of Sciences, Engineering, and Medicine, 2016). Despite the low skill as measured by these metrics, it is
possible that a large-scale pattern is predictable, but this predictability is obscured locally by unpredictable
weather variability that dominates at each grid point. The question arises as to whether this predictable
large-scale pattern, if it exists, can be extracted from the forecast data. Renwick andWallace (1995) review
various approaches to extracting such patterns. Here, we focus on a method due to Déqué (1988), which
we call skill component analysis (SCA), following DelSole and Tippett (2022), who review this method.
SCA finds linear combinations of data that minimize the NMSE. This methodology is analogous to
predictable component analysis (PrCA), except PrCA yields eigenvectors that maximize predictability,
which is distinct from skill (DelSole and Chang, 2003; DelSole and Tippett, 2022).

One of the limitations of SCA, and other methods based on decomposing covariance matrices (e.g.,
CCA), is the need for relatively large amounts of data. Recently, Trenary and DelSole (2022) derived a
machine-learning model by training it on thousands of years of daily data from a multi-model set of
physics-based simulations. The resulting machine-learning model could skillfully predict observed week
3–4 temperature at very localized areas in the western US during winter, despite never being trained on
observations. That said, the average skill across the target region is indistinguishable from a no-skill
forecast (i.e. the spatially averaged NMSE is >1). The large CMIP6 training set provides an opportunity to
test the ability of SCA to extract low-dimensional predictable components of a machine-learning model
for forecasts characterized by low spatially-averaged.
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The purpose of this paper is to apply SCA to a machine-learning model for sub-seasonal prediction.
The SCA is used to diagnose the components of temperature that are most skillfully predicted by a
machine-learning model and to infer the source(s) of predictability associated with these patterns. In
Section 2, we describe the data sets and statistical model for predicting observed wintertime sub-seasonal
temperature over the western US. In Section 3, we describe SCA, and in Section 4 we use the technique to
identify the most skillfully predicted large-scale temperature patterns in the statistical forecast system of
Trenary and DelSole (2022). The paper concludes with a summary of our major results.

2. Data and Methods

2.1. Statistical forecast system

The SCA is a method to identify skillfully predicted patterns in any forecast system. For illustrative
purposes, we examine predictability for a statistical forecast system developed in Trenary and DelSole
(2022). Their forecast system targets observed week 3–4 wintertime temperature anomalies over the
western United States and is composed of 499 grid-point lasso regression models. The lasso regression
coefficients are found by minimizing the cost function locally, which is referred to as the “single-task”
formulation of lasso in Trenary and DelSole (2022). The predictors for this forecast system are large-
scale SST anomalies in the Pacific and Atlantic Oceans, which are represented by 50 laplacian time
series for each basin, giving a total of 100 SST predictors. Importantly, the lasso regression model was
trained on dynamical model simulations, and then used to predict observations. More precisely, each
grid-point model is trained on pre-industrial control simulations from 13 models from the Climate
Model Inter-comparison Project phase 6 (CMIP6) archive (Eyring et al., 2016), comprising a total of
6,889 years of daily data. The target and predictors are 2-week means and predictions target
December–February. Anomalies are defined with respect to a climatology estimated as a 5th order
polynomial fit in time across all 2-weekmeans between December and February. This statistical model
is referred to as CMIP6-single-task model in Trenary and DelSole (2022) and was the best performing
model in that study. Since this is the only model examined in the present paper, this model will be
referred to as simply the statistical model. Further details of the statistical models and observations, as
well as justifications for the particular choices in the model and analysis, can be found in Trenary and
DelSole (2022).

3. Skill Component Analysis

As discussed in Trenary and DelSole (2022) the above statistical model had a spatially averaged
correlation less than 0.1 and a spatially averaged NMSE indistinguishable from the no-skill value of
one. This low skill for sub-seasonal prediction is consistent with previous studies (e.g., DelSole and
Banerjee, 2017; Hwang et al., 2019; Pegion et al., 2019; He et al., 2021). As discussed in the introduction,
the apparent low skill might be an artifact of the choice of skill measure. To overcome this limitation, we
find the linear combination of variables that minimize the NMSE. Let t and s denote the temporal and
spatial indices, where t¼ 1,…,T and s¼ 1,…, S. Let F s, tð Þ and V s, tð Þ denote the anomaly forecast and
target variables, respectively. In the context of analyzingCMIP6 data,F s, tð Þ denotes predictions from the
statistical model of variables in the CMIP6 simulations, and V s, tð Þ denotes the corresponding verifica-
tions in the CMIP6 simulations. Then a linear combination over space is

rV ðtÞ¼
XS

s¼1

qðsÞVðs,tÞ and rEðtÞ¼
XS

s¼1

qðsÞðFðs,tÞ�Vðs,tÞÞ, (1)

where q sð Þ contains the linear coefficients. The NMSE associated with this component can be written as

