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Abstract. The investigation of general F-abundant semigroups is initiated. After
obtaining some properties of such semigroups, the structure of a class of F-abundant
semigroups is established. In addition, a problem raised in [2] is positively answered.
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1. Introduction and preliminaries. A semigroup S is called abundant if each L*-
class and each R*-class contains an idempotent. An abundant semigroup is called
quasi-adequate if its idempotents form a subsemigroup. Moreover, a quasi-adequate
semigroup is called adequate if the idempotent subsemigroup is a semilattice. Also
an adequate semigroup S is called of type A if for all a 2 S and for all idempotent
e; eS \ aS ¼ eaS and Se \ Sa ¼ Sae. Abundant semigroups are a generalization of
regular semigroups while quasi-adequate [adequate] semigroups generalize orthodox
[inverse] semigroups. As a class of semi-groups intermediate between that of abun-
dant semigroups and that of regular ones, El-Qallali and Fountain [2] defined and
studied idempotent-connected abundant semigroups. An idempotent-connected (IC)
abundant semigroup is an abundant semigroup in which for each a 2 S and for some
aþ 2 R�

a \ EðSÞ; a
� 2 L�

a \ EðSÞ, there is a bijection � : haþi ! ha�i such that
xa ¼ aðx�Þ, for all x 2 haþi, where haþi is the subsemigroup of S generated by
eE(S)e. Indeed, � is an isomorphism; (see [2]). Various kinds of abundant semi-
groups have been investigated by many authors; (see [2–7,9] and their references). It
is worth mentioning that Lawson [9] considered the natural partial order on an
abundant semigroup.

An F-inverse semigroup is an inverse semigroup whose congruence classes mod-
ulo the least group congruence contain greatest elements with respect to the natural
partial order. McFadden and O’Carroll [10] determined the structure of such semi-
groups. After that Edwards [1] studied regular semigroups satisfying the same con-
dition, called F-regular semigroups. She established the construction of F-regular
semigroups. In this paper, we shall be concerned with F-abundant semigroups, a
generalization of F-regular semigroups in the class of abundant semigroups.

In Section 2, we introduce (strongly) F-abundant semigroups and their proper-
ties. Section 3 is concerned with the construction of strongly F-abundant semigroups.

Throughout this paper we shall use the terminology and notations of [5,9]. The
following Lemma is repeatedly used in the sequel.

Lemma 1.1. Let S be a semigroup and a; b 2 S. Then the following statements are
equivalent:
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(1) aR*b;
(2) for all x; y 2 S1; xa ¼ ya()xb ¼ yb.
As an easy but useful consequence, we have the following result.

Corollary 1.2. Let a be an element of S and e an idempotent. Then the following
statements are equivalent:

(1) aR*e;
(2) ea ¼ a and for all x; y 2 S1; xa ¼ ya) xe ¼ ye.

For an abundant semigroup S, E(S) (or E ) denotes the set of idempotents of S.
For the sake of simplicity, a typical idempotent in the L*-class [resp. R*-class] of an
element a of S will be denoted by a* [resp. a+]. If e 2 EðSÞ, !ðeÞ indicates the set
f f 2 EðSÞ : f ¼ fe ¼ ef g. The next lemma gives an alternative description of IC
abundant semigroups.

Lemma 1.3. Let S be abundant. Then the following statements are equivalent.
(1) S is IC.
(2) For each a 2 S, two conditions hold:
(i) for some [for all] a* [and a+] and for all e 2 !ða�Þ, there exists

b 2 S½b 2 !ðaþÞ� such that ae ¼ ba;
(ii) for some [for all] a+ [and a*] and for all h 2 !ðaþÞ, there exists

c 2 S½c 2 !ða�Þ� such that ha ¼ ac.

Throughout this paper, the natural partial order on an abundant semigroup is in
the sense of [9]. Equivalently, for an abundant semigroup S and a; b 2 S; a � b if and
only if, for some e; f 2 EðSÞ; a ¼ eb ¼ bf. Moreover, we have the following result.

