
VIII
Local solvability in locally integrable structures

Throughout this chapter we will work with a locally integrable structure �
over a smooth manifold �. Our analysis will be for most of the chapter strictly
local, and thus, we shall work in a neighborhood of a fixed point p ∈�. By
Corollary I.10.2 there is a coordinate system �x1� � � � � xm� t1� � � � � tn� centered
at p and there are smooth, real-valued functions �1� � � � ��m defined in a
neighborhood of the origin of Rm+n and satisfying

�k�0�0�= 0� dx�k�0�0�= 0� k= 1� � � � �m� (VIII.1)

such that the differentials of the functions

Zk�x� t�= xk+ i�k�x� t�� k= 1� � � � �m (VIII.2)

span T ′ near p= �0�0�.
We shall set Z = �Z1� � � � �Zm�, �= ��1� � � � ��m�. Thus we can write

Z�x� t�= x+ i��x� t��

which we assume is defined in an open neighborhood of the closure of B0×"0,
where B0 ⊂ Rm and "0 ⊂ Rn are open balls centered at the corresponding
origins. Thanks to (VIII.1) we can assume that

��x� t�−��x′� t� ≤ 1
2
x−x′� x� x′ ∈ B0� t ∈"0� (VIII.3)

Also recall that � is spanned, in an open set that contains the closure of
B0×"0, by the linearly independent, pairwise commuting vector fields (cf.
(I.37))

Lj =
�

�tj
− i

m∑
k=1

��k

�tj
�x� t�Mk� j = 1� � � � � n� (VIII.4)
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332 Local solvability

where the vector fields

Mk =
m∑

�=1

�k��x� t�
�

�x�

� k= 1� � � � �m (VIII.5)

are characterized by the relations MkZ� = �k� (cf. (I.35) and (I.36)).

VIII.1 Local solvability in essentially real structures

If � defines an essentially real structure over � of rank n then the functions �j

can be taken identically zero (Theorem I.9.1). Hence Lj = �/�tj , j = 1� � � � � n
and the operator d′ equals the partial exterior derivative

dtf =
n∑

j=1

∑
J =q

�fJ

�tj
dtj ∧dtJ � (VIII.6)

that is, the d′-complex is nothing other than the standard de Rham complex
along the leaves of the foliation defined by � . In particular, if we apply the
Poincaré Lemma (Section VII.3) we conclude that local solvability holds for
an essentially real structure near any point and at any degree.

VIII.2 Local solvability in the analytic category

Now we assume that the manifold � and the given locally integrable structure
� are real-analytic. In this case Corollary I.11.1 asserts that the coordinates,
functions, and vector fields described at the beginning of the chapter can all
be taken real-analytic. We shall show:

Proposition VIII.2.1. Let f ∈ U�
q �p� have analytic coefficients and satisfy

d′f = 0. If q ≥ 1 then there is u ∈ U�
q−1�p�, also with analytic coefficients,

solving d′u= f .

Proof. We let

f = ∑
I=q

fI�x� t�dtI

represent f ; the functions fI are thus real-analytic in a neighborhood of the
origin and

d′f =
n∑

j=1

∑
I=q

LjfI�x� t�dtj ∧dtI = 0� (VIII.7)
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VIII.3 Elliptic structures 333

Let 1≤ r ≤ n be an integer such that f only involves dt1� � � � �dtr . Hence we
can write f = f1+f2, where

f1 =
∑

I=q�I⊂�1�����r−1	

fI�x� t�dtI

and

f2 =
∑

J =q−1�J⊂�1�����r−1	

�−1�q−1fJ∪�r	dtr ∧dtJ �

Notice in particular that (VIII.7) implies

LsfJ∪�r	 = 0� s > r� (VIII.8)

We then apply the Cauchy–Kowalevsky theorem in order to solve, in a
neighborhood of the origin, the problems{

LruJ = �−1�q−1fJ∪�r	
uJ tr=0 = 0�

(VIII.9)

Since the vector fields Lj are pairwise commuting, (VIII.8) implies

LrLsuJ = 0� s > r�

Since moreover LsuJ = 0 when tr = 0 it follows from the uniqueness part
in the Cauchy–Kowalevsky theorem that LsuJ = 0 for all s > r and all J .
Consequently, if we set u=∑

J uJ dtJ then

d′u = ∑
J =q−1�J⊂�1�����r−1	

r−1∑
j=1

LjuJ dtj ∧dtJ +∑
J =q−1�J⊂�1�����r−1	

LruJ dtr ∧dtJ

and hence (VIII.9) implies that the d′-closed form d′u− f only involves
dt1� � � � �dtr−1. The proof can then be concluded by an elementary inductive
argument, whose details are left to the reader.

VIII.3 Elliptic structures

When the structure � is elliptic the discussion presented at the end of Section
I.12 shows that the differential complex associated with � can be locally
realized as the standard elliptic complex in Cm×Rn′ , n′ = n−m, which we
now describe and study in some detail.
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334 Local solvability

Let m ∈ Z+ and write the variables in Cm×Rn′ as

�z� t�= �z1� � � � � zm� t1� � � � � tn′��

We shall also write zj = xj+ iyj , j = 1� � � � �m, and n=m+n′.
The elliptic complex on Cm×Rn′ is defined as follows: given �⊂Cm×Rn′

open and 0 ≤ q ≤ n we set C����#q� as being the space of all smooth
differential forms of the kind

f = ∑
J +K=q

fJK dzJ ∧dtK� fJK ∈ C����� (VIII.10)

We define the differential operator

Dq  C����#q�−→ C����#q+1� (VIII.11)

by the formula

D0u=
m∑

j=1

�u

�zj

dzj+
n′∑

k=1

�u

�tk
dtk (VIII.12)

if u ∈ C����= C����#0�, and by

Dqf =
∑

J +K=q

D0fJK ∧dzJ ∧dtK (VIII.13)

if f is as in (VIII.10). In particular, when m = 0, we have Dq = dq, the
exterior derivative acting on q-forms.

It is clear that Dq+1
Dq = 0 and consequently (VIII.11) defines a complex D
of differential operators, whose cohomology will be denoted by �H

q
D���  q=

0� � � � � n	. In particular, H0
D��� is the space of all solutions u ∈ C���� of the

system D0�u� = 0, that is, the space of all smooth functions on � that are
holomorphic in z and locally constant in t. Furthermore, when m = 0, there
are isomorphisms between H

q
D ��� and Hq���C�, the cohomology groups

of � with complex coefficients (de Rham’s theorem).

Theorem VIII.3.1. Let U ⊂Cm be open and pseudo-convex and let "⊂Rn′

be open and convex. Then D is solvable in U ×" in degree q, for every
q ≥ 1.

Proof. For the proof it is convenient to introduce the natural decomposition

C��U ×"�#q�= ⊕
r+s=q

C��U ×"�#r�s��

where C��U ×"�#r�s� is the space of forms of the kind

f = ∑
J =r� K=s

fJK dzJ ∧dtK�
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VIII.3 Elliptic structures 335

Notice that C��U ×"�#r�s� = 0 if either r > m or s > n′. We also observe
that we have homomorphisms

�z  C
��U ×"�#r�s�−→ C��U ×"�#r+1�s� �

dt  C
��U ×"�#r�s�−→ C��U ×"�#r�s+1�

such that D= �z+dt.
Let f ∈ C��U ×"�#q� satisfy Dqf = 0 and decompose f = ∑

r�s fr�s,
where fr�s ∈ C��U ×"�#r�s� and the sum runs over the pairs �r� s� such that
r+ s = q, r ≤m, s ≤ n′. Consider, in this decomposition, the term fr�s whose
value of s is maximum. From the fact that Df = 0 it follows that dtfr�s = 0
and consequently we can apply the Poincaré Lemma (Section VII.3) in order
to find h ∈ C��U ×"�#r�s−1� such that dth= fr�s. If we set f • = f −Dq−1h

it follows that in the analogous decomposition f • =∑
r�s f

•
r�s the maximum

value of s that occurs has dropped by one and Dqf
• = 0.