NMSE ¼ qTΣEq
qTΣVq

, (2)
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where ΣE and ΣV are the sample covariance matrices of F s, tð Þ�V s, tð Þð Þ and V s, tð Þ, respectively. In
SCA, we seek the q that minimizes theNMSE in equation (2). Following DelSole and Tippett (2022), this
minimization problem leads to the generalized eigenvalue problem

ΣEq ¼ λΣVq: (3)

Typically, this eigenvalue problem has S distinct solutions, where the eigenvalue λ gives the value of
NMSE corresponding to a given eigenvector q. Accordingly, the eigenvalues are ordered from smallest to
largest, λ1 <…< λS, and the corresponding eigenvectors are denoted q1,…, qS. The first eigenvector has
the smallest possible NMSE and is therefore the most skillful component. The associated time series for
this component is obtained from equation (1). The second eigenvector gives the smallestNMSE out of all
combinations whose time series are uncorrelated with the first, and is therefore the second most skillfully
predicted pattern, and so on. This methodology is analogous to PrCA, except PrCA, yields eigenvectors
that maximize predictability, which is distinct from skill (DelSole and Chang, 2003; DelSole and Tippett,
2022). Note that unlike EOF analysis where the eigenvectors and principal component time series are
separately orthogonal, in SCA only the time series are uncorrelated.

For our problem, the CMIP6 data set is sufficiently large that the covariance matrices are non-singular.
Nevertheless, applying SCA to CMIP6 data yields components that are skillful in CMIP6, but have no
skill in observational data. We interpreted this result to mean that the SCA overfit toward the sample. To
mitigate overfitting, we project the western US data onto the leading 50 Laplacian eigenvectors prior to
performing SCA. See DelSole and Tippett (2015) for a description of Laplacian eigenvectors and
associated algorithm for deriving them. Our main conclusions showed little sensitivity for truncations
between 20 and 50.

The significance of a given value of NMSE was evaluated with respect to the sampling distribution of
the eigenvalues under the null hypothesis of no skill. To do so, we randomly sample pairs of forecasts and
verifications in the CMIP6 data set. The forecast-verification pairs occurring within a given winter are
selected together, to preserve weekly serial correlations (if any). We then randomly shuffle the years for
the forecast data to misalign the forecast and verification data, and then perform SCA on this data set. This
process is repeated 5,000 times to build up an empirical distribution for the individual eigenvalues. An
SCA component is considered significant if its NMSE falls below the 5th percentile from the distribution
of randomly shuffled data.

4. Results

The minimized NMSE from SCA is shown in Figure 1, where the black asterisks denote the eigenvalues
(or optimized NMSE) and the red curve is the 5th percentile from the randomized forecasts. Note the
significance threshold exceeds one for the highest-order components. This is expected for uncorrelated
forecast-verification pairs, in which the expected NMSE of a randomly chosen variable is 1þ var Fð Þ

var Vð Þ.
A component is defined to have skill only if the eigenvalue is less than one and lies below the significance
threshold. Under this criterion, there are several components with skill, but only the first two modes are
well separated. The 49th component deviates from the significance curve for reasons that are unknown to
us, but it is an isolated component at the most extreme no-skill limit (its NMSE is 1.4), so it has no bearing
to understanding sub-seasonal skill. The spatial patterns of the two leading components are shown in
Figure 2. These two patterns are estimated for CMIP6 data by regressing the 6,889-year time series of the
leading two component time series derived from equation (1) onto the multi-model CMIP6 temperature
anomaly data. The pattern of themost skillfully predicted pattern is shown in Figure 2a and is similar to the
canonical El Nino-Southern Oscillation (ENSO) teleconnection patterns (e.g., Trenberth et al., 1998). The
secondmost skillfully predicted pattern is shown in Figure 2b and projects strongly onto the leadingmode
and the ENSO teleconnection pattern.

We next perform a similar calculation using observations. Specifically, we first compute the linear
combination as in equation (1), by projecting observational verification (V s, tð Þ) and forecast (F s, tð Þ)
data onto the eigenvectors q found when SCA is applied to CMIP6 data. This produces a time series of the
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observed component (r tð Þ), which we then regress onto observed grid point temperature data over the
western US to yield the spatial pattern of the component. The resulting pattern for the leading SCA
component is shown in Figure 3a. Unlike the model results that are characterized by a meridional
temperature dipole (Figure 2a), the most skillfully predicted pattern recovered from observations is a
zonally oriented temperature dipole. Why are the patterns different? Only 19 years of observed data are
used to estimate this pattern and it is possible that the sample sizemay impact the recovered pattern. To test
this, a climate model is randomly selected, in this case GFDL-ESM4, and the pattern of the leading
component is estimated for different 19 year periods. Some representative results, shown in Figure 3b,c,
indicate that the most skillfully predicted pattern is sensitive to sampling. As such, we cannot conclude
that the dynamical model and observed patterns are different, rather the difference is likely an artifact of
sample size.

