ON THE CONNECTEDNESS OF CERTAIN SETS IN SUMMABILITY THEORY

BY

MANGALAM R. PARAMESWARAN

ABSTRACT. This note considers the question of the connectedness of the set of limit points of the A-transforms of a sequence, where A is a conservative Hausdorff, quasi-Hausdorff or Meyer-König-Ramanujan type of matrix. New proofs of some known results, as well as some new results are obtained.

§1

Given a conservative matrix A and a sequence s, let L(A; s) denote the set of all limit points of the A-transform of s (if it exists). Several authors have dealt with the question: "When is L(A, s) connected for all $s \in (m)$, the space of bounded sequences?" and considered the cases where A was Hausdorff or was quasi-Hausdorff. (See [1], [2], [3], [8] and also [4].) In the present paper we deal with the same question, and to certain refinements of it; we consider not only Hausdorff and quasi-Hausdorff matrices but also the Meyer-König-Ramanujan type of matrices (S^*, μ) introduced by Ramanujan [7]; we adopt a unified and somewhat novel approach which enables us to deal with matrices $A = (H, \mu)$ or (H^*, μ) or (S^*, μ) more or less simultaneously. The results obtained include and often improve the results obtained by the earlier authors, or are new.

We follow mainly the notation and definitions of Ramanujan [7] and Parameswaran [5], [6]. The proofs of our theorems are based on the following lemmas.

LEMMA 1. If $s = \{s_n\}$ is a bounded sequence and $a_n \equiv s_n - s_{n-1} = o(1)$, then L(I, s) is connected. (I = identity.) (Barone [1].)

LEMMA 2. (See Parameswaran [5], pp. 52, 56 and 60; Cf. Ramanujan [7], pp. 205, 207 and 211.) Let $A = (H, \mu)$, (H^*, μ) or (S^*, μ) be conservative. Then

Received by the editors April 21, 1976 and, in revised form, January 19, 1978.

 $[\]ensuremath{^*}\xspace$ This work was completed when the author held an Operating Grant from the NRC of Canada.

there exists a function $g \in BV[0, 1]$ such that

(1)
$$u_n = \int_0^1 F_n(t, s) \, dg(t) = \left(\int_0^{0+} + \int_{0+}^{1-0} + \int_{1-0}^1\right) \, dg(t)$$

where $u = \{u_n\} = As$, and $\{F_n(t, s)\}$ denotes the Euler-transform $\{E_n(t, s)\}$, of order t, of s or the 'Taylor-transform' $\{T_n(t, s)\}$ of s and $s_n = O(1)$ or the 'Meyer-König-transform $\{L_n(t, s)\}$ of s and $s_n = O(1)$, according as $A = (H, \mu)$ or (H^*, μ) or (S^*, μ) , respectively; further, if $A = (H^*, \mu)$ or (S^*, μ) , the function g(t) can be chosen so as to be continuous at t = 0.

LEMMA 3. Let A be a conservative Hausdorff or quasi-Hausdorff matrix. Then there exists a function $g \in BV[0, 1]$ such that, with the notation u = As,

(2) (i)
$$u_n = \lambda [g(0+) - g(0)]s_0 + \ell [g(1-0) - g(0+)] + s_n [g(1) - g(1-0)] + o(1)$$

for all bounded sequences s Borel-summable to ℓ , and with $\lambda = 1$ or 0 according as A is Hausdorff or not;

(3) (ii)
$$u_n - u_{n-1} = \ell(\mu_1 - \lim \mu_n) + (s_n - s_{n-1}) \lim \mu_n + o(1)$$

if A is Hausdorff and $\{s_n - s_{n-1}\}$ is bounded and Borel-summable to ℓ , or if $s_n = O(1)$ and A is Hausdorff or quasi-Hausdorff and then indeed (3) holds with $\ell = 0$.

