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Stratification Theory from
the Weighted Point of View
To the memory of Professor Nobuo Sasakura

Toshizumi Fukui and Laurentiu Paunescu

Abstract. In this paper, we investigate stratification theory in terms of the defining equations of strata
and maps (without tube systems), offering a concrete approach to show that some given family is
topologically trivial. In this approach, we consider a weighted version of (w)-regularity condition and
Kuo’s ratio test condition.

Stratification theory is a fundamental tool in constructing topological trivializa-
tion for families of varieties or maps. The key notion in stratification theory is the
regularity condition between strata. The (w)-regularity defined by V. Verdier ([26]) is
very important in studying algebraic and analytic varieties. Nowadays many regular-
ity conditions are known. We can find a lot of information about this in the excellent
survey [25]. See [1, 2] also for weaker regularity condition ((c)-regularity).

The idea was first presented by R. Thom [24] (for further development see for
instance [16] and [7], and also a good survey can be found in [6]). At that time the
purpose was mainly to show that, in some suitable set up, topological stable maps
are dense (successfully proved). Using the existence of some good tube systems for
a regular stratification, they showed the existence of a vector field whose integration
gives a topological trivialization.

This approach was good enough for the study of topological stability, but unfor-
tunately, in our opinion, the expression was not explicit enough to show that some
given family is topologically trivial.

In this paper, we investigate stratification theory in terms of the defining equations
of strata and maps (without tube systems), offering a concrete approach for solving
the above problem.

The paper is organized as follows.
In Section 1, we present a criterion for Verdier’s (w)-regularity conditions and

Kuo’s ratio test condition in terms of the defining equations of the strata. Next we
give an explicit construction of a vector field for topological trivialization. The key
step in our construction is the use of a new projection formula (Lemma 1.4) allowing
us to treat at the same time the non-complete intersection case. In this approach, it
is possible to consider a weighted version of (w)-regularity condition and Kuo’s ratio
test condition, and we do this in Section 2. We show that these conditions imply the
integrability of the vector fields constructed by the method in Section 1. In Section 3,
using the regularity conditions defined in Section 2, we prove the isotopy lemmas.
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74 Toshizumi Fukui and Laurentiu Paunescu

Actually, using a partition of unity, we patch up together the vector fields constructed
in Section 2.

With appropriate modifications one can use the same techniques in the complex
analytic case to obtain analogous results. Because the modifications are standard, we
concentrate ourselves only on the real case.

After this paper was written, L. Wilson sent us the manuscript of the thesis of his
Ph.D student Bohao Sun ([21]), in which he also considers weighted (w)-regularity
conditions.

1 Regularity Conditions

1.1 A criterion for (w)-regularity

Let (x, y) = (x1, . . . , xn, y1, . . . , ym) denote a system of coordinates of Rn+m and X, Y
submanifolds of Rn+m. For notational convenience we also use xn+s = ys. We assume
that

Y = {(x, y) ∈ R : x1 = · · · = xn = 0}.

Let πP denote the orthogonal projection of Rn+m to the normal space of X at P ∈ X.
Then, following [25], we say X is (w)-regular over Y at 0 ∈ Y , if for any unit vector v
tangent to Y |πP(v)| � |x| at P ∈ X near 0. Here A � B means there is some positive
constant C with A ≤ CB. Of course we may restrict v to the members of a basis of
the tangent space of Y at 0.

We next assume that X is some open set in the regular locus of the variety defined
as the zero locus of some C2-functions F1(x, y), . . . , Fp(x, y) near 0, i.e., setting F :=
(F1, . . . , Fp), the Jacobi matrix of F has rank k on X near 0, where k ≤ p is the
codimension of X in Rn+m. We note that the normal space of X is generated by the
gradients of the functions F j ( j = 1, . . . , p) at each P ∈ X near 0.

Let j1, . . . , jk be integers with 1 ≤ j1 < · · · < jk ≤ p. We set J = { j1, . . . , jk},
FJ = (F j1 , . . . , F jk ) and

dFJ = dF j1 ∧ · · · ∧ dF jk , where dF j =

n+m∑
i=1

∂F j

∂xi
dxi,

dxFJ = dxF j1 ∧ · · · ∧ dxF jk , where dxF j =

n∑
i=1

∂F j

∂xi
dxi,

and we define dxFJ by dFJ = dxFJ + dxFJ.
For I ⊂ {1, . . . , n}, S ⊂ {1, . . . ,m}, J ⊂ {1, . . . , p} with #I + #S = # J = k, we

set ∂FJ

∂(xI ,yS) the Jacobian of (FJ) with respect to the variables xi (i ∈ I) and ys (s ∈ S).

If S = ∅, we simply denote it by ∂FJ

∂xI
. We then define ‖dxF‖, ‖dxF‖ by the following

formulae:

‖dxF‖2 =
∑

J

‖dxFJ‖
2 where ‖dxFJ‖

2 =
∑

I

∣∣∣∣ ∂FJ

∂xI

∣∣∣∣ 2
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‖dxF‖2 =
∑

J

‖dxFJ‖
2 where ‖dxFJ‖

2 =
∑

I,S:S �=∅

∣∣∣∣ ∂FJ

∂(xI , yS)

∣∣∣∣ 2

.

Let |x| denote the function defined by |x|2 =
∑n

i=1 |xi|2. For a matrix M we have
used |M| as the absolute value of its determinant det(M) if M is a square matrix or 0
otherwise.

Theorem 1.1 The following conditions are equivalent:

(i) X is (w)-regular over Y at 0.
(ii) ‖dxF‖ � |x| ‖dxF‖ holds on X near 0.
(iii) For any C1-functions ϕ j ( j = 1, . . . , p) near 0, and s = 1, . . . ,m,

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ � |x| sup
{∣∣∣ p∑

j=1

ϕ j
∂F j

∂xi

∣∣∣ : i = 1, . . . , n
}

holds on X near 0.

(iv) For J ⊂ {1, . . . , , p}, I = {i1, . . . , ik−1} ⊂ {1, . . . , n} with 1 ≤ i1 < · · · <
ik−1 ≤ n, s = 1, . . . ,m,∣∣∣∣ ∂FJ

∂(xI , ys)

∣∣∣∣ � |x|‖dxF‖ holds on X near 0.

The condition (iii) is inspired by several conditions appeared in T. Gaffney’s paper
[8]. This theorem was essentially proved in [8] in real (or complex) analytic case. His
proof uses the notion of the integral closure of a module. The first author thanks
Leslie Wilson for informing him about the existence of that paper. It is also possible
to obtain a similar result for Kuo’s ratio test condition and we present it in Section 1.5.

We next state some sufficient conditions for (w)-regularity. For j = 1, . . . , p, we
set

‖dxF[ j]‖2 =
∑

J

∑
i1<···<ik−1

∣∣∣∣ ∂F[ j]
J

∂x{i1,...,ik−1}

∣∣∣∣ 2

, and h j =
‖dxF‖

‖dxF[ j]‖
,

where

F[ j]
J =

{
(F j1 , . . . , F̂ ja , . . . , F jk ) if j ∈ J = { j1, . . . , jk}, j = ja,

(0, . . . , 0) ((k− 1)-tuple) if j �∈ J.

Here, ∧ is the notation indicating that we omit the letter (or the portion) to which ∧

is attached.

Corollary 1.2 X is (w)-regular over Y at 0, if for j = 1, . . . , p the following inequal-
ities hold on X near 0,∣∣∣∣ ∂F j

∂ys

∣∣∣∣ � |x|h j , s = 1, . . . ,m

(
or, equivalently, ‖dxF j‖ � |x| ‖dxF‖

‖dxF[ j]‖

)
.
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Corollary 1.3 X is (w)-regular over Y at 0, if the following inequalities hold on X near
0,

‖dxF j‖ � |x| ‖dxF j‖, ‖dxF j‖ � h j =
‖dxF‖

‖dxF[ j]‖
, for j = 1, . . . , p.