If we iterate the argument we will, after a finite number of steps, either
solve the equation Dq−1u= f or at least find v ∈ C��U ×"�#q−1� such that
g

�= f −Dq−1v does not involve dt1� � � � �dtn′ . If this is the case we can write

g = ∑
J =q

gJ �z� t�dzJ

and the fact that Dqg = 0 gives in particular that dtgJ = 0 for all J , that is,
gJ are independent of t. Hence g defines a Dolbeault class in U and by the
standard complex analysis theory we can determine w =∑

L=q−1 wL�z�dzL

solving �zw = g. If we set u
�= v+w we obtain Dq−1u= f , which completes

the proof.

Likewise we can introduce the spaces 
′���#q�, which are the spaces of
all currents of the form (VIII.11) where now the coefficients are allowed to
be elements of 
′���. By the same expressions (VIII.12) and (VIII.13) we
obtain new differential complexes

Dq 
′���#q�−→
′���#q+1� (VIII.14)

whose cohomology will be denoted by �H
q
D���
′�  q = 0� � � � � n	.

The natural injections C����#q��
 ′���#q� commute with the operator
D and then induce homomorphisms

H
q
D���−→H

q
D���
′�� (VIII.15)

Finally we shall also consider the spaces

C�c ���#q�= �f ∈ C����#q�  suppf ⊂⊂�	� (VIII.16)
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336 Local solvability

�′���#q�= �f ∈
 ′���#q�  suppf ⊂⊂�	� (VIII.17)

The natural pairing

C����#q�×C�c ���#n−q�−→ C

defined by

�f�*�−→
∫

f ∧dz∧*�

where dz= dz1∧· · ·∧dzm, extends to a bilinear form


′���#q�×C�c ���#n−q�−→ C

which allows us to identify 
′���#q� with the topological dual of C�c ���

#n−q�, when the latter carries its natural structure of an inductive limit of
Fréchet spaces. We shall use the standard notation of the de Rham theory: if
T ∈
 ′���#q� and * ∈ C�c ���#n−q� we shall set

T
*�= �T ∧*�
1�=
∫

T ∧dz∧*�

Likewise we have a natural identification between �′���#q� and the topo-
logical dual of C����#n−q�, where now the latter carries its natural topology
of a Fréchet space.

We shall always consider the weak topology in the spaces 
′���#q� and
�′���#q�.

Lemma VIII.3.2. If T ∈
 ′���#q�, * ∈ C����#n−q−1� and one of them has
compact support then∫

DqT ∧dz∧* = �−1�q+m−1
∫

T ∧dz∧Dn−q−1*�

Proof. Using the fact that C����#q�⊂
′���#q� as well as C�c ���#q�⊂
�′���#q� are dense inclusions we can assume that T = f is smooth. We have

d2m+n′−1 �f ∧dz∧*�= dqf ∧dz∧*+ �−1�qf ∧dm+n−q−1 �dz∧*�

= Dqf ∧dz∧*+ �−1�q+mf ∧dz∧dn−q−1*

= Dqf ∧dz∧*+ �−1�q+mf ∧dz∧Dn−q−1*�

Since ∫
d2m+n′−1 �f ∧dz∧*�= 0

we obtain the desired conclusion.
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VIII.4 The Box operator associated with D

If f� g ∈ C��Cm×Rn′ �#q� and one of them has compact support we set

�f� g�q
�= ∑
J +K=q

∫
Cm×Rn′

fJK gJK dxdydt� (VIII.18)

The formal adjoint of the operator (VIII.13) is the differential operator

D∗q  C��Cm×Rn′ �#q+1�−→ C��Cm×Rn′ �#q� (VIII.19)

defined by the expression(
Dqf� u

)
q+1
= (

f�D∗qu
)
q
� (VIII.20)

where u ∈ C��Cm×Rn′ �#q+1� and f ∈ C��Cm×Rn′ �#q�, the latter with
compact support.
We then set D−1 = Dn+1 = 0 and define

�q = Dq−1D∗q−1+D∗qDq� (VIII.21)

Notice that �q is a second-order differential operator acting on the space
C��Cm×Rn′ �#q�. Actually an elementary but long computation shows that

�qf =
∑

J +K=q

�PfJK� dzJ ∧dtK� (VIII.22)

where f is as in (VIII.10) and

P =−
m∑

j=1

�2

�zj�zj

−
n′∑

k=1

�2

�t2
k

� (VIII.23)

The following crucial properties of the operators �q, q = 0�1� � � � � n� will
be used in the sequel:

Dq�q =�q+1Dq = DqD∗qDq� (VIII.24)

D∗q�q+1 =�qD∗q = D∗qDqD∗q� (VIII.25)

�0 is hypoelliptic in Cm×Rn′ � (VIII.26)

Moreover, since any open subset of Cm×Rn′ is P-convex for singular supports
([H3]), we also have

Given any open set �⊂ Cm×Rn′ the maps (VIII.27)

�q 
′���#q�−→
′���#q� are surjective�
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338 Local solvability

Proposition VIII.4.1. For any open set � ⊂ Cm×Rn′ the maps (VIII.15)
are isomorphims. More precisely:

(i) If u ∈
′��� satisfies D0u= 0 then u ∈ C����.
(ii) If q ≥ 1 and if u ∈ 
′���#q−1� is such that Dq−1u ∈ C����#q� then

there is v ∈ C����#q−1� such that Dq−1u= Dq−1v.
(iii) If q ≥ 1 and if f ∈ 
′���#q� satisfies Dqf = 0 then there are g ∈

C����#q� and u ∈
′���#q−1� such that f −g = Dq−1u.

Proof. (i) is a consequence of (VIII.26), since �0 = D∗0D0. Next take u as
in (ii) and apply (VIII.27). We can solve

�q−1w = u

for some w ∈
 ′���#q−1�. Then, by (VIII.24),

Dq−1u= Dq−1�q−1w =�qDq−1w�

If we apply (VIII.26) we conclude that Dq−1w ∈C����#q� and consequently
v

�= D∗q−1Dq−1w ∈ C����#q−1�. Since using (VIII.24) we also have

Dq−1u= Dq−1�q−1w = Dq−1D∗q−1Dq−1w = Dq−1v

(ii) is proved.
Finally let f be as in (iii) and solve

�qU = Dq−1D∗q−1U +D∗qDqU = f�

for some U ∈
′���#q−1�. We set u
�= D∗q−1U and g

�= D∗qDqU . In order to
conclude the proof it remains to show that g is smooth. But (VIII.24) and
(VIII.25) imply

�qg =�qD∗qDqU = D∗q�q+1DqU = D∗qDq�qU = D∗qDqf = 0�

By (VIII.26) g is smooth and we are done.

Remark VIII.4.2. The preceding argument gives indeed the proof of a
stronger statement than (iii): every cohomology class in H

q
D���
′� contains

a representative which is in the kernel of �q (and consequently it is real-
analytic).