Lemma 1.4. (from [9, Proposition 2.5 and its dual]). Let S be an abundant semi-
group and a; b 2 S. Then the following statements are equivalent:

(1) a � b;
(2) for each b+ and b*, there exists aþ 2 !ðbþÞ, a� 2 !ðb�Þ such that

a ¼ aþb ¼ ba�.

Lemma 1.5. Let S be an abundant semigroup. If a; b 2 S with aR*b (aL*b) and
a � b, then a ¼ b.

2. Strongly F-abundant semigroups. A congruence � on a semigroup S is called
cancellative if S=� is cancellative. Since the intersection of any non-empty set of
cancellative congruences on a semigroup is itself cancellative, every semigroup S has
a minimum cancellative congruence which we denote by �S or simply by � if there is
no danger of ambiguity. The �-class of an element a of S is denoted by �a. If S is
abundant and if �a contains a greatest element under the natural partial order, then
this element is uniquely determined and we denote it by ma.

Definition 2.1. An abundant semigroup is called F-abundant if each �-class of
S has a greatest element with respect to the natural partial order.

We remark that, using Lemma 1.4, it is easy to see that if � is a cancellative
congruence on an abundant semigroup and if every �-class has a greatest element,
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then � ¼ � and so S is F-abundant. We give some basic properties of F-abundant
semigroups in the next proposition.

Proposition 2.2. Let S be an F-abundant semigroup. Then the following state-
ments are true:

(1) S is an IC quasi-adequate semigroup;
(2) H\ � ¼ �S;
(3) for all a 2 S, Emþ

a � mþ
a E and Em

�
a � m�

aE;
(4) S is monoid.

Proof. (1) Let a 2 S. Since S is F-abundant, �a has a greatest element. This ele-
ment is uniquely determined and, as before we denote it by ma. By Lemma 1.4,
a ¼ aþma, for some aþ 2 !ðmþ

a Þ. If e 2 !ða
þÞ, then ea 2 �a. Consider

ea ¼ eaþma ¼ ema ¼ aþema:

As ema 2 �a, from Lemma 1.4 we deduce that ema ¼ ma f, for some f 2 EðSÞ. Now

ea ¼ aþmaf ¼ af:

From this, together with its dual argument, it follows from Lemma 1.3 that S is IC.
We shall next verify that S is quasi-adequate. Now let e; f 2 EðSÞ. Clearly,

ef 2 �e. Notice that a � e implies a 2 EðSÞ. It suffices to verify that me 2 EðSÞ. But
mþ
e 2 �e and further mþ

e � me. In virtue of Lemma 1.5, mþ
e ¼ me, as required.

(2) Assume that a; b 2 S with ða; bÞ 2 H� \ �. Then for some aþ and b�,
a ¼ aþma and b ¼ mab

�. Hence, ab� ¼ aþb. As aH�b; aL�b� and bR�aþ, it follows
that a ¼ b and so (2) holds.

(3) Here we prove only that Emþ
a � mþ

a E.
Let a 2 S and e 2 EðSÞ. Obviously ema 2 �a. By Lemma 1.4, for all mþ

a and for
some f 2 !ðmþ

a Þ; ema ¼ fma. Then

emþ
a ¼ fmþ

a ¼ f ¼ mþ
a f:

Now Emþ
a � mþ

a E. The other statement is dual.
(4) Let e 2 EðSÞ. Then e� is an idempotent in the cancellative semigroup S=�. It

follows that EðSÞ � e�. Let x be the greatest element in e� and let x+ be any idem-
potent in R�

x. Then x
þ 2 e�, so that xþ � x. Hence, by Lemma 1.5, xþ ¼ x and so x

is idempotent.
For any idempotent e we have e � x so that ex ¼ e ¼ xe, since � is the natural

partial order on S. Now, if s 2 S, then

s ¼ sþs ¼ xsþs ¼ xðsþsÞ ¼ xs

and similarly, s ¼ sx. Thus x is the identity of S and S is a monoid.
In general, we do not know whether Emþ

a ¼ mþ
a E and Em�

a ¼ m�
aE in an

F-abundant semigroup. But in F-regular (F-orthodox) semigroups, this holds. To
see this, from [1], Ee ¼ eE for some e 2 Rma \ EðSÞ. It suffices to verify that, for all
f 2 Rma \ EðSÞ; e ¼ f. Indeed f ¼ ef ¼ efe ¼ e, as required. Similarly, one can show
that the other equality holds.