By (iii) in Theorem 1.1, the first inequality here is a necessary condition for (w)-
regularity. Note that when p = k = 1, this is just Teissier’s c-condition (see [22, 23]).

1.2 Linear Algebra (cf. also Section 6 of [17])

We present here some lemmas in linear algebra which are needed later on. Let V
denote a real vector space with dimension n, and V ∗ denote the dual space of V .
Let e1, . . . , en denote a basis of V , and e∗1 , . . . , e

∗
n the dual basis of V ∗ defined by

e∗i (e j) = δi j . We consider a positive symmetric bilinear form of V :

〈 , 〉 : V ×V → R.

For an element v ∈ V , v∨ denotes the linear functional of V defined by v∨(w) =
〈w, v〉. This induces an identification between V and V ∗ by v �→ v∨. Then, we have
e∨i =

∑n
i=1 gi je∗j where gi j = 〈ei, e j〉. Thus, e∗i =

∑n
j=1 gi j e∨j where (gi j) denotes the

inverse matrix of (gi j).
It is well known that this bilinear form 〈 , 〉 induces bilinear forms on the exterior

products
∧k V ,

∧k V ∗. This is defined in the following way. The set {ei1 ∧ · · · ∧ eik |

i1 < · · · < ik} gives a basis of
∧k V , and the bilinear form is defined by

〈ei1 ∧ · · · ∧ eik , e j1 ∧ · · · ∧ e jk〉 = gi1 j1 · · · gik jk .

Similarly, the set {e∗i1
∧ · · · ∧ e∗ik

| i1 < · · · < ik} gives a basis of
∧k V ∗, and the

bilinear form is defined by

〈e∗i1
∧ · · · ∧ e∗ik

, e∗j1
∧ · · · ∧ e∗jk

〉 = gi1 j1 · · · gik jk .

Let a j =
∑n

i=1 a j
i ei ( j = 1, . . . , k) denote vectors in V , and b j =

∑n
i=1 b j

i e∗i ( j =

1, . . . , k) covectors in V ∗. Under the identification (
∧k V )∗ =

∧k V ∗, we have (by
[19], Theorem 9, p. 78),

(b1 ∧ · · · ∧ bk)(a1 ∧ · · · ∧ ak) = det
(

b j(ai)
)

1≤i, j≤k
.

Let a j =
∑n

i=1 a j
i ei ( j = 1, . . . , p) denote vectors in V , and W the linear span of

a1, . . . , ap, assumed to be of dimension k ≤ p. We set W⊥ = {v ∈ V | 〈v,w〉 =
0, ∀w ∈W}. For v = (v1, . . . , vn) ∈ V , we set

π(v) =
n∑

i=1

∑
j1<···< jk

φ j1,..., jk

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨ ∧ e∗i

)
(a j1 ∧ · · · ∧ a jk ∧ v)∑

j1<···< jk
φ j1,..., jk

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨

)
(a j1 ∧ · · · ∧ a jk )

ei.

Here φ j1,..., jk (1 ≤ j1 < · · · < jk ≤ p) denote some constants such that the denomi-
nator is not zero.
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Lemma 1.4 The image of π is W⊥, and π : V → W⊥ is the orthogonal projection
with respect to 〈 , 〉.

Since we could not find this lemma in literature, we present here a complete proof
of it.

Proof Obviously π is a linear map. Since π(a j) = 0, we have π(W ) = 0. Therefore
it is enough to see that π(v) = v for any v ∈W⊥. For v ∈W⊥ and j = 1, . . . , p, we
have (a j)∨(v) = 〈a j , v〉 = 0. Thus we obtain∑

i

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨ ∧ e∗i

)
(a j1 ∧ · · · ∧ a jk ∧ v)ei

=
∑

i

det

(
(a jr )∨(a jq ) (a jr )∨(v)

e∗i (a jq ) e∗i (v)

)
1≤r,q≤k

ei

= det

(
(a jr )∨(a jq ) 0

a jq v

)
1≤r,q≤k

=
(

(a j1 )∨ ∧ · · · ∧ (a jk )∨
)

(a j1 ∧ · · · ∧ a jk )v

Then we obtain∑
j1<···< jk

φ j1,..., jk

∑
i

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨ ∧ e∗i

)
(a j1 ∧ · · · ∧ a jk ∧ v)ei

=
∑

j1<···< jk

φ j1,..., jk

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨

)
(a j1 ∧ · · · ∧ a jk )v.

Thus we obtain π(v) = v for v ∈W⊥.

Note that( ∑
j1<···< jk

φ j1,..., jk

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨

)
(a j1 ∧ · · · ∧ a jk )

)
π(v)

=
n∑

i=1

∑
j1<···< jk

φ j1,..., jk

(
(a j1 )∨ ∧ · · · ∧ (a jk )∨ ∧ e∗i

)
(a j1 ∧ · · · ∧ a jk ∧ v)ei

for any constants φ j1,..., jk .
Since v =

∑n
i=1(ei)∗(v)ei , if we set φ j1,..., jk = 1, we get the following formula

π(v) =

∑
j1<···< jk

det

(
〈a jr , a jq〉 〈a jr , v〉

a jr v

)
∑

j1<···< jk
det(〈a jr , a jq〉)1≤r,q≤k

.
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Remark 1.5 Let V be the tangent space TxM of a manifold M at a point x. Then
V ∗ is its cotangent space T∗x M. Let 〈 , 〉 be a Riemannian metric. Let x1, . . . , xn be a
local coordinate system around x, ∂

∂x1
, . . . , ∂

∂xn
the usual basis of TxM, dx1, . . . , dxn

the usual (dual) basis of T∗x M.
Let F1, . . . , Fp be C1-functions and assume the Jacobi matrix of (F1, . . . , Fp) is

of rank k on X ⊂
⋂p

j=1 F−1
j (0), and φ j1,..., jk (1 ≤ j1 < · · · < jk ≤ p) positive

functions on the zero set of (F1, . . . , Fp). Applying the previous lemma with a j =
grad F j , where grad F j is the gradient vector of F j i.e. a vector with dF j = (grad F j)∨,
we obtain that the orthogonal projection of v ∈ TxM to the tangent space TxX is
expressed by the following form.

v �→
∑

i

∑
j1<···< jk

φ j1,..., jk (dF j1 ∧ · · · ∧ dF jk ∧ dxi)(grad F j1 ∧ · · · ∧ grad F jk ∧ v)∑
j1<···< jk

φ j1,..., jk‖dF j1 ∧ · · · ∧ dF jk‖
2

∂

∂xi
.

(1.1)

1.3 Proof of Theorem 1.1

Lemma 1.6 X is (w)-regular over Y at 0 iff the following inequalities hold on X near
0 for each J ⊂ {1, . . . , p}, # J = k:

(a) |〈dFJ ∧ dxi, dFJ ∧ dys〉| � |x| ‖dFJ‖
2 for 1 ≤ i ≤ n; 1 ≤ s ≤ m

(b) |〈dFJ ∧ dyi , dFJ ∧ dys〉| � |x| ‖dFJ‖
2 for 1 ≤ i < s ≤ m

(c) ‖dFJ‖
2 − ‖dFJ ∧ dys‖

2 � |x| ‖dFJ‖
2 for 1 ≤ s ≤ m

Proof This is a consequence of the definition of (w)-regularity and (1.1). We can see
this taking particular functions φ j1,..., jk in the expression (1.1). Namely, one can take
φ j1,..., jk = 1, if J = { j1, . . . , jk}; 0, otherwise.

Proof of (ii)⇒ (i) Since the left hand side of (c) does not contain the terms con-
taining ∂F j

∂ys
for 1 ≤ j ≤ p, and ‖dFJ‖2 = ‖dxFJ‖2 + ‖dxFJ‖2, (c) is equivalent to the

following inequality.

‖dxF‖2 � |x| ‖dxF‖2.

By Cauchy-Schwarz, (b) comes from (c). Thus we have that X is (w)-regular over Y
at 0 iff the inequalities (a) and (c) hold on X near 0.