By a similar argument we have:

Proposition VIII.4.3. If � is any open set on Cm×Rn′ then

Hn
D���= 0�
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VIII.4 The Box operator associated with D 339

Proof. Given f ∈ C����#n� we apply (VIII.26) and (VIII.27) in order to
find v ∈ C����#n� solving

�nv= f (VIII.28)

in �. Since moreover �n = Dn−1D∗n−1 we then have Dn−1u = f , where u =
D∗n−1v ∈ C����#n−1�, thanks to (VIII.28).

Consider the function E ∈ L1
loc�C

m×Rn′� defined by

E�z� t�=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�−1

m�n

{z2+t/22}−m−n′/2+1
if m≥ 1,

−t/�2t� if m= 0, n′ = 1,
−�log t�/2) if m= 0, n′ = 2,

�−1
m�n

{z2+t/22}−m−n′/2+1
if m= 0 and n′ ≥ 3,

where �m�n = 2n′−2�2m+n′ −2�S2m+n′−1. It is a well-known fact that E is a
fundamental solution of P. If we then set, for U ∈ �′�Cm×Rn′ �#q�,

E�U
�= ∑
J +K=q

�E�UJK�dzJ ∧dtK � (VIII.29)

we obtain

�q�E�U�=�qE�U = U� (VIII.30)

Dq−1

[
D∗q−1�E�U�

]+D∗q
[
E�DqU

]= U� (VIII.31)

We push the argument further. Let � be a regular, bounded open subset of
Cm×Rn′ . If f ∈ C����#q� we consider f�� ∈ �′�Cm×Rn′ �#q�, where ��

denotes the characteristic function of �. We obtain, from (VIII.31),

f�� = Dq−1

[
D∗q−1�E�f���

]+D∗q
[
E��Dqf���

]+D∗q 
E� �D0��∧f�� �

(VIII.32)
If we now introduce the operators

Gq  C����#q�−→ C����#q−1�� Hq  C����#q�−→ C����#q�

defined by the expressions

Gq�f�= D∗q−1�E�f���� � Hq�f�= D∗q
E� �D0��∧f���� (VIII.33)

formula (VIII.32) then gives a natural extension of the so-called Bochner–
Martinelli formula:

Theorem VIII.4.4. If � is a regular, bounded open subset of Cm×Rn′ with
a smooth boundary and if f ∈ C����#q� then

Dq−1Gq�f�+Gq+1�Dqf�+Hq�f�= f� (VIII.34)
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340 Local solvability

Observe that E is real-analytic in the complement of the origin and that
supp D0�� ⊂ �� and so there exists a neighborhood �• of � in the complex-
ification of Cm×Rn′ such that the following is true: for every f ∈ �����#q�

the coefficients of Hq�f� extend as holomorphic functions to �•. This fact,
in conjunction with Proposition VIII.2.1, provides another proof for the local
solvability of the complex D.

VIII.5 The intersection number

We fix a pair ����′� of open subsets of Cm×Rn′ , with �′ ⊂ �, and an
integer q ≥ 1. The intersection number for the pair ����′� in degree q is the
C-bilinear form defined on the product

�f ∈ C����#q�  Dqf = 0	× �" ∈ C�c ��′�#n−q�  Dn−q"= 0	

defined by

I
q
����′� 
f�"�=

∫
f ∧dz∧"�

The intersection number for the pair ����′� in degree 0 is the C-bilinear
form defined on the product

�f ∈ C����  D0f = 0	×�" ∈ C�c ��′�#n� 
∫

Fdz∧"= 0�

∀F ∈ C��Cm×Rn′�� D0F = 0	

defined by

I
0
����′� 
f�"�=

∫
fdz∧"�

We have the following result:

Proposition VIII.5.1. Let q ≥ 1. The intersection number I
q
����′� vanishes

identically if and only if for every f ∈ C����#q� satisfying Dqf = 0 its
restriction to �′ belongs to the closure of the image of the map

Dq−1  C���′�#q−1�−→ C���′�#q�� (VIII.35)

Proof. Let f ∈ C����#q� satisfy Dqf = 0. If

f �′ = lim
�→�Dq−1u� in C���′�#q�
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for some sequence �u�� in C���′�#q−1�, and if " ∈ C�c ��′�#n−q� satisfies
Dn−q" = 0, we have

I
q
����′� 
f�"�= lim

�→�

∫
Dq−1u�∧dz∧"= lim

�→��−1�q+m
∫

u�∧dz∧Dn−q"= 0

thanks to Lemma VIII.3.2.
For the converse we reason by contradiction and apply the Hahn–Banach

theorem. Thus we assume that there are f0 ∈ C����#q� satisfying Dqf0 = 0
and T ∈ �′��′�#n−q� such that

T
f0�= 1� T 
Dq−1u�= 0� ∀u ∈ C���′�#q−1��

In particular we have Dn−qT = 0.
Let now & ∈ C�c �Cm×Rn′� be such that

∫
&= 1 and set, for % > 0,

&%�z� t�=
1

%2m+n′ &
(z

%
�
t

%

)
�

If we introduce the regularizations

"% = &% �T ∈ C�c �Cm×Rn′�#n−q�

then there is %0 > 0 such that "% ∈ C�c ��′�#n−q� if 0 < % ≤ %0. Moreover,
"%→ T in �′��′�#n−q� and Dn−q"% = &% �Dn−qT = 0 for every % > 0. Now∫

f0∧dz∧"% ="%
f0�−→ T
f0�= 1

and consequently there is 0 < %1 ≤ %0 such that

I
q
����′�

[
f0�"%1

]= ∫
f ∧dz∧"%1

�= 0�

Next we turn to the case q = 0:

Proposition VIII.5.2. The intersection number I0
����′� vanishes identically if

and only if the following holds:

For every f ∈ C���� satisfying D0f = 0 there is (VIII.36)

�F�	⊂ C��Cm×Rn′� satisfying D0F� = 0 such that

F��′ −→ f �′ in C���′��

Proof. The proof that (VIII.36) implies the vanishing of I0
����′� is immediate.

We then prove the converse and for this we argue by contradiction as in the
proof of Proposition VIII.5.1. Thus we assume that there is f0 ∈ C����

satisfying D0f = 0 for which no sequence �F�	 ⊂ C��Cm×Rn′� as stated
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exists and apply once more the Hahn–Banach theorem: there is T ∈ �′��′�#n�

such that

T
f0�= 1� (VIII.37)

T
F�= 0� ∀F ∈ C��Cm×Rn′�� D0F = 0� (VIII.38)

We next observe that the vanishing of H1
D�C

m×Rn′� (Theorem VIII.3.1)
implies, in particular, that the homomorphism of Fréchet spaces

D0  C��Cm×Rn′�−→ C��Cm×Rn′ �#1�

has closed image. Consequently its transpose, which is the map

Dn  �′�Cm×Rn′ �#n−1�−→ �′�Cm×Rn′ �#n��

has a weakly closed image, that is, its image is precisely the orthogonal of
the kernel of D0  C��Cm×Rn′�→ C��Cm×Rn′ �#1� in �′�Cm×Rn′ �#n�.

Returning to our argument we conclude from (VIII.38) that there exists
S ∈ �′�Cm×Rn′ �#n−1� such that Dn−1S = T .