With the leading two components identified (Figure 3a,b), we now quantify how well the grid-point
based models predict these large scale patterns. The predictions and associated verification data are both
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Figure 1. Multi-model NMSE (black) recovered from skill component analysis and multi-model 5%
significance level (red). Significance is estimated by the Monte Carlo method using 5,000 iterations.
Analysis is performed using independently sampled data (once per winter) over the entire multi-model
record. A mode is considered significant if it is less than one.
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projected onto the SCA eigenvectors derived from CMIP6 models and the correlation between the two
time series is computed. The CMIP6 model data are sampled to have the equivalent number of years as
observations (i.e., 19 years) when estimating the correlation.

The results for the first and second components are shown in Figure 4a,b, respectively. The distribution
of correlation coefficients found for predictions in each CMIP6 model are denoted by the vertical bars,
which represent the 5th and 95th percentiles, and the mean correlation is denoted by the black asterisks.
The dashed lines in Figure 4a,b denote the correlation for predictions of observations. For the leading
component, shown in Figure 4a, the distribution of correlations overlaps for the different dynamical
models, indicating that there is consistency in the predictability of this large-scale pattern across the
dynamical models. For all but three of the dynamical models, the distribution of correlations includes
observations, indicating consistency in the predictive skill of this pattern in observations and within
10 CMIP6models. The predictive skill of this pattern differs from observations in the two CNRMmodels
and the MRI model, suggesting that these particular dynamical models may be deficient in simulating the
physical processes contributing to the predictability of this pattern. That said, it is worth noting that the
skill in predicting this pattern is significantly larger than the skill based on the spatial average of local
correlations, which were less than 0.1 (see Figure 5, Trenary and DelSole, 2022). Moreover, the
distributions of correlations in all but one of the dynamical models are distinct from zero, indicating that
a robust source of predictable variations of western US surface temperature exists in a majority of the
dynamical models and is linked to the same pattern. This analysis confirms that the grid-point lasso
models trained on CMIP6 data are skillfully predicting a large-scale pattern. Moreover, this skill
associated with prediction of this pattern is generally consistent across dynamical models and with
observations.

The range of correlations for the second component, shown in Figure 4b, are generally reduced relative
to the 1st and the skill in predicting thismode remains consistent across the climatemodel. However, there
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Figure 3. Patterns for the 1st skill component for (a) observations and two different randomly selected
19 year segments of data from the GFDL-ESM4 model (b) and (c).
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are several dynamical models that include zero, indicating that the skill in predicting this pattern is not
significant.

Lastly, to determine the source of predictability, the time series of the leading component recovered
from multi-model CMIP6 data and observations is regressed onto their respective SST anomalies. Note
that the SCA eigenvectors are derived from the CMIP6 data and isolate the predictive relations between
SSTs and western US wintertime temperatures identified in the climate models. This being the case,
consistency in the regression patterns found for CMIP6 and observations suggests a common forcing. The
resulting regression maps are shown in Figure 5a,b. The most prominent feature of these maps is the
Pacific ENSO pattern which is identified in both datasets. A tripole-like pattern consistent with the North
Atlantic Oscillation (NAO) forcing of Atlantic SST is visible in observations (Figure 5b), but not the

A
W

I
C

N
R

M
-C

M
6

C
N

R
M

-E
S

M
2

C
an

E
S

M
5

E
C

-V
eg E
C

G
F

D
L-

C
M

4
G

F
D

L-
E

S
M

4
H

ad
G

E
M

3
IP

S
L

M
R

I
N

or
E

S
M

2
U

K
E

S
M

1

model predicted

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
la

tio
n

1st Skill Component

A
W

I
C

N
R

M
-C

M
6

C
N

R
M

-E
S

M
2

C
an

E
S

M
5

E
C

-V
eg E
C

G
F

D
L-

C
M

4
G

F
D

L-
E

S
M

4
H

ad
G

E
M

3
IP

S
L

M
R

I
N

or
E

S
M

2
U

K
E

S
M

1

model predicted

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
or

re
la

tio
n

2nd Skill Component

(a) (b)

Figure 4.Correlation between the prediction and verification data for the (a) 1st and (b) 2nd leading skill
components. These correlations are found by projecting both prediction and verification data onto the
leading eigenvectors recovered from SCA and correlating the resulting time series. Predictions for
CMIP6 and observations are made by the same CMIP6-single-task forecast model. The black vertical
bars show the 5th–95th percentile range of correlations for predictions within the specified CMIP6
model. The individual CMIP6 models are sampled to have the same number of years as observation
(19 years). The black asterisk denotes the mean correlation. For observational based estimates, the time
series of the SCA components are found by projecting observational forecast and verification onto the
CMIP6 derived eigenvectors. The correlation for predictions using observational data for the 2000–2018
are shown as the dashed line. The skill component analysis was performed using 50 Laplacian time series.