We now assume (ii). We then have ‖dxF‖2 � |x|2‖dxF‖2 on X near 0. Since we
may assume that |x| is very small, (c) trivially holds. By Cauchy-Schwarz inequality,
this implies (a). This completes the proof.
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Proof of (i)⇒ (iii) We first remark the following equality:

∑
i �=n+s

p∑
j=1

ϕ j
∂F j

∂xi
〈dFJ ∧ dxi, dFJ ∧ dys〉

=
〈

dFJ ∧

p∑
j=1

ϕ j

(
dF j −

∂F j

∂ys
dys

)
, dFJ ∧ dys

〉

= −

p∑
j=1

ϕ j
∂F j

∂ys
‖dFJ ∧ dys‖

2.

Then, by (a) and (b), we have

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ ‖dFJ ∧ dys‖
2 ≤

∑
i �=n+s

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ |〈dFJ ∧ dxi, dFJ ∧ dys〉|

�
∑

i �=n+s

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ |x| ‖dF‖2.

Then by (c) we have

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ ‖dFJ‖
2 ≤
∣∣∣ p∑

j=1

ϕ j
∂F j

∂ys

∣∣∣ (‖dFJ ∧ dys‖
2 + |x| ‖dF‖2)

�
n+m∑
i=1

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ |x| ‖dF‖2.

Summing up for all J and s we get the desired inequality, which completes the
proof.

In Section 2 we shall prove the generalized weighted version (Theorem 2.1) of the
equivalence (ii)⇔ (iii)⇔ (iv), and this will complete the proof of our theorem.

Proof of Corollary 1.2 We define d	 by the formula: d	
2 =
∑

J

∑
I,S:#S=	 |

∂FJ

∂(xI ,yS) |
2.

By Cauchy-Schwarz inequality, the inequality in Corollary 1.2 implies d1 � |x|d0,
which implies (iv) in Theorem 1.1.

Proof of Corollary 1.3 Obvious. Use Corollary 1.2.

1.4 Kuo’s Vector

Let U be a neighborhood of 0, and Y = {x1 = · · · = xn = 0}. We assume that X is
the regular locus of the zero locus of C2-functions F j ( j = 1, . . . , p), and assume the
codimension is k.
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Let v be a tangent vector to Y . The purpose of this subsection is to give an explicit
construction of a tangent vector ξ to X which is an extension of v and dp(ξ) = v
where p is the natural projection defined by (x, y) �→ y.

We first remark that any multiple of the orthogonal projection of v =
∑m

s=1 cs
∂
∂ys

to the tangent space of X may not have this property (except the case m = 1).
For s = 1, . . . ,m, we use the following notation:

d(s)F j =
n∑

i=1

∂F j

∂xi
dxi +

∂F j

∂ys
dys, and d(s)FJ = d(s)F j1 ∧ · · · ∧ d(s)F jk .

Let us consider the orthogonal projection of ∂
∂ys

to the tangent space of X in the space
defined by y1 = · · · = ys−1 = ys+1 = · · · = ym = 0.

This is expressed by

n∑
i=1

∑
J φ J〈d(s)FJ ∧ dxi, d(s)FJ ∧ dys〉∑

J φ J〈d(s)FJ, d(s)FJ〉

∂

∂xi
+

∑
J φ J〈d(s)FJ ∧ dys, d(s)FJ ∧ dys〉∑

J φ J〈d(s)FJ, d(s)FJ〉

∂

∂ys
,

where φ J are any positive function on X. Its multiple whose ∂
∂ys

-component is 1, is
expressed by the following formula:

n∑
i=1

∑
J φ J(d(s)FJ ∧ dxi)(gradx FJ ∧

∂
∂ys

)∑
J φ J‖dxFJ‖2

∂

∂xi
+

∂

∂ys
,

where gradx FJ denotes the wedge product of the gradients in coordinate x1, . . . , xn.
Let v =

∑
j cs

∂
∂ys

be a unit C1-vector field tangent to Y . Then the above construc-

tion implies the following C1-vector field ξ is tangent to X:

ξ =
n∑

i=1

∑m
j=1 cs

∑
J φ J(d(s)FJ ∧ dxi)(gradx FJ ∧

∂
∂ys

)∑
J φ J‖dxFJ‖2

∂

∂xi
+ v.

Since gradx F j has zero ∂
∂ys

components, we thus have

ξ =
n∑

i=1

∑
J φ J(dFJ ∧ dxi)(gradx FJ ∧ v)∑

J φ J‖dxFJ‖2

∂

∂xi
+ v.

We call this ξ a Kuo’s vector, because T.-C. Kuo expressed this vector in such an explicit
form in [15] when m = p = 1, (see also [11, 12, 14]). Here we remark that the ∂

∂xi
-

component of ξ (say ξi) is

ξi =

m∑
s=1

cs

∑
J,I:#I=k−1 φ J

∂FJ

∂(xI ,xi )
∂FJ

∂(xI ,ys)∑
J,I φ J|

∂FJ

∂xI
|2

.
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We assume that X is (w)-regular over Y at 0. Then the inequality (ii) of Theo-
rem 1.1 implies∣∣∣∣

∑
J〈dFJ ∧ dxi, dxFJ ∧ v∨〉∑

J ‖dxFJ‖2

∣∣∣∣ � |x| for i = 1, . . . , n on X near 0.

In this situation, we say that {ξ, v} satisfies a relatively Lipschitz condition on (X,Y )
near 0. It is possible to show that the flow of {ξ, v} is unique on X ∪ Y near 0. We
will mention this trick again in Section 2.4 in the weighted setup.

1.5 Ratio Test Conditions

We use the same notation as in Theorem 1.1. We define |(x, y)| and |y| by

|(x, y)|2 =
n∑

i=1

|xi |
2 +

m∑
j=1

|y j |
2, and |y|2 =

m∑
s=1

|ys|
2.

We say that X is (r)-regular over Y at 0, if for any unit vector v tangent to Y

|πP(v)| |(x, y)| = o(|x|) when P = (x, y)→ 0, P ∈ X.

Here “A = o(B) when P → 0” means limP→0 |A/B| = 0. This was defined in [12].

Theorem 1.7 The following conditions are equivalent:

(i) X is (r)-regular over Y at 0.
(ii) ‖dxF‖ |(x, y)| = o(|x| ‖dxF‖) when (x, y)→ 0 on X.
(iii) For any C1-function ϕ j ( j = 1, . . . , p) near 0 and s = 1, . . . ,m,∣∣∣ p∑

j=1

ϕ j
∂F j

∂ys

∣∣∣ |(x, y)| = o(|x| ‖dxF‖) when (x, y)→ 0 on X.

(iv) For J ⊂ {1, . . . , , p}, I = {i1, . . . , ik−1} ⊂ {1, . . . , n} with 1 ≤ i1 < · · · <
ik−1 ≤ n, s = 1, . . . ,m,∣∣∣∣ ∂FJ

∂(xI , ys)

∣∣∣∣ |(x, y)| = o(|x| ‖dxF‖) when (x, y)→ 0 on X.

Proof This is proved in exactly the same way as Theorem 1.1 (we omit the details).

Proposition 1.8 We continue the notation in Section 1.4. When X is (r)-regular over
Y at 0, the flow of Kuo’s vector field {ξ, v} is unique.

Proof We first remark that ξ does not depend on the choice of φ J , and we set φ J ≡ 1.
We first consider the case m = 1. If X is (r)-regular over Y at 0, then the inequalities
obtained by replacing |(x, y)| by |y| from the inequalities in (ii), (iii), (iv) of Theo-
rem 1.7 hold. This shows that the Kuo’s vector ξ satisfies relative version of Nagumo’s
criterion (Corollary 6.1 on page 32 of [9]) and we have uniqueness of the flow.