As in the proof of Proposition VIII.5.1 we introduce once more the regu-
larizations

"% = &% �T ∈ C�c �Cm×Rn′ �#n��

There is %0 > 0 such that "% ∈ C�c ��′�#n� if 0 < % ≤ %0. Furthermore, if
F ∈ C��Cm×Rn′� satisfies D0F = 0 then∫

Fdz∧"% =
∫

Fdz∧ �&% �Dn−1S�=
∫

Fdz∧Dn−1�&% �S�

= �−1�m−1
∫

D0F ∧dz∧ �&% �S�= 0

for 0 < % ≤ %0 and also

I
0
����′� 
f0�"%�=

∫
f0∧dz∧"%

%→0−→ 1�

thanks to (VIII.37), which leads to the desired contradiction.

Remark VIII.5.3. It follows from the argument in the proof of Proposition
VIII.5.2 that the space Cm×Rn′ can be replaced in (VIII.36) by any open
set containing � and of the form U ×", where U and " are as in Theorem
VIII.3.1.

Corollary VIII.5.4. Assume that m = 0 and let �′ ⊂ � be open subsets
of Rn′ . Then, if q ≥ 1, the vanishing of I

q
����′� is equivalent to the vanishing

of the natural map induced by restriction Hq���C�→ Hq��′�C�. Also, the
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vanishing of I0
����′� is equivalent to the property that �′ is contained in a

single connected component of �.

Proof. Thanks to de Rham’s theorem we can assert:

(a) The exterior derivative defines a map with closed image when defined
on an arbitary smooth manifold.

(b) The d-cohomology is isomorphic to the standard singular cohomology
with complex coefficients for any smooth manifold.

These two properties in conjunction with Proposition VIII.5.1 prove the asser-
tion for q ≥ 1. Furthermore, since a scalar function is d-closed if and only if
it is locally constant, the assertion for q = 0 is an immediate consequence of
Proposition VIII.5.2.

We shall now draw an important corollary of Propositions VIII.5.1 and
VIII.5.2. Let � be a regular, bounded open subset of Cm×Rn′ . Since we are
dealing with an elliptic structure on Cm×Rn′ it follows that �� is nonchar-
acteristic and consequently we can apply the one-sided approximate Poincaré
Lemma (Theorem VII.8.4) and obtain:

Corollary VIII.5.5. Let p∈ ��. Given any neighborhood W of p in Cm×Rn′

there is another such neighborhood W ′ ⊂⊂W such that I
q
�W∩��W ′∩�� = 0 for

all q = 0� � � � �m+n′.

VIII.6 The intersection number under certain
geometrical assumptions

In this section we shall give a special meaning to one of the complex vari-
ables. Thus we shall assume m ≥ 1 and write the complex variables as
�z1� � � � � z��w�, where now m= �+1. If � is an open subset of Cm×Rn′ we
shall denote by ��� the space of all u ∈ C���� which satisfy �u/�w = 0.

If � is an open subset of Cm×Rn′ and if w0 ∈ C we shall write

��w0�= ��z�w� t� ∈�  w = w0	�

In the sequel, when dealing with functions defined on ��w0�, we shall identify
the latter with the open subset of C� ×Rn′ given by ��z� t� ∈ C� ×Rn′ 

�z�w0� t� ∈��w0�	. We start with an important result:

Proposition VIII.6.1. Let �⊂Cm×Rn′ be open and �/�w-convex, that is:

The homomorphism �/�w  C����→ C���� is surjective. (VIII.39)
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Then given w0 ∈ C the restriction map ���→ C����w0�� is surjective.

Proof. There is a continuous function �  ��w0�→�0��
 such that the open
set

�� = ��z�w� t�  �z�w0� t� ∈��w0�� w−w0< ��z� t�	

is contained in �. Let f = f�z� t� ∈ C����w0�� and select f • ∈ C���� such
that f •�z�w� t�= f�z� t� if �z�w� t� ∈ ��/2. In particular, f •��w0�

= f and

�f •

�w
= 0 in ��/2� (VIII.40)

We must find g ∈ C���� such that

F�z�w� t�= f •�z�w� t�+ �w−w0�g�z�w� t�

belongs to ���. For this we must have

�f •

�w
+ �w−w0�

�g•

�w
= 0�

which is possible to achieve, since by hypothesis and by (VIII.40) we can
solve the equation

�g•

�w
=−�w−w0�

−1 �f
•

�w

in order to determine the desired g.

Denote by C����#q�, q= 0� � � � � n−1, the space of all forms in C����#q�

which do not involve dw, that is, the space of all forms of the kind

f = ∑
J +K=q

fJK dzJ ∧dtK � (VIII.41)

with fJK ∈ C����. It is important to observe that if f is as in (VIII.41) and
satisfies Dqf = 0 then a fortiori we have fJK ∈ ��� for every J and K.
Notice also that the pullback of an element in C����#q� to any slice ��w0�

is simply obtained by setting w = w0 in its coefficients.

Proposition VIII.6.2. Let �′ ⊂� be open subsets of Cm×Rn′ , both satisfying
(VIII.39). If for some q ≥ 1 the homomorphism H

q
D���→ H

q
D��

′� is trivial
then for every w0 ∈ C and every f ∈ C����w0��#

q−1� satisfying Dq−1f = 0
there is F ∈ C���′�#q−1� satisfying Dq−1F = 0 and F�z�w0� t�= f�z� t� on
�′�w0�.
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Proof. Let f = f�z� t� ∈ C����w0��#
q−1� satisfy Dq−1f = 0. We apply

Proposition VIII.6.1 in order to get f •�z�w� t� ∈ C����#q−1�, with coeffi-
cients in ���, such that f •�z�w0� t�= f�z� t�. We have

�Dq−1f
•��z�w0� t�= �Dq−1f��z� t�= 0

and consequently we can write Dq−1f
• = �w−w0�G for some G∈C����#q�,

also with coefficients in ���. It is clear that DqG= 0 and thus by hypothesis
there is u ∈ C���′�#q−1� satisfying Dq−1u=G in �′. Write

u= u0+u1∧dw�

with uj ∈C���′�#q−j−1�, j = 0�1. We now use the fact that �′ also satisfies
(VIII.39) in order to solve

�v

�w
= �−1�qu1�

with v ∈ C���′�#q−2� (we set v = u1 = 0 if q = 1). A simple computation
shows that u−Dq−2v ∈ C���′�#q� and consequently if we set

F
�= f • − �w−w0�

(
u−Dq−2v

)
we obtain F ∈ C���′�#q�, F�z�w0� t�= f�z� t�, and

Dq−1F = Dq−1f
• − �w−w0�Dq−1u= �w−w0��G−Dq−1u�= 0�

We can now prove:

Theorem VIII.6.3. Let �′′ ⊂ �′ ⊂ � be open subsets of Cm×Rn′ , all of
them satisfying (VIII.39). Let q ≥ 1 and assume that I

q−1
��′��′′� = 0 and that

H
q
D���→H

q
D��

′� is the trivial map. Then I
q−1
���w0���

′′�w0��
= 0 for every w0 ∈C.

Proof. First we observe that, after taking regularizations, the vanishing of
I

q−1
��′��′′� = 0 allows one to assert that∫

F ∧dz∧dw∧T = 0� (VIII.42)

for every F ∈C���′�#q−1� satisfying Dq−1F = 0 and every T∈�′��′′�#n−q+1�

satisfying Dn−q+1T = 0 (when q = 1 this condition must be replaced by
T
G�= 0 for every G ∈ C��Cm×Rn′� satisfying D0G= 0).