CMIP6

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

-0.2

0

0.2

OBS

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

(a) (b)

Figure 5. Regression of the leading skill component derived from the CMIP6 single-task models onto sea
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climate models. More generally, differences in the regression patterns found in Figure 5a,b suggest there
are differences in how regional SST variability impacts western US wintertime temperatures within
climate models and the observed climate. The prominence of the ENSO-SST pattern is not surprising
given that the SCA patterns resemble the traditional canonical teleconnection patterns. The regression
pattern recovered for the 2nd component (not shown) also projects strongly onto ENSO. The above
analysis was repeated by regressing the leading component associated with the predicted western US
surface temperatures onto SSTand similar patterns were recovered. This analysis suggests that the skillful
prediction is associated with ENSO. A previous study by DelSole et al. (2017), similarly found that sub-
seasonal predictability of wintertime temperatures over the US can largely be attributed to ENSO. It is
perhaps not surprising that ENSO is a major source of predictability for sub-seasonal forecasts, when it is
the dominant source of predictability on seasonal timescales (National Academies of Sciences, Engin-
eering, and Medicine, 2016). That said, it is worth noting that the statistical model analyzed here
outperforms a benchmark forecast where the Nino3.4 index is the sole predictor (see Figure 5, Trenary
and DelSole, 2022). This indicates that the ENSO-related SST variations impacting predictability are not
entirely captured by the Nino3.4 index. To test this, the CMIP6-single-task predictions for CMIP6 and
observation data are projected onto the SCA eigenvectors and then correlated with the associated Nino3.4
index. The correlation is 0.86 for observations and 0.67 for CMIP6. This confirms that the skill in
predictability is linked to ENSO in both observations and CMIP6, but the Nino3.4 index only captures
some fraction of the relevant SST variations. It is noteworthy that the skill and source of predictability for
large-scale temperature variations over the western US are consistent between CMIP6 models and
observations. For one, this suggests that climate models are capable of simulating the key processes
driving the predictable variations in the target region on subseasonal timescales. In turn, these climate
models are suitable for in-depth process-level analyses of predictability on this timescale. On the other
hand, dynamical models are not perfect, and statistical models trained on dynamical models will inherit
these imperfections. Perhaps a two-step procedure in which the statistical model is first trained on long
dynamical model simulations, and then partly corrected based on observations, can produce an even better
statistical prediction model (such as in transfer learning).

5. Conclusion

This paper proposes an approach to diagnosing the skill of a machine-learning model based on finding
combinations of variables that minimize the NMSE. This approach was proposed by Déqué (1988) in the
context of diagnosing weather prediction models and recently reviewed by DelSole and Tippett (2022).
We apply the method to statistical forecasts for week 3–4 prediction of western US wintertime temper-
atures. This is an instructive example because the spatially averaged NMSE of these forecasts is
indistinguishable from one, suggesting no skill. Despite this, the optimization technique identifies at
least two large-scale temperature variations that are skillfully predicted by the machine-learning model.
The apparent low skill is an artifact of the skill measure, which is computed first by evaluating skill at each
grid point and then averaging this measure across grid points. Unfortunately, unpredictable weather noise
dominates each grid point and thereby obscures whatever predictability may exist from large-scale
teleconnection patterns. The leading pattern resembles the canonical ENSO teleconnection pattern and
the skill in predicting this pattern is consistent across a majority of the different CMIP6 models and
observations. Predictability of this pattern is inconsistent between three CMIP6models and observations,
suggesting that these dynamical models are deficient in simulating key physical processes that contribute
to predictable variations in western US surface temperature anomalies. We further show that the source of
predictability for this pattern is largely related to Pacific SST anomalies and ENSO in particular. The
second most skillfully predicted component is predicted with far less skill in both observations and
dynamicalmodels, and some dynamicalmodels demonstrate no skill in predicting thismode.As is true for
the leading mode, the second mode appears to be forced by ENSO. Though these results confirm our
expectations about the source of predictability in this particular case, the technique is sufficiently general
that it may provide new insights into prediction problems in which the source of predictability is less well
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understood. Moreover, this technique has the potential to improve prediction accuracy for low-skill
forecasts. For instance, in operational forecast systems, once the SCA is developed for a particular forecast
system, it may be possible to improve the skill by just predicting these large-scale patterns and setting the
other components to climatology. More generally, once the leading SCA components have been isolated,
regression techniques can be used to diagnose the source of skill and underlying mechanisms. Lastly, it
may be possible to improve forecast skill by building a regression model to predict the amplitude of the
leading skill component for observations using the climate model derived SCA eigenvectors.
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