Assume that m > 1. Let C be the integral curve of v. Then the flow of ξ is in
π−1(C) and we can reduce the problem to the case m = 1 and we are done.
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2 Weighted Versions of (w)-Regularity

In the previous section we present (w) regularity in terms of defining equations in
some coordinate. This allow us to consider a weighted version of (w)-regularity con-
dition. We present it in this section. The treatment here is inspired by the earlier
work of the second author [18].

2.1 A Weighted Version of (w)-Regularity

Let (x, y) = (x1, . . . , xn, y1, . . . , ym) denote a system of coordinates of a neighbor-
hood U of 0 in Rn+m and X, Y disjoint submanifolds of U . For notational convenience
we put xn+s = ys. We assume that

Y = {(x, y) ∈ U : x1 = · · · = xn = 0}.(2.1)

We fix a weight w = (w1, . . . ,wn), and consider the function defined by

‖x‖ = ‖x‖w := (|x1|
2w
w1 + · · · + |xn|

2w
wn )

1
2w , where w = w1w2 · · ·wn.(2.2)

We next assume that X is some open set in the regular locus of the variety de-
fined as the zero locus of C2-functions F1(x, y), . . . , Fp(x, y) near 0, i.e., setting F :=
(F1, . . . , Fp), the Jacobi matrix of F has rank k on X near 0, where k is the codimen-
sion of X in Rn+m. We note that the normal space of X is generated by the gradients
of functions F j ( j = 1, . . . , p) at each P ∈ X near 0.

We define ‖dxF‖w, ‖dxF‖w, Dw(	) by the following formula:

‖dxF‖2
w =

∑
J

‖dxFJ‖
2
w where ‖dxFJ‖

2
w =

∑
I

(
‖x‖wI

w

∣∣∣ ∂FJ

∂xI

∣∣∣) 2
(2.3)

‖dxF‖2
w =

∑
J

‖dxFJ‖
2
w where ‖dxFJ‖

2
w =

∑
I,S:S �=∅

(
‖x‖wI

w

∣∣∣∣ ∂FJ

∂(xI , yS)

∣∣∣∣) 2

(2.4)

Dw(	)2 =
∑

J

∑
I,S:#S=	

(
‖x‖wI

w

∣∣∣∣ ∂FJ

∂(xI , yS)

∣∣∣∣) 2

. Here wI =
∑
i∈I

wi.(2.5)

We consider the singular metric of Rn+m defined by

〈
‖x‖wi

w
∂

∂xi
, ‖x‖

w j
w

∂

∂x j

〉
= δi j :=

{
1 if i = j,

0 if i �= j.
(2.6)

Here, we understand that wn+1 = · · · = wn+m = 0. We first remark that

〈dxi1 ∧ · · · ∧ dxik , dxi1 ∧ · · · ∧ dxik〉 = ‖x‖
2(wi1 +···+wik

)
w

and 〈dF, dF〉 = ‖dF‖2
w, 〈dxF, dxF〉 = ‖dxF‖2

w, etc.
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Theorem 2.1 The following conditions are equivalent:

(i) Dw(m) � Dw(m− 1) � · · · � Dw(1) � Dw(0) holds on X near 0.
(ii) ‖dxF‖w � ‖dxF‖w holds on X near 0.
(iii) For any C1-functions ϕ j ( j = 1, . . . , p) near 0, and s = 1, . . . ,m,

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ �
n∑

i=1

‖x‖wi
w

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ holds on X near 0.

(iv) For J ⊂ {1, . . . , p}, I = {i1, . . . , ik−1} ⊂ {1, . . . , n} with 1 ≤ i1 < · · · <
ik−1 ≤ n, s = 1, . . . ,m,

‖x‖
wi1 +···+wik−1
w

∣∣∣∣ ∂FJ

∂(xI , ys)

∣∣∣∣ � ‖dxF‖w holds on X near 0.

(v) For J ⊂ {1, . . . , p}, i = 1, . . . , n, s = 1, . . . ,m,

|〈dFJ ∧ dxi, dxFJ ∧ dys〉| � ‖x‖wi
w ‖dxFJ‖

2
w holds on X near 0.

(vi) For some positive C1-functions φ J on X with J ⊂ {1, . . . , p}, i = 1, . . . , n, s =
1, . . . ,m,∣∣∣∑

J

φ J〈dFJ ∧ dxi, dxFJ ∧ dys〉
∣∣∣ � ‖x‖wi

w

∑
J

φ J‖dxFJ‖
2
w holds on X near 0.

We say that X is weighted (w)-regular over Y at 0 with respect to w (or w-(w)-
regular for short), if one of the above equivalent conditions holds in some coordinate
system (x, y) with (2.1). If w1 = · · · = wn = 1, these coincide with the usual (w)-
regular condition. However, it is not immediate to see that (ii) is the same condition
as in the homogeneous case.

We also state the weighted version of Theorem 1.3.

Corollary 2.2 X is w-(w)-regular over Y at 0, if the following inequalities hold on X
near 0:

‖dxF j‖w � ‖dxF j‖w, ‖dxF j‖w � ‖dxF‖w

‖dxF[ j]‖w
, for j = 1, . . . , p.

Proof The proof is similar to that of Corollary 1.3, and we omit it.

2.2 Proof of Theorem 2.1

Since implications (i)⇒ (ii)⇒ (iv), (v)⇒ (vi) are clear, it is enough to see (iv)⇒
(iii)⇒ (i), (iii)⇒ (v), and (vi)⇒ (iii).
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Proof of (iii)⇒ (i) We assume (iii). By the inequality in (iii), we have∣∣∣∣ ∂FJ

∂(xI , ys)

∣∣∣∣ �
n∑

i=1

‖x‖wi
w

∣∣∣∣ ∂FJ

∂(xI , xi)

∣∣∣∣(2.7)

and Dw(1) � Dw(0) = ‖dxF‖w. Similarly we also have∣∣∣∣ ∂FJ

∂(xI , ys1 , ys2 )

∣∣∣∣ �
n∑

i=1

‖x‖wi
w

∣∣∣∣ ∂FJ

∂(xI , ys1 , xi)

∣∣∣∣
and, using (2.7), we obtain Dw(2) � Dw(1) on X near 0. In a similar way we obtain
that Dw(	) � Dw(	− 1) (	 = 2, . . . ,m), and this completes the proof.

Proof of (iii)⇒ (v) We assume (iii). Using (iii) in a similar way to the previous
proof, we have

|〈dFJ ∧ dxi, dxFJ ∧ dys〉| =

∣∣∣∣∑
I

‖x‖2(wI +wi )
w

∂FJ

∂(xI , xi)

∂FJ

∂(xI , ys)

∣∣∣∣
� ‖x‖wi

w

n∑
	=1

∑
I

‖x‖2wI +w	+wi
w

∣∣∣∣ ∂FJ

∂(xI , xi)

∣∣∣∣ ∣∣∣∣ ∂FJ

∂(xI , x	)

∣∣∣∣
≤ ‖x‖wi

w ‖dxFJ‖
2
w

and we are done.

Proof of (vi)⇒ (iii) Since

n∑
i=1

∂F j

∂xi
〈dFJ∧dxi, dxFJ∧dys〉 = −

m∑
t=1

∂F j

∂yt
〈dFJ∧dyt , dxFJ∧dys〉 = −

∂F j

∂ys
‖dFJ‖

2
w,

we obtain

p∑
j=1

ϕ j

n∑
i=1

∂F j

∂xi

∑
J

φ J〈dFJ ∧ dxi, dxFJ ∧ dys〉 = −

p∑
j=1

ϕ j
∂F j

∂ys

∑
J

φ J‖dFJ‖
2
w.

Thus we obtain

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ ∑
J

φ J‖dxFJ‖
2
w ≤

n∑
i=1

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ ∣∣∣∑
J

φ J〈d
(s)FJ ∧ dxi, d

(s)FJ ∧ dys〉
∣∣∣

�
n∑

i=1

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣‖x‖wi
w

∑
J

φ J‖dxFJ‖
2
w.
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Dividing by ‖dxFJ‖2
w, we obtain (iii).