Definition 2.3. An F-abundant semigroup S is called strong if for all
a 2 S; Emþ

a ¼ mþ
a E and Em�

a ¼ m�
aE.
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As stated above, the following is immediate.

Proposition 2.4. Let S be a strongly F-abundant semigroup. Then for all
a 2 S; jLþ

ma
\ Ej ¼ 1 ¼ jR�

ma
\ Ej.

It is worth recording the following here. For an F-abundant semigroup S, M
denotes the set of all the elements ma. Under the multiplication of S, M need not
constitute a subsemigroup. But with respect to the multiplication given by

m � n ¼ mmn ðm 2M; n 2MÞ

M is a semigroup. Moreover, we have the following result.

Proposition 2.5. ðM; �Þ is a semigroup and isomorphic to S=�.

Concluding this section, we consider IC quasi-adequate semigroups. These
results are used in a sequence of corresponding papers. The next Theorem shows
that all IC quasi-adequate semigroups are type W, which answers an open problem
raised by El-Qallali and Fountain. Following [3], on a quasi-adequate semigroup S
we define a relation 	 as follows:

a	b, EðaþÞaEða�Þ ¼ EðbþÞbEðb�Þ; for some aþ; a� and bþ; b�;

where EðeÞ is a D-class of E containing eð2 EÞ. In fact, a	b if and only if a ¼ ebf, for
some e 2 EðbþÞ; f 2 Eðb�Þ. In the remainder of the section, EðeÞ � Eð f Þ means that
EðeÞEð f Þ � EðeÞ.

Theorem 2.6. Let S be an IC quasi-adequate semigroup. Then 	 is a good
congruence.

Proof. We verify first the assertion: if e; f 2 EðSÞ with a ¼ ebf, then EðaþÞ � EðeÞ
and Eða�Þ � Eð f Þ. To see this, as a ¼ ebf, we have ea ¼ a and bf ¼ b. Now eaþ ¼ aþ

and b�f ¼ b�. It follows that EðaþÞ � EðeÞ and Eðb�Þ � Eð f Þ.
From [3, Proposition 2.6], it suffices to check that 	 is left and right compatible.

Let a; b; c 2 S and a	b. Then for some e 2 EðbþÞ and f 2 Eðb�Þ, a ¼ ebf. Thus

ca ¼ cebf ¼ cc�ebþbf

¼ cc�ebþc�bþc�ebþbf ðsince c�ebþ 2 Eðc�bþÞÞ

¼ cc�ebþc�bþc�ebþbf

¼ gcbhf ðfor some g; h 2 EðSÞÞ ðby Lemma 1:3Þ

¼ gðcbÞþcbðcbÞ�hf:

By the assertion above, EððcaÞþÞ � EðgðcbÞþÞ and EððcaÞ�Þ � EððcbÞ�hf Þ. Hence
EððcaÞþÞ � EððcbÞþÞ and EððcaÞ�Þ � EððcbÞ�Þ. Again, because a ¼ ebf, we obtain
bþab� ¼ b. Applying the dual discussion to b ¼ bþab�, one can obtain that
EððcbÞþÞ � EððcaÞþÞ and EððcbÞ�Þ � EððcaÞ�Þ. Thus EððcaÞþÞ ¼ EððcbÞþÞ and
EððcaÞ�Þ ¼ EððcbÞ�Þ. Now EððcbÞþÞ ¼ EðgðcbÞþÞ and EððcbÞ�Þ ¼ EððcbÞ�hf Þ. Therefore
ca	cb; that is, 	 is left compatible.