Fix w0 ∈C and let f ∈ C����w0��#
q−1�, " ∈ C�c ��′′�w0��#

n−q� be both

D-closed (we assume "∈ �g ∈C��C�×Rn′�  D0g= 0	⊥ when q= 1). Thanks
to our hypotheses we can apply Proposition VIII.6.2 in order to obtain F ∈
C���′�#q−1� satisfying Dq−1F = 0 and F w=w0

= f .
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On the other hand, if we write

"= ∑
J +K=n−q

"JK�z� t�dzJ ∧dtK

and define T" ∈ �′��′′�#n−q+1� by the formula

T"

�= ∑
J +K=n−q

"JK�z� t�⊗��w−w0�dzJ ∧dw∧dtK

we have Dn−q+1T" = 0 and also T" ∈ �G ∈ C��Cm×Rn′�  D0G= 0	⊥ when
q = 1. Then (VIII.42) gives

I
q−1
���w0���

′′�w0��
�f�"�=

∫ (
F w=w0

)∧dz∧"=±
∫

F ∧dz∧dw∧T" = 0 �

which concludes the proof.

VIII.7 A necessary condition for one-sided solvability

We keep the notation established in Section VIII.6 and consider now a regular
open subset � of Cm×Rn′ . We fix a defining function & for ��: thus & is a
smooth, real-valued function such that �� is defined by the equation &= 0,
with d& �= 0 on ��.

Theorem VIII.7.1. Let p ∈ �� be such that

�&

�w
�p� �= 0 � (VIII.43)

Then if for some q ≥ 1 D is solvable near p in degree q with respect to �

it follows that the following property holds: given any open neighborhood U

of p in Cm×Rn′ there is another such neighborhood V ⊂ U such that, for
every w0 ∈ C, the intersection number I

q−1
���w0�∩U���w0�∩V� vanishes identically.

This result is a direct consequence of Theorem VIII.6.3 in conjunction with
Corollary VIII.5.5 and the following proposition:

Proposition VIII.7.2. Suppose that (VIII.43) is satisfied. Then there is an
open neighborhood W of p in Cm×Rn′ such that given any open convex set
D ⊂W the set D∩� is �/�w-convex.

Proof. It suffices to prove the analogous statement for the operator

$w = 4
�2

�w�w
�
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since every open set which is $w-convex is a fortiori �/�w-convex.
We write w= s+ ir, p= �z0� s0+ ir0� t0�, and assume, say, that �&/�r �= 0

at p. By the implicit function theorem, there are an open neighborhood W of
p and a smooth function *  C�×R×Rn′ →R such that *�z0� s0� t0�= r0 and

W ∩�= ��z�w� t� ∈W  r < *�z� s� t�	�

Now the set � = ��z�w� t� ∈ Cm×Rn′  r < *�z� s� t�	 is $w-convex since
$w is real and any normal to �� is not a characteristic vector for $w ([H1],
theorem 3.7.4). Consequently, given any open convex set D ⊂ Cm×Rn′ , the
set D∩�, being the intersection of $w-convex open sets, is also $w-convex.
If we finally observe that if D ⊂W then D∩� = D∩�, the result follows
at once.

Remark VIII.7.3. As in Section VII.12, we introduce the spaces of germs:

C�� �p�#q�= lim
U→�p	

C��U ∩��#q��

C�
�
�p�#q�= lim

U→�p	
C��U ∩��#q��

It can be proved, via methods of hyperfunction theory, that if solvability
for D near p in degree q with respect to � does not occur then there is
f ∈ C�

�
�p�#q� for which no u ∈ C�� �p�#q−1� satisfies Du= f . In particular,

Corollary VIII.5.5 also gives a necessary condition for solvability for D near
p in degree q with respect to �.

In the particular case when m= 1, Corollary VIII.5.4 allows us to state the
necessary condition in terms of the de Rham cohomology. We give first a
definition.

Definition VIII.7.4. Assume that m= 1 and let p∈�. We shall say condition
���q (q ≥ 1) holds at p with respect to � if given any open neighborhood U

of p in C×Rn′ there is another such neighborhood V ⊂ U such that, for all
w0 ∈ C, the natural homomorphism Hq���w0�∩U�C�→Hq���w0�∩V�C�

is trivial. We further say that condition ���0 holds at p with respect to �

if given any open neighborhood U of p in C×Rn′ there is another such
neighborhood V ⊂ U such that, for all w0 ∈ C, ��w0�∩V is contained in
one of the connected components of ��w0�∩U .

Corollary VIII.7.5. Suppose that m= 1 and that (VIII.43) is satisfied. Then
if for some q ≥ 1, D is solvable near p ∈ �� in degree q with respect to � it
follows that condition ���q−1 holds at p with respect to �.
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VIII.8 The sufficiency of condition ���0

We shall now show the sufficiency, in a weak form, of condition ���0 for
solvability near p ∈ �� in degree 0 with respect to � under the stronger
assumption that

The boundary of � is real-analytic. (VIII.44)

In other words, we shall assume that � is defined by & > 0, where & is real-
valued, real-analytic and such that �� is defined by & = 0, with �&/�z �= 0
near p.

The next result is the key tool for the proof of the result. In all the arguments
that follow we shall denote by )  C×Rn′ → C the projection )�z� t�= z.

We assume that the central point in the analysis is p = �z0� t0� ∈ �� in
C×Rn′ . By applying the implicit function theorem we can assume that

&�z� t�= y−!�x� t�� z= x+ iy� (VIII.45)

where ! is real-analytic and !�x0� t0�= y0.
We shall also denote by V�p� the set of all open sets D of the form R×",

where R (resp. ") is an open square in C with sides parallel to the coordinate
axes (resp. open ball in Rn′ ) centered at z0 ∈ C (resp. t0 ∈ Rn′ ).

Proposition VIII.8.1. Assume that both (VIII.44) and condition ���0 hold.
Then given any D ∈V�p� there is D• ⊂⊂ D also belonging to V�p� and a
constant M > 0 such that, for any z ∈ C, any two points in ��z�∩D• can
be joined by a piecewise real-analytic curve contained in ��z�∩D and with
length ≤M .

Proof. Given D as in the statement we take D1 ⊂⊂ D also in V�p� and
apply condition ���0: there is D• ⊂D1, also in V�p� such that, for any z ∈C,
��z�∩D• is contained in a single component of ��z�∩D1.

Next we observe that the set K
�= D1∩� is compact and sub-analytic.

We then apply a standard result on the theory of subanalytic sets which can
be found in ([Har], section 8): there is M > 0 such that any two points in
a component of )−1�z	∩K may be joined by a piecewise analytic arc in
)−1�z	∩K of length ≤M .

Hence if t� s belong to ��z�∩D• they belong to a component of ��z�∩D1

and consequently to a component of )−1�z	∩K. Since )−1�z	∩K⊂��z�∩D

the result follows.

The key point in the argument is the following result:

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.009


VIII.8 The sufficiency of condition ���0 349

Proposition VIII.8.2. Under the same hypotheses as in Proposition VIII.8.1,
given D∈V�p� there are D� ∈V�p�, D�⊂⊂D and a constant C> 0 such that
the following is true: given u∈ ����∩D�∩��∩D� there is v∈��∩D��

such that dtv= dtu and

sup
�z�t�∈�∩D�

v�z� t��y−!�x� t�� ≤ C�dtu�L���∩D� � (VIII.46)

Before we embark on the (rather long) proof of this result, we will show
how it can be used to derive our one-sided solvability result.

Corollary VIII.8.3. Assume (VIII.44) and that condition ���0 holds. Then
given any D0 ∈V�p� there is D� ⊂⊂ D0 also belonging to V�p� such that
for every f ∈ C���∩D0�#

1� satisfying D1f = 0 there is v ∈ C���∩D��

satisfying D0v= f in �∩D� and

sup
�z�t�∈�∩D�

v�z� t��y−!�x� t��<��

Notice that, in particular, (VIII.44) and condition ���0 imply solvability for
D near p in degree 1 with respect to � (cf. Remark VIII.7.3).