Proof of (iv)⇒ (iii) (iv) implies Dw(1) � ‖dxF‖w on X near 0. Then, by Cauchy-
Schwarz inequality, we have

|〈d(s)FJ ∧ dxi, d
(s)FJ ∧ dys〉| � ‖x‖wi

w ‖dxFJ‖
2
w on X near 0.

We next remark the following equality:

n∑
i=1

∂F j

∂xi
〈d(s)FJ ∧ dys, d

(s)FJ ∧ dxi〉 =
〈

d(s)FJ ∧ dys, d
(s)FJ ∧

(
d(s)F j −

∂F j

∂ys
dys

)〉
= −

∂F j

∂ys
‖dxFJ‖

2
w.

Thus, we obtain

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ ‖dxFJ‖
2
w ≤

n∑
i=1

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ |〈d(s)FJ ∧ dxi, d
(s)FJ ∧ dys〉|

�
n∑

i=1

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣ ‖x‖wi
w ‖dxF‖2

w.

Summing up the inequalities, for all J and dividing by ‖dxF‖2
w, we obtain (iii).

2.3 ODE Problems

To construct a topological trivialization using the weighted (w)-condition (or Kuo’s
ratio test condition), we consider the following classical ODE problem

dx

dt
= f (t, x), x(t0) = x0(2.8)

where x = (x1, . . . , xn). If f (t, x) is continuous, it is well known that the solution
x = x(t) exists (see [9], Theorems 2.1, page 12). We fix a weight w = (w1, . . . ,wn)
and consider the function ‖x‖ = ‖x‖w defined by (2.2).

We say f (t, x) satisfies a weighted Lipschitz condition with respect to the weight w
(or, w-Lipschitz, for short) if the following condition holds:

‖ f (t, x)− f (t, x̄)‖w � ‖x − x̄‖w for any x, x̄ near x0.

We say that f (t, x) is weighted Lipschitz, if it satisfies a weighted Lipschitz condition
for some weight w.

Lemma 2.3 If f (t, x) is weighted Lipschitz near (t, x) = (t0, x0), then (2.8) admits at
most one solution near t = t0.

https://doi.org/10.4153/CJM-2001-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-004-9


86 Toshizumi Fukui and Laurentiu Paunescu

Proof Let x(t), and x̄(t) be two solutions of (2.8) with x(t0) = x̄(t0) = x0. Since

xi(t)− xi(t0) =

∫ t

t0

fi

(
s, x(s)

)
ds, x̄i(t)− x̄i(t0) =

∫ t

t0

fi

(
s, x̄(s)

)
ds,

we have

xi(t)− x̄i(t) =

∫ t

t0

{
fi

(
s, x(s)

)
− fi

(
s, x̄(s)

)}
ds.

Thus
n∑

i=1

|xi(t)− x̄i(t)|
2w
wi

=

n∑
i=1

∣∣∣∫ t

t0

{
fi

(
s, x(s)

)
− fi

(
s, x̄(s)

)}
ds
∣∣∣ 2w

wi

≤
n∑

i=1

(∫ t

t0

∣∣ fi

(
s, x(s)

)
− fi

(
s, x̄(s)

) ∣∣ ds
) 2w

wi

≤
n∑

i=1

|t − t0|
2w
wi
−1
∫ t

t0

∣∣ fi

(
s, x(s)

)
− fi

(
s, x̄(s)

) ∣∣ 2w
wi ds (by Hölder)

≤
n∑

i=1

∫ t

t0

∣∣ fi

(
s, x(s)

)
− fi

(
s, x̄(s)

) ∣∣ 2w
wi ds (since |t − t0| < 1).

We remark that the w-Lipschitz condition implies that there is C > 0 such that

n∑
i=1

| fi(s, x)− fi(s, x̄)|
2w
wi ≤ C

n∑
i=1

|xi − x̄i |
2w
wi .

Setting ϕ(t) =
∑n

i=1 |xi(t)− x̄i(t)|
2w
wi we thus have

ϕ(t) ≤

∫ t

t0

n∑
i=1

| fi(s, x)− fi(s, x̄)|
2w
wi ds = C

∫ t

t0

ϕ(s) ds.

We here set Φ(t) =
∫ t

t0
ϕ(s) ds. Then we have dΦ

dt = ϕ(t) ≤ CΦ(t). Since

d

dt

(
e−C(t−t0)Φ(t)

)
= e−C(t−t0)

( dΦ

dt
(t)−CΦ(t)

)
≤ 0,

and Φ(t) ≥ 0, Φ(t0) = 0, we obtain Φ(t) = 0, and we are done.

We say f (t, x) satisfies a weighted Nagumo condition with respect to the weight w
(or, w-Nagumo, for short) if the following condition holds:

‖ f (t, x)− f (t, x̄)‖w ≤
∥∥∥ x − x̄

t − t0

∥∥∥
w

for any t near t0 and any x, x̄ near x0.

We say that f (t, x) is weighted Nagumo, if it satisfies a weighted Nagumo condition
for some weight w.
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Lemma 2.4 If f (t, x) is weighted Nagumo near (t, x) = (t0, x0), then (2.8) admits at
most one solution near t = t0.

Proof Let x(t), x̄(t) be the same as the proof of Lemma 2.3. We define ϕ(t) =
(t − t0) · ‖(x − x̄)/(t − t0)‖2w

w and as in the previous proof we get

ϕ(t) ≤

∫ t

t0

ϕ(s)

s− t0
ds.

We set Φ(t) =
∫ t

t0

ϕ(s)
s−t0

ds. Then

d

dt

(
Φ(t)

t − t0

)
=
ϕ(t)− Φ(t)

(t − t0)2
≤ 0.

Since Φ(t) ≥ 0, Φ(t0) = 0, we obtain Φ(t) = 0, and we are done.

Note that weighted Lipschitz condition trivially implies weighted Nagumo.

2.4 Kuo’s Vector

We consider the Euclidean space Rn+m with the singular metric defined by (2.6). Let
U be a neighborhood of 0, and Y = {x1 = · · · = xn = 0}. In this section we assume
that X is the regular locus of the zero locus of C2-functions F j ( j = 1, . . . , p), and
assume the codimension is k. By elementary calculation, we can express the gradient
vector field of the function F j with respect to this singular metric is expressed as
follows:

grad F j = gradx F j +
m∑

s=1

∂F j

∂ys

∂

∂ys
, where gradx F j =

n∑
i=1

‖x‖2wi
w

∂F j

∂xi

∂

∂xi
.

Using the same construction as Section 1.4, the C1-vector field

ξ =

n∑
i=1

∑
J φ J(dFJ ∧ dxi)(gradx FJ ∧ v)∑

J φ J‖dxFJ‖2
w

∂

∂xi
+ v.(2.9)

is tangent to X. Here we remark that the ∂
∂xi

-component of ξ (say ξi) is

ξi =

m∑
s=1

cs

∑
J φ J〈dFJ ∧ dxi, dxFJ ∧ dys〉∑

J φ J‖dxFJ‖2
w

We assume that X is w-(w)-regular over Y at 0. Then the inequality in (vi) of Theo-
rem 2.1 implies

|ξi| � ‖x‖wi
w on X near 0.(2.10)

In this situation we say that {ξ, v} satisfies a relatively w-Lipschitz condition on (X,Y )
near 0. By the same way as the proof of Lemma 2.3, we can show that if (2.10) holds
then the flow of {ξ, v} through 0 ∈ Y is in Y near 0, and the flow of {ξ, v} on X ∪ Y
near 0 is unique.

Obviously we obtain the following:
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Theorem 2.5 The conditions in Theorem 2.1 are equivalent to the following condition:

(vii) The Kuo’s vector ξ satisfies (2.10) for any C1-vector field v =
∑m

s=1 cs
∂
∂ys

.