Dually, we can verify that 	 is right compatible.
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Corollary 2.7. Let S be an IC quasi-adequate semigroup. Then

� ¼ fða; bÞ 2 S� S : eae ¼ ebe; for some e 2 EðSÞg:

Proof. Let a; b 2 S with a�b. By Theorem 2.6 and [3, Proposition 2.6], S=	 is
type A. Then

a�b) a	�b	;

) for some e 2 E; e	 � a	 ¼ e	 � b	;

) for some e; f; g 2 E; ea ¼ febg;

) gfe � a � gfe ¼ gfe � b � gfe:

Thus � � fða; bÞ 2 S� S: for some e 2 E; eae ¼ ebeg. The reverse inclusion is
obvious. Now we have completed the proof.

3. Structure of strongly F-abundant semigroups. In this section we show first how
to construct a class of strongly F-abundant semigroups in terms of specific ingre-
dients. After obtaining some properties of such semigroups, we shall verify that any
strongly F-abundant semigroup is isomorphic to some F-abundant semigroup con-
structed in this manner.

For a set X let f be a mapping of X to itself. We identify f with the set
fðx; fðxÞÞ 2 X� X : x 2 Xg. Denote by "X the identity mapping on X. rð f Þ denotes
the image set of f. Sometime we write also this set as f ðX Þ.

Definition 3.1. Let S be a semigroup and � an endomorphism of S (on the
left). � is called an r-isomorphism on S if there exists an endomorphism  of S, such
that "rð Þ �  � and "rð�Þ � � . In this case  is called an r-inverse of � with respect
to the set rð Þ.

The following fact is easily checked and we omit the proof.

Proposition 3.2. Let � be an endomorphism of a semigroup S. Then the following
statements are equivalent:

(1) � is r-isomorphic on S;
(2) for some endomorphism  of S, � � ¼ � and  � ¼  ;
(3) for some endomorphism  of S,  jrð�Þ and �jrð Þ are mutually inverse iso-

morphisms.

The following observation is useful in the proofs of this section.

Lemma 3.3. Let x be an element of a band E. Then xE ¼ Ex if and only if x is
central in E.

Proof. Clearly, if x is central, we have xE ¼ Ex. Conversely, if xE ¼ Ex, then
for any element y 2 E we have xy ¼ zx and yx ¼ xt, for some z; t 2 E. Now
xyx ¼ zx2 ¼ zx ¼ xy and xyx ¼ x2t ¼ xt ¼ yx, so that xy ¼ yx and x is central.

Definition 3.4. Let M be a cancellative monoid with identity 1 and E a
band with identity e. Let � ¼ f’t : t 2Mg, � ¼ f t : t 2Mg be two families of
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r-isomorphisms of E, such that ’t and  t are mutually r-inverse for all t 2M. (M, E;
�, �) is called an SF-system if the following conditions are satisfied:
(SF1) ’1 is the identity mapping on E;
(SF2) for all t 2M, E’tðeÞ ¼ ’tðeÞE and E t’tðeÞ ¼  t’tðeÞE;
(SF3) for all s; t 2M and x 2 E, ’s’tðxÞ ¼ ’s’tðeÞ’stðxÞ;
(SF4) for all s 2M, rð’sÞ ¼ E’sðeÞ and rð sÞ ¼ E s’sðeÞ.
Given an SF-system (M, B; �, �), put

SFðM;E;�;�Þ ¼ SF ¼ fðm; xÞ 2M� E : x 2 !ð’mðeÞÞg

with the multiplication

ðm; xÞðn; yÞ ¼ ðmn; xð’myÞÞ:

Lemma 3.5. With the multiplication above, SF is a monoid.

Proof. Let ðm; xÞ; ðn; yÞ; ðp; zÞ 2 SF. Since

xð’myÞ ¼ x � ’mð’nðeÞyÞ ¼ x � ’m’nðeÞ � ’mðyÞ

¼ x � ’m’nðeÞ � ’mnðeÞ’mðyÞ ðby ðSF3ÞÞ

¼ x � ’m’nðeÞ � ’mðyÞ _’’mnðeÞ ðby ðSF2ÞÞ

¼ x’myÞ � ’mnðeÞ ¼ ’mnðeÞ � x’mð yÞ ðby ðSF2ÞÞ;

xð’myÞ 2 !ð’mnðeÞÞ. This means that ðmn; xð’myÞÞ 2 SF; that is, ðm; xÞ � ðn; yÞ 2 SF.
Thus SF is closed with respect to the multiplication above.