Proof. Write

f = f0 dz+
n′∑

j=1

fj dtj �

If we extend f0 to a smooth function on D0 and then solve ��v/�z�= f0 in D0

we obtain a new form f−D0v∈C���∩D0�#
1� which has no dz-component.

In other words, we can start with f ∈ C���∩D0�#
1� of the form

f =
n∑

j=1

fj dtj �

Notice that D1f = 0 means that dtf = 0 and that each coefficient fj is
holomorphic in z, that is, fj ∈��∩D0�.

We apply the Approximate Poincaré Lemma: there is D ∈V�p�, D ⊂ D0

(which is independent of f ) and a sequence u� ∈C���∩D� such that D0u�→
f in C���∩D�#1�. Notice that this means

dtu� → f in C���∩D�#1� �
�u�

�z
→ 0 in C���∩D��

Consider now a linear, continuous extension operator

E  C���∩D�−→ C��D�
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and if D= R×" let

A��z� t�=
1
)

∫∫
R
E

(
�u�

�z

)
�z′� t�

1
z− z′

dx′dy′ �

It is easily seen that A� → 0 as �→� in C��D� and, clearly,

�u�

�z
= �A�

�z
in �∩D�

If we substitute u�−A� for u� we then obtain a new sequence u� ∈C���∩D�

such that

dtu� → f in C���∩D�#1�, u� is holomorphic in z. (VIII.47)

Finally we take D• ⊂⊂D as in Proposition VIII.8.2 and apply its conclusion
to u = u�: we can find v� ∈��∩D�� such that dtv� = dtu� and, for some
constant C > 0,

sup
�z�t�∈�∩D�

v��z� t��y−!�x� t�� ≤ C� ∀��

But then some subsequence v�k
converges weakly to a function v which satis-

fies the required properties. This concludes the proof of Corollary VIII.8.3.

VIII.9 Proof of Proposition VIII.8.2

We take D• =R•×"• ⊂⊂D as in Proposition VIII.8.1 and start by constructing
a suitable covering of �∩D•. Set �

�=)��∩D•� and for each a ∈Rn′ we set

Wa

�= �z ∈ C  �z� a� ∈�∩D•	 �

Notice that �Wa	 is an open covering of �. We also set

Ua

�= )−1�Wa�∩ 
�∩D•� � (VIII.48)

Then �Ua	 is an open covering of �∩D• and �z� t� ∈ Ua implies �z�a� ∈
�∩D•. Using the curves given in Proposition VIII.8.1 and the corresponding
bound for their lengths we obtain

u�z� t�−u�z�a� ≤M�dtu�L���∩D� �z� t� ∈ Ua� (VIII.49)

The family �u�·� a�	 defines a holomorphic one-cochain with respect to the
open covering �Wa	 of � which satisfies

u�z�a�−u�z� b� ≤M�dtu�L���∩D� z ∈Wa∩Wb � (VIII.50)
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We shall now construct a new one-cochain wa ∈ ��Wa� such that wa−wb =
u�·� a�−u�·� b� on Wa∩Wb and for which each term wa can be estimated, on
Wa, in terms of the right-hand side of (VIII.50).

Such a one-chain will be constructed through the following standard argu-
ment: start with a partition of unity �*j	, 0 ≤ *j ≤ 1, subordinate to the
covering �Wa	, that is for each j there corresponds aj such that *j ∈C�c �Waj

�

and set

ga�z�=
∑
k

*k�z� 
u�z�a�−u�z�ak�� �

Then ga ∈ C��Wa� and ga−gb = u�·� a�−u�·� b� in Wa∩Wb. Notice that this
last equality implies �ga/�z = �gb/�z in Wa ∩Wb and consequently there is
G ∈ C����, G= �ga/�z in Wa for every a. Finally we solve

�F

�z
=G (VIII.51)

in �, with F ∈ C����, and set wa = ga−F .
Observe that such a solution F always exists (every open subset of C is a

domain of holomorphy!) but in order to obtain (VIII.46) we will be forced to
make a further contraction in the domain.

We have

ga�z� ≤
∑
k

*k�z� u�z�a�−u�z�ak� ≤M�dtu�L���∩D� z ∈Wa

for every a and thus the proof will be completed if we can show that, for
some suitable choice of the partition of unity �*j	, we can obtain a solution F

to (VIII.51) on R�∩�, with R� ⊂ R• another square centered at z0, satisfying

F�z��y−!�z� t�� ≤M1�dtu�L���∩D� � �z� t� ∈�∩D�� (VIII.52)

where D�

�= R∗ ×"• ∈V�p�.
Indeed v ∈��∩D��, defined on Ua∩D� as

u−u�·� a�−wa = u−u�·� a�−ga+F�

satisfies dtv= dtu and (VIII.46).
In order to achieve (VIII.52) we start by observing that∣∣∣∣�ga

�z
�z�

∣∣∣∣≤M�dtu�L���∩D�

∑
k

∣∣∣∣�*k

�z
�z�

∣∣∣∣ � z ∈Wa � (VIII.53)

and take a closer look on the coverings �Ua	 and �Wa	. We have

�= �z ∈ R•  ∃t ∈"•� &�z� t� > 0	�
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Wa = �z ∈ R•  &�z�a� > 0	 �

We set

��z�= sup
t∈"•

&�z� t�=max
t∈"•

&�z� t� �

In particular, � is Lipschitz continuous. Also

�= �z ∈ R•  ��z� > 0	�

Set ��z�=min���z��dist �z� ���	 and observe that � is also Lipschitz contin-
uous. We then recall Lemma IV.3.11:

Lemma VIII.9.1. Let % > 0 be arbitrary. There is an open covering of � by
squares Qj , with sides parallel to the coordinate axes, having the following
properties:

diamQj ≤ % inf
Qj

��z�� (VIII.54)

There are *j ∈ C�c �Qj�, 0 ≤ *j ≤ 1, such that
∑

*j = 1 and (VIII.55)

∑
j

∣∣∣∣�*j

�z
�z�

∣∣∣∣≤ C��z�−1�

Next we claim that if we take % < 1/�2K�, where K is a Lipschitz constant
for &, then for each j there is aj such that Qj ⊂Waj

. Indeed let z ∈ Qj and

take t ∈ "• such that ��z � = &�z � t �. If z ∈ Qj we have z− z  ≤ %��z �

and consequently

&�z� t � = &�z� t �−&�z � t �+&�z � t �

≥ ��z �−Kz− z 
≥ ��z �− %K��z �

≥ 1
2
��z � > 0�

whence our assertion.
For this choice of partition of unity (VIII.53) gives

G�z� ≤ 2MC�dtu�L���∩D���z�
−1� z ∈ �� (VIII.56)

Since &�z0� t0� = 0 we have ��z0� ≥ 0. The case ��z0� > 0 is almost
elementary, for we can take R� ⊂� in such a way that ��z�≥ c > 0 in R� and
consequently the solution to (VIII.51), given by F defined via the formula

F�z�= 1
)

∫ ∫
�

G�z′�
z− z′

dx′ dy′

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.009


VIII.9 Proof of Proposition VIII.8.2 353

satisfies

F�z� ≤M1�dtu�L���∩D� � z ∈ R��

Let us then assume that ��z0�= 0. We now take R� as stated and such that

z ∈ R� &⇒ ��z�= ��z�� (VIII.57)