Remark 2.6 Assume that the closure of X is X ∪ Y . We consider the parametrized
family fy given by fy(x) = F(x, y). We consider an extension of ξ to the neighbor-
hood U of 0 and denote it by ξ̃. If the denominator ‖dxF‖2 is not zero on U − Y ,
there are no problems to extend ξ on U . In this case, the integration of ξ gives a C0-
R-trivialization of the family { fy}y∈Y (if it is relatively w-Lipschitz or w-Nagumo).
In general, if we set

ξ̃ =


∑n

i=1

∑
J φ J (dFJ∧dxi )(gradx FJ∧v)

∑
J φ J‖dxFJ‖2

w+
∑p

j=1 |F j |
2e j

∂
∂xi

+ v on U − Y ,

v on Y ,
(2.11)

this is the desired extension on U . Here e j are some positive integers. We remark that
ξ̃ satisfies a relatively (w)-Lipschitz (or (w)-Nagumo) condition, if ξ does so.

Thus, by Theorem 2.1 of [9], page 94, the integration of ξ̃ gives a family of home-
omorphisms which trivialize the family (Rn,Xy, y) (y ∈ Y ) near 0 where Xy =
{x ∈ Rn : (x, y) ∈ X}. Actually in this way we obtain a C0-K-trivialization of
the family { fy}y∈Y .

The notations R, K we use here are the standard ones. For the definition and
more about these equivalence relations, consult the excellent survey [27].

Theorem 2.7 (Same notation as above) Suppose that X is w-(w)-regular over Y at
0 and that the singular set of the variety defined by F1, . . . , Fp is Y . Then the family
(Rn,Xy, y) (y ∈ Y ) near 0 is topologically trivial.

Theorem 2.8 (Same notation as above) We assume that F j ( j = 1, . . . , p) are real
analytic. We write for 1, . . . , p the weighted Taylor series of F j(x, y) by H j,d j (x, y) +
H j,d j +1(x, y) + · · · , where

H j,	(x, y) =
∑

α=(α1 ,...,αn)

c j,	,α(y)xα1
1 · · · x

αn
n ; w1α1 + · · ·wnαn = 	

is a weighted homogeneous 	-form in variables x with respect to the weight w =
(w1, . . . ,wn). If the Jacobi matrix of

(
H1,d1 (x, y), . . . ,Hp,dp (x, y)

)
in variables

(x1, . . . , xn) is of codimension k on its zero locus, then the family (Rn,Xy, y) (y ∈ Y ) is
topologically trivial.

See [5], for a similar topological triviality theorem.

Proof Let d denote the least common multiple of dJ’s and d j ’s, where dJ =
∑

j∈ J d j .

We set d[ J] = d/dJ, φ J = ‖dxFJ‖2d[ J]−2
w and e j = d/d j . It is enough to see that the
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vector field defined by (2.11) satisfies a relatively w-Lipschitz condition, that is,

∣∣∣∑
J

‖dxFJ‖
2d[ J]−2
w 〈dFJ ∧ dxi, dxFJ ∧ dys〉

∣∣∣ � ‖x‖wi
w

(∑
J

‖dxFJ‖
2d[ J]

w +
∑

j

|F j |
2e j

)(2.12)

holds on Rn+m near Y .
The weighted expansion of the right hand side of (2.12) with respect to the weight

w is given by

Hd(x, y) + Hd+1(x, y) + · · · ,

where H	(x, y) is a weighted homogeneous 	-form in variables x (not necessarily
polynomial). By our supposition the zero set of Hd(x, y) is in Y . So the right hand
side of (2.12) is not zero on Rn+m − Y near Y , and the vector field defined by (2.11)
is well-defined. We are also able to write the weighted expansion of the left hand side
of (2.12) by

Kd(x, y) + Kd+1(x, y) + · · · ,(2.13)

where K	(x, y) is a weighted homogeneous 	-form in variables x with respect to the
weight w. Using these expressions, we see that Hd is not zero outside the origin, and
this implies our inequality.

Using the method above, we can show the following

Proposition 2.9 Let V be a set defined by F1(x) = · · · = Fa(x) = 0 in Rn. We consider
a map f : V×Rm → Rp. We denote by fy : V → Rp the map defined by fy(x) = f (x, y)
for x ∈ V . We also denote by the same letter f an extension of f to Rn × Rm. Assume
that the Jacobi matrix ∂(F, f )

∂x is of constant rank (say k) on (V − {0}) × Rm. If the
following inequalities hold on V × Rm (resp. Rn × Rm) for s = 1, . . . ,m, i1, . . . , ik−1

with 1 ≤ i1 < · · · < ik−1 ≤ n then the family fy , y ∈ Rm, is C0-KR(V )-trivial (resp.
C0-R(V )-trivial).

‖x‖
wi1 +···+wik−1
w

∣∣∣∣ ∂(FJ, f J ′)

∂(xi1 , . . . , xik−1 , ys)

∣∣∣∣ � ‖dx(F, f )‖w.

For some other conditions, equivalent to this inequality, see Theorem 2.1.

This application was very much inspired by Maria Ruas’s talk (related to
J. N. Tomazella’s PhD. Thesis) at International Symposium “Topology of Singular-
ities” held in Kochi, 1998. Here KR(V ) = R(V ) · C. We used the standard notation
from [27]. For the definition and more about R(V ), see [4].
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2.5 Weighted Nagumo Regularity Conditions

Using Lemma 2.4, it is possible to give a similar treatment to Section 2.4. We replace
‖x‖w by

∥∥x/|y|
∥∥

w
in (2.3), (2.4), (2.5), and denote them by ‖d̃xF‖w, ‖d̃xF‖w, D̃w(	),

respectively. We define a new singular metric by replacing ‖x‖w by
∥∥x/|y|

∥∥
w

in (2.6).

Theorem 2.10 The following conditions are equivalent:

(i) For 	 = 1, . . . ,m, D̃w(	) = o
(

D̃w(	− 1)
)

when (x, y)→ 0, (x, y) ∈ X.

(ii) ‖d̃xF‖w = o(‖d̃xF‖w), when (x, y)→ 0, (x, y) ∈ X.
(iii) For any C1-functions ϕ j ( j = 1, . . . , p) near 0, and s = 1, . . . ,m,

∣∣∣ p∑
j=1

ϕ j
∂F j

∂ys

∣∣∣ = o

( n∑
i=1

∥∥∥∥ x

|y|

∥∥∥∥wi

w

∣∣∣ p∑
j=1

ϕ j
∂F j

∂xi

∣∣∣) when (x, y)→ 0, (x, y) ∈ X.

(iv) For J ⊂ {1, . . . , p}, I = {i1, . . . , ik−1} ⊂ {1, . . . , n} with 1 ≤ i1 < · · · <
ik−1 ≤ n, s = 1, . . . ,m,∥∥∥∥ x

|y|

∥∥∥∥wi1 +···+wik−1

w

∣∣∣∣ ∂FJ

∂(xI , ys)

∣∣∣∣ = o(‖d̃xF‖w) when (x, y)→ 0, (x, y) ∈ X.

(v) For J ⊂ {1, . . . , p}, i = 1, . . . , n, s = 1, . . . ,m,

|〈dFJ ∧ dxi, dxFJ ∧ dys〉| = o

(∥∥∥∥ x

|y|

∥∥∥∥wi

w

‖d̃xFJ‖
2
w

)
when (x, y)→ 0, (x, y) ∈ X.

(vi) For some positive C1-functions φ J on X with J ⊂ {1, . . . , p}, i = 1, . . . , n, s =
1, . . . ,m,∣∣∣∑

J

φ J〈dFJ ∧ dxi, dxFJ ∧ dys〉
∣∣∣

= o

(∥∥∥∥ x

|y|

∥∥∥∥wi

w

∑
J

φ J‖d̃xFJ‖
2
w

)
when (x, y)→ 0, (x, y) ∈ X.

Proof The proof is similar to that of Theorem 2.1, and we omit the details.

We say that X is w-Nagumo regular over Y at 0 if one (thus any) of the equivalent
conditions above holds. In the same way as in the proof of Proposition 1.8, we obtain
that the Kuo’s vector ξ has a unique flow under w-Nagumo regularity.