Lemma 3 is essentially contained in [5]; a proof is sketched below for completeness. Part (i) is proved by letting $n \to \infty$ in the righthand side of (1); note that under the conditions stated, $|F_n(t, s)| \le K < \infty$ uniformly in *n* and *t*, $\lim_{n\to\infty} F_n(t, s) = \ell$ (0 < t < 1),

$$\lim_{t\to 0^+} F_n(t,s) = \lambda s_0 \quad \text{and} \quad \lim_{t\to 1^{-0}} F_n(t,s) = s_n.$$

For part (ii) of Lemma 3, we see that by Lemma 2,

(4)
$$u_n - u_{n-1} = \int_0^1 [F_n(t, s) - F_{n-1}(t, s)] \, dg(t)$$
$$= \left(\int_0^{0+} + \int_{0+}^{1-0} + \int_{1-0}^1\right) \, dg(t)$$

where (a) if A is Hausdorff and $\{a_n\} = \{s_n - s_{n-1}\}\)$ is bounded and Borelsummable to ℓ , the integrand in (4) reduces to $tE_{n-1}(t; a)$, is uniformly bounded in $0 \le t \le 1$, tends to ℓt for 0 < t < 1 as $n \to \infty$, and for fixed *n*, tends to a_n as $t \to 1-0$ and to 0 as $t \to 0+$; and (b) if $s_n = O(1)$, the integrand in (4) is uniformly bounded in $0 \le t \le 1$, tends to 0 as $n \to \infty$ for 0 < t < 1 and, for fixed *n*, tends to λs_0 as $t \to 0+$ and to $s_n - s_{n-1}$ as $t \to 1-0$. Then, in each of the cases

[June

(a) and (b), we get the desired result upon letting $n \rightarrow \infty$ in the righthand side of (4).

§2

In this section the symbol A may denote equally a conservative Hausdorff matrix (H, μ_n) or a conservative quasi-Hausdorff matrix (H^*, μ_n) except when explicitly specified.

THEOREM 1. (a) If $s \in (B)(m)$ [i.e. s is a Borel-summable bounded sequence], then L(A, s) is connected if L(I, s) is connected.

(b) If $s \in (B)(m)$ and L(A, s) is connected for some A with $\lim \mu_n \neq 0$, then L(I, s) is connected.

(c) If $s \notin (B)(m)$, then L(A, s) is connected for some A with $\lim \mu_n \neq 0 \Rightarrow L(I, s)$ is connected.

(c)'. In (c) above we may replace the phrase $\lim \mu_n \neq 0$ by $\lim \mu_n = 0$.

(d) $\lim \mu_n \neq 0 \Leftrightarrow L(A, s)$ is connected for (only) almost no sequence of 0's and 1's $\Leftrightarrow L(A, s)$ is not connected when $s_n = \frac{1}{2}[1 + (-1)^n]$.

Proof. Parts (a) and (b) follow from Lemmas 1 and 3(i). Part (c) is proved by the example given in Remark (iii) below; (c)' is a consequence of the fact that if $\lim \mu_n = 0$ then L(A, s) is connected for all $s \in (m)$, a known result which is also included in each of Theorems 2 and 3 below. Part (d) follows from parts (a) and (b), since almost all sequences of 0's and 1's, and in particular $\{\frac{1}{2} + \frac{1}{2}(-1)^n\}$, are Borel-summable.

REMARKS. (i) Theorems 1(a), 1(b) may be compared with earlier results of Ramanujan ([17], Theorems 5, 7) and of the author ([6], theorem 2(i), (ii)) and Theorem 1(d) with another result of the author ([5], Theorem 10) which deal with the A-summability of s, i.e. the case when L(A, s) has a unique element. (See also the remark under Theorem 4 below.)

(ii) Theorem 1 (a) has non-trivial content. For, it is known that if we take any function $F(n) \neq o(n^{-1/2})$ with $F(n) \downarrow 0$, e.g. $F(n) = n^{-1/4}$, then there exist Borel-summable bounded divergent sequences s with $s_n - s_{n-1} = O(F(n)) =$ o(1). By Lemma 1, L(I, s) is connected, and hence so is L(A, s) by Theorem 1(a). Thus there are Borel-summable bounded divergent sequences s for which L(A, s) is connected for every conservative $A = (H, \mu)$ or (H^*, μ) . (See also the corollary to Theorem 3 below.)

(iii) Theorem 1(c) shows that Theorem 1(b) is a best possible one. Theorem 1(d) is also a best possible result in the sense that there exists even a regular Hausdorff matrix $A = (H, \mu_n)$ with $\lim \mu_n \neq 0$ and a divergent sequence s of 0's and 1's such that L(A, s) is connected, and there exists also a regular quasi-Hausdorff matrix $G = (H^*, \nu_n)$ with $\lim \nu_n \neq 0$ and a divergent sequence t of 0's

1980]

and 1's such that L(G, t) is connected, while obviously, neither L(I, s) nor L(I, t) is connected.