With notation as above, we have

ðm; xÞððn; yÞðp; zÞÞ ¼ ðm; xÞðnp; yð’nzÞÞ

¼ ðmðnpÞ; x � ’mmðyð’nzÞÞÞ

¼ ððmnÞp; x � ’mðyÞ � ’m’nðzÞÞ

¼ ððmnÞp; x � ’mðyÞ � ’m’nðeÞ � ’mnðzÞÞ

¼ ððmnÞp; x � ’mðy’nðeÞÞ � ’mnðzÞÞ

¼ ððmnÞp; x � ’mðyÞ � ’mnðzÞÞ

¼ ðmn; xð’myÞÞðp; zÞ

¼ ððm; xÞðn; yÞÞðp; zÞ;

which shows that the multiplication is associative. Thus SF is a semigoup. In addi-
tion, by (SF4), it is easy to check that (1, e) is the identity of SF. Therefore SF is a
monoid.

The next lemma follows from (SF1).

Lemma 3.6. EðSFÞ ¼ fð1; xÞ : x 2 Eg and isomorphic to E. Moreover, E(SF) has
(1, e) as its identity.
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Theorem 3.7 Let ðM;E;�;�Þ be an SF-system. Then the following statements
are true.

(1) For all ðm; xÞ; ðn; yÞ 2 SF, ðm; xÞR�ðn; yÞ if and only if xRy.
(2) For all ðm; xÞ; ðn; yÞ 2 SF, ðm; xÞL�

ðn; yÞ if and only if  mðxÞL nðyÞ.
(3) For all ðm; xÞ; ðn; yÞ 2 SF; ðm; xÞ � ðn; yÞ if and only if m ¼ n and x � y.
(4) SF is an IC quasi-adequate monoid.
(5) For all ðm; xÞ; ðn; yÞ 2 SF; ðm; xÞ�ðm; yÞ if and only if m ¼ n.
(6) SF is strongly F-abundant.

Proof. (1) We verify first that ðm; xÞR�ð1; xÞ. Now let ðp; uÞ; ðq; vÞ 2 SF with
ðp; uÞðm; xÞ ¼ ðq; vÞðm; xÞ. Then

ðpm; uð’pxÞÞ ¼ ðqm; vð’qxÞÞ;

so that pm ¼ qm and uð’pxÞ ¼ vð’qxÞ. The prior equality implies that p ¼ q since M
is cancellative. Hence

ðp; uÞð1; xÞ ¼ ðp; uð’pxÞÞ ¼ ðq; vð’qxÞÞ ¼ ðq; vÞð1; xÞ:

From this, together with ð1; xÞðm; xÞ ¼ ðm; xÞ, we have ð1; xÞR�ðm; xÞ.
By the proof above, we have

ðm; xÞR�ðn; yÞ , ð1; xÞRð1; yÞ;

, x ¼ yx; y ¼ xy;

, xRy:

(2) We verify first that ðm; xÞL�
ð1;  mðxÞÞ. Since x 2 E’mðeÞ;

ðm; xÞð1;  mðxÞÞ ¼ ðm; x � ’m mðxÞÞ

¼ ðm; x � xÞ ¼ ðm; xÞ:

Assume that ðp; uÞ; ðq; vÞ 2 SF with ðm; xÞðp; uÞ ¼ ðm; xÞðq; vÞ. Then

ðmp; x � ’mðuÞÞ ¼ ðmq; x � ’mðvÞÞ;

so that mp ¼ mq and x � ’mðuÞ ¼ x � ’mðvÞ. The prior equality implies that p ¼ q.
Consider

 mðxÞu ¼  mð’mðeÞ � xÞu ¼  m’mðeÞ �  mðxÞu

¼  mðxÞu �  m’mðeÞ 2 rð mÞ

and similarly  mðxÞv 2 rð mÞ. Since x 2 !ð’mðeÞÞ; x 2 rð’mÞ. Thus

’mð mðxÞuÞ ¼ ’m mðxÞ � ’mðuÞ ¼ x � ’mðuÞ

¼ x � ’mðvÞ ¼ ’mð mðxÞ � vÞ:

By Proposition 3.2,  mðxÞu ¼  mðxÞv. Now
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ð1;  mðxÞÞðp; uÞ ¼ ðp mðxÞuÞ ¼ q;  mðxÞvÞ

¼ ð1;  mðxÞÞðq; vÞ:

From these equations, by the dual of Corollary 1.2, ðm; xÞL�
ð1;  mðxÞÞ.