3 Construction of Vector Fields for the Isotopy Lemmas

3.1 A vector field for the first isotopy lemma

Let (x, y) = (x1, . . . , xn, y1, . . . , ym) denote a system of coordinates of Rn+m. Let
p : Rn+m → Rm denote the projection defined by p(x, y) = y. We set X0 = 0 ×
Rm. Let X1,X2, . . . ,Xs denote disjoint submanifolds of Rn+m satisfying the following
conditions:
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(i) The dimensions of any two (thus all) connected components of Xk are the same
for k = 1, . . . , s.

(ii) m < dim X1 < dim X2 < · · · < dim Xs.
(iii) X j is weighted (w)-regular (or, w-Nagumo regular) over Xi at each point of Xi ,

for 0 ≤ i < j ≤ s.
(iv) The restriction of p to X0 ∪ X1 ∪ · · · ∪ Xk is proper for k = 1, . . . , s.

Then, we show that {Xi,y}0≤i≤s (y ∈ Rm) is a topological trivial stratification
(the first isotopy lemma), where Xi,y = {x ∈ Rn : (x, y) ∈ Xi} for i = 0, 1, . . . , s.
We construct such a trivialization following [20] (see Chapter I) under the following
supposition:

(v) There is a C2-map F(k) = (F(k)
1 , . . . , F(k)

pk
) : Rn+m → Rpk , so that the closure of Xk

is the zero locus of F(k) and that Xk is its regular locus.

By the tubular neighborhood theorem, we have the following:

(1) There is a tubular neighborhood Ti of Xi and a submersion πi : Ti → Xi for
i = 0, 1, . . . , s so that πi|Xi is the identity and π0 = p|U0 .

(2) πi ◦ π j(x) = πi(x) for x ∈ Ti ∩ T j for 0 ≤ i < j ≤ s.

Locally we can use the construction in Section 2.4, understanding as a local system
of coordinates some of components of F(i) (x-coordinates) and πi (y-coordinates).

Without (iv), we claim there are C1-vector fields ξi (i = 0, 1, . . . , s) on Xi so that
{ξi}0≤i≤s yields a continuous vector field on X0 ∪ X1 ∪ · · · ∪ Xs so that

(3) d(πi|X j )ξ j = ξi on X j ∩ Ti for 0 ≤ i < j ≤ s.
(4) {ξi, ξ j} on {Xi,X j ∩ Ti} satisfies a relatively weighted Lipschitz (or, Nagumo)

condition for 0 ≤ i < j ≤ s.

We show this fact by induction on s. We first assume s = 1. Because of parti-
tions of unity, it is enough to see it locally and it has been already shown this fact in
Section 2.4.

We assume that there are such ξi ’s for i = 0, 1, . . . , s − 1, and C1-vector fields ξis

(i = 0, 1, . . . , s− 1) on Xs, such that for i = 0, 1, . . . , s− 1,

(6) d(πi|Ui∩Xs )ξis = ξi where Ui is a small neighborhood of Xi .
(7) {ξi, ξis} on {Xi ,Xs ∩ Ui} satisfies a relatively weighted Lipschitz (or, Nagumo)

condition.

Shrinking Ui ’s, if necessary, we have for 0 ≤ j ≤ i < s

(7) d(π j |U j∩Xs )ξis = ξ j

(8) {ξ j , ξis} on {X j ,Xs ∩Us} satisfies a relatively weighted Lipschitz (or, Nagumo)
condition

((8) follows from (v)).
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We remark {U j ∩Xk}0≤ j<k ∪{Xk} is an open covering and we take its refinement
{Vi}0≤i≤s defined by

Vs−1 = Us−1 ∩ Xs

Vs−2 = Us−2 ∩ Xs − (a small closed neighborhood of Xs−1)

· · ·

V1 = U1 ∩ Xs −
(

a small closed neighborhood of
s−1⋃
i=2

Xi

)

V0 = U0 ∩ Xs −
(

a small closed neighborhood of
s−1⋃
i=1

Xi

)

Vs = Xs −
(

a small closed neighborhood of
s⋃

i=0

Xi

)
.

Let {ψi}0≤i≤s be a partition of unity on Xs subordinate to {Vi}0≤i≤s. Then ξs =∑s−1
i=0 ψiξis is the desired vector field on Xs.
Using (iv), we show that the integration of {ξi}0≤i≤s yields a family of homeo-

morphisms which trivialize the family (Xi,y , y) (y ∈ Rm).

3.2 A Lemma in Linear Algebra

We use the notation in Section 1.2. Let A = (a j
i )i=1,...,n; j=1,...,p be an n by p matrix

and b = (b j) j=1,...,p a column vector of dimension p. We set ã j = (a j
1, . . . , a

j
n,−b j)

for j = 1, . . . , p. Assume that rank A = k. We set, for i = 1, . . . , n,

xi =

∑
j1<···< jk

φ j1,..., jk

(
(ã j1 )∨ ∧ · · · ∧ (ã jk )∨ ∧ e∗i

)
(ã j1 ∧ · · · ∧ ã jk ∧ en+1)∑

j1<···< jk
φ j1,..., jk‖a

j1 ∧ · · · ∧ a jk‖2
.(3.1)

We assume that the denominator is not zero.

Lemma 3.1 If rank(A b) = k, then Ax = b where x = (xi)i=1,...,n.

Proof It is enough to see that

(
A −b

)(x
1

)
= 0.(3.2)

Consider the subspace W generated by ã j , j = 1, . . . , p. Multiplying the orthogonal
projection of en+1 to W⊥ such that the last component is 1, we get the result using
Lemma 1.4.

Remark 3.2 When n = p = k, this reduces to G. Cramer’s formula.

https://doi.org/10.4153/CJM-2001-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-004-9


Stratification Theory 93

3.3 A Vector Field for the Second Isotopy Lemma

To obtain an analogous treatment for the second isotopy lemma, we should construct
a vector filed trivializing a family of maps under some reasonable conditions. We
present here a construction of such a vector field in the case of two strata. Then using
patching and induction (in a reasonable setup) one can proceed in constructing a
vector field for a second isotopy lemma type result (like Section 3.1).

We consider the Euclidean spaces Rn+m with coordinates x = (x1, . . . , xn), y =
(y1, . . . , ym), and Rn ′+m ′ with coordinates x ′ = (x ′1, . . . , x

′
n ′), y ′ = (y ′1, . . . , y ′m ′).

Set

Y = {(x, y) ∈ Rn+m : x = 0}, Y ′ = {(x ′, y ′) ∈ Rn ′+m ′ : x ′ = 0},

p : Rn+m → Rm the projection defined by p(x, y) = y, and

p ′ : Rn ′+m ′ → Rm ′ the projection defined by p ′(x ′, y ′) = y ′.

Let X, X ′ be submanifolds of Rn+m, Rn ′+m ′ , respectively. We assume

(i) X is the regular locus of the zero locus of C2-functions F j ( j = 1, . . . , p). We
assume the Jacobi matrix of (F1, . . . , Fp) has rank k on X.

We now consider a C2-map f : X ∪ Y → X ′ ∪Y ′ so that

(ii) f (Y ) ⊂ Y ′, and f |Y is a submersion,
(iii) f (X) ⊂ X ′, and f |X is a submersion,
(iv) p ′ ◦ f = f ◦ p on X near Y .

Suppose there are vector fields v ′, ξ ′ and v on Y ′, X ′ and Y respectively so that

(v) d(p ′|X ′)ξ ′ = v ′,
(vi) d( f |Y )v = v ′.

We want to construct a vector field ξ on X such that

(1) d(p|X)ξ = v,
(2) d( f |X)ξ = ξ ′.
(3) ξ and v define a C0-vector field on X ∪ Y .
(4) {v, ξ} satisfies a relatively weighted Lipschitz (or, Nagumo) condition on {Y,X}.