To see this we take $A = \frac{1}{2}(I + C_1)$, where C_1 , is the Cesaro matrix, and s to be a sequence consisting of alternating bunches of 0's and 1's as follows: $s_0 = 1$, $s_n = 0(n_{2k} < n \le n_{2k+1})$, $s_n = 1(n_{2k+1} < n \le n_{2k+2})$, where $\{n_k\}$ is a sequence of positive integers which increases so rapidly that L(A, s) consists of the interval [0, 1]; for instance, we may take $n_k = \exp_{10}(2^k)$.

For the quasi-Hausdorff case, we take $G = \frac{1}{2}(I + C_1^*)$, where $C_1^* = (H^*, \mu_n)$ with $\mu_n = 1/(n+2)$. It is then not difficult to see that there exists a divergent sequence t of 0's and 1's such that L(G, t) is the interval [0, 1].

(iv) Leviatan and Lorch [3] raised the following question: Do the limit points of equivalent transforms of bounded sequences have the same connectedness properties? The matrix $A = \frac{1}{2}(I + C_1)$ considered above is equivalent to I for all sequences, and since L(A, s) is connected while L(I, s) is not (where s is as defined in (iii) above), it is seen that the question is answered in the negative for Hausdorff matrices; similarly, for quasi-Hausdorff matrices, the matrices G and I and the sequence t mentioned in (iii) above again provide an answer in the negative.

(v) The examples u = As and v = Gt, where A, G, s and t are as in Remark (iii) above, provide yet other proofs of the known fact that the converse of Lemma 1 is not true.

THEOREM 2. The following statements are equivalent:

(a) $\lim \mu_n = 0;$

(b) L(A, s) is connected for some Borel-summable divergent sequences of 0's and 1's;

(c) L(A, s) is connected for all bounded sequences s;

(d) A sums a Borel-summable bounded divergent sequence;

(e) A sums all Borel-summable bounded sequences.

If A is *Hausdorff*, then each of the following is also equivalent to (a):

(f) L(A, s) is connected for all sequence $s = \{s_n\}$ for which $As \in (m)$, $s_n = o(n^{1/2})$ and $s_n - s_{n-1} = O(1)$;

(g) L(A, s) is connected for all sequences $s = \{s_n\}$ for which $As \in (m)$ and $\{s_n - s_{n-1}\}$ is bounded and Borel-summable to 0.

Proof. it is well-known that (a) \Leftrightarrow (d) \Leftrightarrow (e) (Parameswaran [6], Theorem 2); (c) \Rightarrow (b), trivially; (b) \Rightarrow (a) by Theorem 1(b), and the implication (a) \Rightarrow (c) follows from Lemmas 1 and 3(ii).

If A is Hausdorff, then $(a) \Rightarrow (g) \Rightarrow (f)$ by Lemmas 1 and 3(ii) and the fact that if $s_n = o(n^{1/2})$ then $\{s_n - s_{n-1}\}$ is Borel-summable to 0; since $(f) \Rightarrow (c)$ trivially, it follows, from the equivalences already proved that all of (a)-(g) are equivalent.

140

June

CONNECTEDNESS

REMARKS. (i) For regular Hausdorff methods, the relation $(a) \Leftrightarrow (c)$ was given by Wells [8] and Erdös and Piranian [2]; Leviatan and Lorch [3] showed that the relation $(c) \Rightarrow (a)$ holds for multiplicative Hausdorff matrices, and that $(c) \Leftrightarrow (a)$ for conservative quasi-Hausdoff matrices. (ii) The examples considered in Remark (iii) under Theorem 1 show that if the word "Borel-summable" is dropped from the statement (b) of Theorem 2 then the theorem will be true neither for Hausdorff nor for quasi-Hausdorff matrices. (iii) See also the concluding remarks at the end of the paper.

The next two theorems follow readily from Lemmas 1 and 3(ii) and yield conditions that are sufficient in order that L(A, s) be connected for a given pair A and s.

THEOREM 3. Let $s \in (m)$ and A be given. Then L(A, s) is connected if $\mu_n a_n \equiv \mu_n(s_n - s_{n-1}) = o(1)$.

COROLLARY. There exist bounded divergent sequences s which are not Borelsummable and such that L(A, s) is connected for every conservative $A = (H, \mu)$ or (H^*, μ) . (Cf. Remark (ii) under Theorem 1.)

For, we can take any bounded sequence $\{s_n\}$ which is not Borel-summable and for which $s_n - s_{n-1} = o(1)$.