Notice that, thanks to (VIII.45), we have

��z�= y−.�x�� .�x�= inf
t∈"•

!�x� t�

and then

�∩R� = �z ∈ R∗  y > .�x�	�

We now apply the standard identity

1

z− z′
= 1

z− �
+ 1

z− z′

(
z′ − �

z− �

)
in order to obtain∫

�∩R�

G�z′�
z− z′

dx′ dy′ =
∫ ∫

�∩R�

G�z′�
z−x′ − i.�x′�

dx′ dy′

− i
∫ ∫

�∩R�

G�z′��y′ −.�x′��
�z− z′��z−x′ − i.�x′��2

dx′ dy′�

Since the first term on the right-hand side is holomorphic in �∩R� we can
solve (VIII.51) by taking

F�z�= 1
)i

∫ ∫
�∩R�

G�z′��y′ −.�x′��
�z− z′��z−x′ − i.�x′��

dx′ dy′� z ∈ �∩R�� (VIII.58)

It remains to verify (VIII.52). From (VIII.56) and (VIII.57) we obtain

�y−.�x��F�z� ≤M2�dtu�L���∩D�

×
∫ ∫

�∩R�

1
z− z′ ·

y−.�x�

x−x′+ y−.�x′�dx
′dy′ � z ∈ �∩R� � (VIII.59)

To conclude we just observe that, since . is Lipschitz,

y−.�x�

x−x′+ y−.�x′� ≤
y−.�x′�+M3x−x′
x−x′+ y−.�x′� ≤M3+1

and hence (VIII.59) implies
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�y−.�x��F�z� ≤M4�dtu�L���∩D��

We have thus proved (VIII.52) since

�z� t� ∈ �∩D� &⇒ z ∈ R�� t ∈"•� y > !�x� t��

&⇒ y−!�x� t�≤ y−.�x��

The proof of Proposition VIII.8.2 is now complete.

VIII.10 Solvability for corank one analytic structures

Since the solution v obtained in Corollary VIII.8.3 is holomorphic with respect
to z and has tempered growth when �z� t�→ ��∩D� the results in Chapter
VI show that its boundary value is a well-defined distribution on ��∩D� of
order ≤ 2. If in addition we also assume the validity of condition ���0 at p

with respect to C×Rn′ \�, and if we denote by �• the bundle spanned by the
vector fields �/�z, �/�tj , j = 1� � � � � n and by L

�= D�� the complex induced
by the elliptic complex D on ��, an almost immediate extension of (a) in
Theorem VII.12.1 gives:

Given an open neighborhood U of p in �� there is another (VIII.60)
such neighborhood V ⊂ U such that, given f ∈ U�•�U�

satisfying Lf = 0 there is u ∈
 ′
�2��V� solving Lu= f in V .

Consider the complex vector fields

L•j =
�

�tj
−
(
�&

�z

)−1
�&

�tj

�

�z
� j = 1� � � � � n′�

Near p the vector fields L•j are tangent to �� and their restriction to �� span
�•����. As before we describe �� by the equation y−!�x� t� = 0, with
! real-analytic and take �x� y� t� as local coordinates in ��. In these local
coordinates the vector fields Lj

�= L•j �� are written as

Lj =
�

�tj
− i!tj

1+ i!x

�

�x
� j = 1� � � � � n′� (VIII.61)

Hence �•���� is exactly the locally integrable structure defined on a neigh-
borhood of the point p in Rn′+1 which is orthogonal to the sub-bundle of
CT ∗�Rn′+1� spanned by dZ, where Z�x� t�= x+ i!�x� t�.

The reverse argument is also true, that is, any smooth locally integrable
structure � of corank one, say in a neighborhood of the origin in Rn′+1, arises
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VIII.10 Solvability for corank one analytic structures 355

from the restriction of the elliptic structure �• on C×Rn′ to a hypersurface 0

in C×Rn′ . Indeed if we choose local coordinates �x� t�= �x� t1� � � � � tn′� in a
neighborhood of the origin in Rn′+1 in such a way that the orthogonal of � is
generated by the differential of Z�x� t�= x+ i!�x� t�, with ! smooth and real-
valued, and if we denote by 0 the image of the imbedding �x� t� �→ �Z�x� t�� t�,
it follows easily that � = �•�0�.

Keeping this notation, and recalling Corollary I.10.2, we can (and will)
even assume that !�0�0� = !x�0�0� = 0. We emphasize that � is spanned
by the pairwise commuting vector fields (VIII.61). We further take a small
open neighborhood V of the origin in C×Rn′ and set

V+ = ��z� t� ∈ V  z= x+ iy� y > !�x� t�	�

V− = ��z� t� ∈ V  z= x+ iy� y < !�x� t�	�

Definition VIII.10.1. We shall say that condition (P)0 holds at the origin
for the locally integrable structure � if condition ���0 holds at the origin in
C×Rn′ with respect to both V+ and V−.

We shall then prove:

Theorem VIII.10.2. Let � be a corank one, real-analytic, locally integrable
structure defined in an open neighborhood of the origin in Rn′+1 and let d′

be the associated differential complex. Then d′ is solvable near the origin in
degree one if and only if condition (P)0 holds at the origin.

Proof. The necessity of condition (P)0 follows from Theorem VII.12.1,
Corollary VIII.8.3 and Remark VIII.7.3.

We now embark on the proof of the sufficiency. Let us denote by W�0� the
family of all open neighborhoods of the origin in Rn′+1 of the form U = I×",
where I (resp. ") is an open interval (resp. ball) centered at the origin in
R (resp. Rn′ ). If �p� q� ∈ R2 and if U ∈W�0� we shall denote by L2�r�s

loc �U�

the local Sobolev space of order r with respect to x and of order s with
respect to t.

We recall that if we set M =Z−1
x ��/�x� then the vector fields L1� � � � �Ln′ �M ,

(cf. (VIII.61)), are pairwise commuting, linearly independent (see (I.38)).
We now make use of (VIII.60). Then there is �r0� s0� ∈ R2 such that the

following is true: given U ∈W�0� there is U ′ = I ′ ×"′ ∈W�0�, U ′ ⊂⊂ U ,
such that given

f�x� t�=
n′∑

j=1

fj�x� t�dtj ∈ U
� �U�� Lf = 0 (VIII.62)
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there is v ∈ L
2�r0�s0
loc �U ′� satisfying Lv= f in U ′.

We then fix f as in (VIII.62). Noticing that, for each k ∈ N, M2kf is
also L-closed (here M2k acts componentwise on the one-form f ), we can find
vk ∈L

2�r0�s0
loc �U ′� solving Lvk =M2kf in U ′. Next we solve, in U ′, M2kwk = vk.

Thus

M2k 
Lwk−f�= 0

and consequently we can write

Lwk−f =
2k−1∑
j=0

gjk�t�Z�x� t�j �

where gjk are dt-closed one-forms with distributional coefficients. We can
find distributions Gjk ∈
′�"′� such that dtGjk = gjk and hence we have

L

[
wk+

2k−1∑
j=0

Gjk�t�Z�x� t�j

]
= f� (VIII.63)

Since wk ∈ L
2�r0+2k�s0
loc �U ′� it follows that

Lwk−f ∈ L
2�r0+2k−1�s0−1
loc �U ′�

and hence gjk ∈ L
2�s0−1
loc �"′�. Consequently Gjk ∈ L

2�s0
loc �"′� and then, if we set

uk

�= wk+
2k−1∑
j=0

Gjk�t�Z�x� t�j

we have

Luk = f� uk ∈ L
2�r0+2k�s0
loc �U ′�� (VIII.64)

Explicitly (VIII.64) means

�uk

�tj
= i!tj

1+ i!x

�uk

�x
+fj� j = 1� � � � � n′�

This expression implies that it is possible to trade differentiability with respect
to x for differentiability with respect to tj , j = 1� � � � � n′, that is, we also have

uk ∈ L
2�r0+k�s0+k
loc �U ′�.