To describe such ξ, we write

ξ ′ =

n ′∑
j=1

ξ ′j
∂

∂x ′j
+ v ′ on X ′, and ξ =

n∑
i=1

ξi
∂

∂xi
+ v on X

where ξ ′j ( j = 1, . . . , n ′) are C1-functions on X ′, and ξi (i = 1, . . . , n) are C1-
functions on X. It is enough to find ξi ’s so that

∂Fs
∂xi

∂Fs
∂yk

∂ f j

∂xi

∂ f j

∂yk
∂ f ′	
∂xi

∂ f ′	
∂yk

(ξi

vk

)
=

 0
ξ ′j
v ′	

(3.3)
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where f j = x ′j ◦ f ( j = 1, . . . , n ′), f ′	 = y ′	 ◦ f (	 = 1, . . . ,m ′), and v =
∑m

k=1 vk
∂
∂yk

.
Now we consider the regularity condition for f , namely,

(vii) (p, f ) : X → Y ×Y ′ X ′ is a submersion.

See Lemma (I.2.4) in [7] and [10] for the relation between (vii) and Thom’s (a f )-
condition.

If we assume (vii), (3.3) has a solution. So, by (v), it is enough to find ξi (i =
1, . . . , n) on X near Y so that(

∂Fs
∂xi

∂Fs
∂yk

∂ f j

∂xi

∂ f j

∂yk

)(
ξi

vk

)
=

(
0
ξ ′j

)
.(3.4)

Thus, it is enough to solve the following system on X near Y :

A(ξi) = b where A =

(
∂Fs
∂xi
∂ f j

∂xi

)
, b = b ′ − b ′′, b ′ =

(
0
ξ ′j

)
, b ′ ′ =

(
∂Fs
∂xi
∂ fi

∂yk

)
(vk)

(3.5)

Therefore, (vii) implies the existence of ξi satisfying (3.5) for any vk and ξ ′j . In other
words, (vii) implies

rank A = rank(A b) = 	 (constant) on X near 0.(3.6)

By Lemma 3.1, ξi defined by (3.1) is a solution for (3.5).

Proposition 3.3 We assume (i)–(vii). We consider the singular metric defined by
(2.6). ξ =

∑
i ξi

∂
∂xi

+ v is relatively w-Lipschitz, if the following inequalities hold for
s = 1, . . . ,m, i = 1, . . . , n on X near 0:∣∣∣∑

J, J ′

φ J, J ′(dxFJ ∧ d(s) f J ′ ∧ dxi)
(

gradx FJ ∧ gradx f J ′ ∧
∂

∂ys

)∣∣∣(3.7)

� ‖x‖wi
w

∣∣∣∑
J, J ′

φ J, J ′‖dxFJ ∧ dx f J ′‖
2
w

∣∣∣
∣∣∣∑

J, J ′

φ J, J ′(dxFJ ∧ d̃ f J ′ ∧ dxi)
(

gradx FJ ∧ gradx f J ′ ∧
∂

∂t

)∣∣∣(3.8)

� ‖x‖wi
w

∣∣∣∑
J, J ′

φ J, J ′‖dxFJ ∧ dx f J ′‖
2
w

∣∣∣
where d̃ f J ′ =

∧
j∈ J ′ d̃ f j , d̃ f j = dx f j + ξ ′j dt and t is a parameter, # J + # J ′ = 	, and

φ J, J ′ are some C1-functions so that the right hand side is nowhere zero on X.
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Proof Obvious.

Since the left hand side of (3.7) is∣∣∣∣ ∑
J, J ′,I:I�i

φ J, J ′‖x‖
2wI
w

∂(FJ, f J ′)

∂(xI−{i}, ys)

∂(FJ, f J ′)

∂xI

∣∣∣∣ ,
if φ J, J ′ are non-negative, then (3.7) comes from

φ J, J ′
1/2‖x‖wI−wi

w

∣∣∣∣ ∂(FJ, f J ′)

∂(xI−{i}, ys)

∣∣∣∣ �
∑
J, J ′ ;I

φ J, J ′
1/2‖x‖wI

∣∣∣∣ ∂(FJ, f J ′)

∂xI

∣∣∣∣ on X near 0.

(3.9)

Similarly, if φ J, J ′ are non-negative, then (3.8) comes from

φ J, J ′
1/2|ξ ′j |‖x‖

wI−wi
w

∣∣∣∣ ∂(FJ, f J ′−{ j})

∂(xI−{i})

∣∣∣∣ �
∑
J, J ′;I

φ J, J ′
1/2‖x‖wI

w

∣∣∣∣ ∂(FJ, f J ′)

∂xI

∣∣∣∣ on X near 0.

(3.10)

Proposition 3.4 We assume (i)–(vii). If ξ ′ satisfies a relatively w ′-Lipschitz condi-
tion, then (3.8) follows from the following inequality:

φ J, J ′‖ f ‖
w ′j
w ′‖x‖

wI−wi
w

∣∣∣∣ ∂(FJ, f J ′−{ j})

∂(xI−{i})

∣∣∣∣ �
∑
J, J ′ ;I

φ J, J ′‖x‖
wI
w

∣∣∣∣ ∂(FJ, f J ′)

∂xI

∣∣∣∣ on X near 0,

(3.11)

for any I, J, J ′ with J ′ � j, I � i. Here, φ J, J ′ are some non-negative C1-functions so
that the right hand side is nowhere zero on X.

Proof It follows that |ξ ′j | � ‖ f ‖
w ′j
w ′ on X near 0 and (3.10).

In the propositions above we assume that J ⊂ {1, . . . , p} and J ′ ⊂ {1, . . . , n ′}.

Proposition 3.5 We assume (i)–(iv). We also assume that F and f are real analytic.
Consider the weighted expansion of F and ( f1, . . . , fn ′) with respect to the weight w. We
assume that the weighted initial form of ( f1, . . . , fn ′) has its degree a multiple of w ′.
We assume that the Jacobi matrix of weighted initial form of (F1, . . . , Fp, f1, . . . , fn ′)
by the variables (x1, . . . , xn) is of constant rank on X and that the closure of X is X ∪Y .
Then for any relatively w ′-Lipschitz vector field {ξ ′, v ′} on (X ′,Y ′) and any lift v on
Y of v ′ there is a vector field ξ on X with (1)–(3) so that {ξ, v} on (X,Y ) is relatively
w-Lipschitz.

Proof Same as that of Theorem 2.8, and we omit the details.
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Example 3.6 (Example 2.5.10 in [6]) Let F : R3 → R be the function defined by

F(x, y, z) = y − x2k+1 − z2x2	+1.

We consider the restriction of the map f : R3 � (x, y, z) �→ (y, z) ∈ R2 to F−1(0). Set
Y = {x = y = 0} and X = F−1(0)−Y . Note that f |(X,Y ) is always a Thom regular
map. If k ≤ 	, one can see we can apply Proposition 3.5. However if k > 	, our
assumptions in Proposition 3.5 are not satisfied, and it is shown in [6] that actually
∂
∂z does not admit a continuous lift by f on F−1(0).

It is also possible to obtain a similar criterion for weighted Nagumo conditions as
above, and we leave it to the reader.

We also remark that a pinch map does not satisfy Thom’s (a f )-condition, and so
the use of (a f )-condition is somehow restrictive. It is clear that there are maps with
pinching so that there are ξ ′ and v ′ satisfying the following conditions:

(i) (3.6).
(ii) The inequalities which imply a relatively weighted Lipschitz condition for ξ (de-

fined using (3.1)).

Example 3.7 Consider the map f : R3 → R3 defined by

(x, y, t) �→ (x ′, y ′, t ′) = (x2, x4 y + x3t, t).

This map has pinching, i.e. the stratum {x = 0} is sent to t ′-axis, and f is a local
diffeomorphism on the stratum {x �= 0}. Following our method one can find that

the vector field |x ′|3/2 ∂
∂y ′ + ∂

∂t ′ has a lift ∂
∂t by f (note that for example ∂

∂t ′ does not

lift properly), and ft : R2 → R2, ft (x, y) = (x2, x4 y + x3t) is topologically right-left
trivial.
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