THEOREM 4. Let $A = (H, \mu)$ be conservative Hausdorff and $\{s_n\}$ a sequence that $As \in (m)$ and $\{a_n\} \equiv \{s_n - s_{n-1}\}$ is bounded and Borel-summable to ℓ . Then L(A, s) will be connected if any one of the following conditions holds:

(i) $a_n = o(1);$

1980]

- (ii) $a_n \rightarrow \ell$ and $\mu_1 = 0$;
- (iii) $\mu_n \rightarrow \ell = 0;$
- (iv) $\mu_n \rightarrow \mu_1 = 0.$

REMARK. The example of A and s given in Remark (iii) under Theorem 1 show that none of the conditions given in Theorems 3 or 4 is necessary for L(A, s) to be connected. However, Theorem 3 is best possible in the sense that we cannot replace the small o by a large O, as is seen from Theorem 1(d).

§3

In an earlier paper (Parameswaran [5], Theorem 8) it is proved that a conservative matrix $A = (S^*, \mu)$ of the Meyer-König-Ramanujan type sums all Borel-summable bounded sequences, irrespective of whether $\lim \mu_n$ is 0 or not. The contrast with the Hausdorff and quasi-Hausdorff matrices is reflected also in the following result.

THEOREM 5. If $A = (S^*, \mu)$ is conservative, then L(A, s) is connected for all bounded sequences s.

Proof. If u = As where A, s are as in the theorem, then

(5)
$$u_n \int_{0+}^{1-0} L_n(t,s) \, dg(t) + s_0[g(1) - g(1-0)]$$

by (1), since $\lim_{t\to 1-0} L_n(t, s) = s_0$; hence

(6)
$$u_n - u_{n-1} = \int_{0+}^{1-0} [L_n(t,s) - L_{n-1}(t,s)] = o(1)$$

since the integrand is uniformly bounded and tends to 0 as $n \to \infty$ for 0 < t < 1; (these are given in [5], p. 60 and p. 51 respectively). The theorem now follows from Lemma 1.

CONCLUDING REMARKS. The Authors thanks the referee for drawing his attention to Liu and Rhoades [4] which appeared after the first version of the present paper was submitted. Liu and Rhoades consider the regular 'generalized' Hausdorff and quasi-Hausdorff matrices $(A^{(\alpha)}, \mu_n) = (H^{(\alpha)}, \mu_n)$ or $(H^{*(\alpha)}, \mu_n)$ for $\alpha \ge 0$. However each conservative generalized matrix $A^{(\alpha)}$, whether it is a matrix of one of the above two types or is a 'generalized' Meyer-König-Ramanujan matrix $(S^{*(\alpha)}, \mu_n)$ is absolutely equivalent for bounded sequences to an ordinary matrix of the same kind. (This result and some others on the $(A^{(\alpha)}, \mu)$ -matrices will appear elsewhere.) The theorems of the present paper are therefore true also for the generalized matrices $A = (H^{(\alpha)}, \mu)$ or $(H^{*(\alpha)}, \mu)$ or $(S^{*(\alpha)}, \mu), \alpha \ge 0$; thus they include, and extend, the results of Liu and Rhoades [4].

Finally, the author thanks the referee for many comments which improved the presentation of the results.

References

1. H. G. Barone: Limit points of sequences and their transforms by methods of summability, Duke Math. J. 5 (1939), 740–752.

2. P. Erdös and G. Piranian: Laconicity and redundancy of Toeplite matrices, Math. Zeit 83 (1964), 381-394.

3. D. Leviatan and L. Lorch: On the connectedness of the sets of limit points of certain transforms of bounded sequences. Canad. Math. Bull. 14 (1971), 175–181.

4. M. Liu and B. E. Rhoades: Some properties of generalized Hausdorff matrices, Houston J. Math. 2 (1976), 239–250.

5. M. R. Parameswaran: Some remarks on Borel summability, Quart. J. Math. (Oxford) (2) 10 (1959), 224–229.

6. M. R. Parameswaran: on the translativity of Hausdorff-and some related methods of summability, J. Indian Math. Soc. 23 (1959), 45-64.

7. M. S. Ramanujan: On Hausdorff and quasi-Hausdorff methods of summability, Quart. J. Math. (Oxford) (2) 8 (1957), 197-213.

8. J. H. Wells: Hausdorff transforms of bounded sequences, Proc. American Math. Soc. 11 (1960), 84-86.

DEPT. OF MATHEMATICS AND ASTRONOMY THE UNIVERSITY OF MANITOBA WINNIPEG, R3T 2N2

142