Let U• ∈W�0�, U• ⊂⊂ U ′. By the Sobolev imbedding theorem it then
follows that for each � ∈N we can find a solution u•� ∈C��U•� to the equation
Lu•� = f in U•.

We finally apply, for each � ∈ N, the C�-version of the Baouendi–Treves
approximation formula (cf. Theorem II.1.1). There are U1 ∈W�0�, U1 ⊂⊂U•,
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depending only on U• and on � , and a sequence of holomorphic polynomials
�p�	⊂ C
z� such that

�u•�+1−u•�−p��Z��C��U1�
≤ 1

2�
� (VIII.65)

If we set

u�1� = u•1� u��� = u•�−p1�Z�− � � �−p�−1�Z�� � ≥ 2�

then (VIII.65) gives

�u�+1−u��C��U1�
≤ 1

2�
�

This shows that, for each p ∈N, the sequence �u���≥p converges to an element
u ∈ Cp�U1�, of course independent of p, and belonging to ���U1�. Since
moreover Lu� = f in U1 for every � we also have Lu= f in U1.

The proof of Theorem VIII.10.2 is complete.

Notes

Until now, complete answers for local solvability in locally integrable struc-
tures, besides the cases n= 1 (a situation which has already been discussed in
Chapter IV), � defines an essentially real structure (Section VIII.1) and when
� defines an elliptic structure (Theorem VIII.3.1) are known in the following
cases: (i) � defines a nondegenerate locally integrable CR structure of codi-
mension one ([AH2]); (ii) � defines a nondegenerate real-analytic structure
([T9]); (iii) m= 1 ([CorH3]).

We also mention a necessary condition for nondegenerate CR structures
of arbitrary codimension proved in [AFN], which was extended to general
locally integrable structures with additional nondegeneracy conditions in [T5].

The notion of intersection number and the necessary condition given in
Theorem VIII.11.4 is due to [CorT1].

As far as sufficiency is concerned, we point out the works by Kashiwara–
Schapira ([KaS]) and Michel ([Mi]), which deal with locally integrable CR
structures of codimension one and whose Levi form satisfies weaker nonde-
generacy conditions.

Locally integrable structures with m= 1: for this class of locally integrable
structures we have seen in Sections VIII.7 and VIII.8 that condition (P)0 is
necessary and (in the real-analytic category) sufficient for local solvability
near the origin (cf. Corollary VIII.7.5 and Theorem VIII.10.2). This result
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can be generalized much more. Let us introduce, for each q = 0�1� � � � � n−1,
the following property:

(P)q Given any open neighborhood V of the origin there is another such
neighborhood V ′ ⊂ V such that, for every regular value z0 ∈ C of the
map Z, either Z−1�z0	∩V ′ = ∅ or else the homomorphism

H̃q�Z
−1�z0	∩V ′�−→ H̃q�Z

−1�z0	∩V�

induced by the inclusion map

Z−1�z0	∩V ′ ⊂ Z−1�z0	∩V

vanishes identically. Here H̃∗ denotes the reduced homology with complex
coefficients.

In 1981 F. Treves proposed the following conjecture: local solvability near
the origin holds for � if and only if property �P�q−1 is verified. Several articles
were published towards its verification; see [MenT], [CorH1], [CorH2],
[CorT3], [ChT]. The complete proof of the conjecture was finally achieved
in [CorH3]. The main point in the proof of Theorem VIII.10.2 that we
presented is the use of the special covering (VIII.48), an idea inspired by the
work [H10].

Solvability in top degree: one of the main questions in the theory is how
to generalize condition (P)q in order to state a plausible conjecture for local
solvability for general locally integrable systems. Observe that when m ≥ 2
the sets Z−1�z0	 no longer carry enough information: for instance, in the CR
case they are reduced to points.

There is one particular situation where a conjecture can be stated and at
least verified in some particular but important cases: this is when q = n

(local solvability in maximum degree). Returning to the notation established
at the beginning of this chapter, in particular to the vector fields (VIII.4), the
equation under study is now

n∑
j=1

Ljuj = f� (VIII.66)

where no compatibility condition occurs. This makes this case, in some sense,
the closest to the single equation situation.

Before we introduce the solvability condition for (VIII.66) we introduce
the following definition: a real-valued function F defined on a topological
space X is said to assume a local minimum over a compact set K ⊂X if there
exist a ∈ R and K ⊂ V ⊂ X open such that F = a on K and F > a on V\K.
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Definition VIII.10.3. We shall say that � satisfies condition �P�n−1 near
the origin if there is an open neighborhood U ⊂ � of the origin such that
given any open set V ⊂ U and given any h ∈ C��V� satisfying Ljh = 0,
j = 1� � � � � n, then �h does not assume a local minimum over any nonempty
compact subset of V .

By using a classical device due to Lars Hörmander [H6], it was proved in
[CorH1] that local solvability near the origin for (VIII.66) implies condition
�Pn−1�. This result would be of limited importance if no evidence that �Pn−1�

is also a sufficient condition could be presented. This however is not the case,
as the discussion that follows will show, and we can even conjecture at this
point that local solvability of (VIII.66) near the origin is equivalent to �Pn−1�.

When n= 1 condition �P0� is equivalent to the Nirenberg–Treves condition
���: this result was proved in [CorH1] in the analytic category and in the
general case in [T3]. When m= 1 condition �Pn−1� is equivalent to condition
(P)n−1 ([CorH1], [T3]). Thus, in these extreme cases, (Pn−1) unifies both
known solvability conditions.

Let us pause here to discuss again the case when m = 1. The proof of
the Treves conjecture in top degree as presented in [CorH2] is obtained by
proving that (P)n−1 implies, when n ≥ 2, the following property: there are
an open neighborhood U of the origin and constants C > 0 and k ∈ Z+ such
that

���� ≤ C
n∑

j=1

∑
�≤k

�D�Lj���� � ∈ C�c �U�� (VIII.67)

Indeed k can be taken any integer ≥ 
n/2�+ 1 and equal to zero when the
structure is real-analytic ([CorH1]). The completion of the argument is quite
standard, and holds whatever the value of m: by applying the Hahn–Banach
theorem it is easily seen that (VIII.67) implies the existence of weak solutions
to (VIII.66), and a general result due to [T5] proves the existence of smooth
solutions.

For the tube structures it is not difficult to prove that property �Pn−1�

implies (VIII.67) and consequently the preceding discussion shows that our
conjecture is also satisfied for this particular class.

When � defines a CR structure of codimension one then condition �Pn−1�

is equivalent to the existence of an open neighborhood U of the origin such
that at every characteristic point over U the Levi form is not definite. In this
case a partial answer was given in [Mi], where the existence of hyperfunction
solutions is proved.
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Finally we mention another general class of locally integrable structures that
satisfy condition �Pn−1�: these are the hypocomplex structures (cf. Definition
VIII.5.4). For hypocomplex structures it is not still known if �Pn−1� implies
the local solvability of (VIII.66). Neverthless, again in this case we can find
hyperfunction solutions, as a consequence of more general results proved in
[CorTr].
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