The rest of the proof is similar to that in (1).
(3) Suppose that ðm; xÞ; ðn; yÞ 2 SF with ðm; xÞ � ðn; yÞ. Then, for some

ð1; uÞ; ð1; vÞ 2 SF, we have

ðm; xÞ ¼ ð1; uÞðn; yÞ ¼ ðn; yÞð1; vÞ;

that is,

ðm; xÞ ¼ ðn; uyÞ ¼ ðm; yð’nvÞÞ;

so that m ¼ n and x ¼ uy ¼ y � ’nðvÞ. The latter equality yields x � y. Thus the
direct part holds.

Conversely, let ðm; xÞ; ðn; yÞ 2 SF and m ¼ n; x ¼ uy ¼ yvðu; v 2 EÞ. Then
y 2 !ð’nðeÞÞ. Clearly, ’nðeÞv 2 !ð’nðeÞÞ ¼ rð’nÞ. We have ’nðeÞv ¼ ’nðzÞ, for some
z 2 E. Hence

ðm; xÞ ¼ ð1; uÞðm; xÞ ¼ ðm; uxÞ ¼ ðm; yvÞ

¼ ðn; y � ’nðzÞÞ ¼ ðm; yÞð1; zÞ;

that is, ðm; xÞ � ðn; yÞ.
(4) By virtue of (1) and (2), it suffices to prove that SF is IC. Now let ðm; xÞ 2 SF

and ð1; yÞ � ð1; xÞ. Then y � x � ’mðeÞ and so x; y 2 rð’mÞ. Hence, for some
u 2 E; ’mðuÞ ¼ y. Thus, using (3), we obtain

ð1; yÞðm; xÞ ¼ ðm; yÞ ¼ ðm; xyxÞ

¼ ðm; x’mðuÞxÞ

¼ ðm; xÞð1; u mðxÞÞ ðsince x 2 rð’mÞÞ:

If ð1; vÞ � ð1;  mðxÞÞ, then

ðm; xÞð1; vÞ ¼ ðm; x � ’mðvÞÞ ¼ ðm; x � ’mðv �  mðxÞÞÞ

¼ ðm; x � ’mðvÞ � ’m mðxÞÞ ¼ ðm; x � ’mðvÞ � xÞ

¼ ð1; x � ’mðvÞÞðm; xÞ:

Thus, from Lemma 1.3, SF is IC.
(5) Let ðm; xÞ; ðn; yÞ 2 SF. Then

ðm; xÞ�ðn; yÞ , for some ð1; uÞ we have ð1; uÞðm; xÞð1; uÞ ¼ ð1; uÞðn; yÞ1; uÞ

, 9u 2 E such that u � x � ’mðuÞ ¼ u � y � ’nðuÞ

, m ¼ n:

The reason why the last , holds is that
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ð1;  mðx; yÞ � yÞðm; xÞð1;  mðxyÞ � yÞ ¼ ðm;  mðxyÞ � yxy � ’mðyÞÞ

¼ ð1;  mðxyÞ � yÞðm; yÞð1;  nðxyÞ � yÞ:

(6) This follows from (3), (5) and the definition of SF.
In the remainder of this section, we shall prove that any strongly F-abundant

semigroup is isomorphic to some SFðM;E;�;�Þ. For the sake of simplicity, we
always assume that S is a strongly F-abundant semigroup with idempotent band E
in the next part. (M; �) denotes the cancellative monoid with identity 1 consisting of
the greatest elements in all �-classes of S (in the sense of Section 2). In addition, e
denotes the identity of E.

For m 2M, by the fact that E is a band, we have hmþi ¼ !ðmþÞ. Notice that
there exists an isomorphism �m : !ðm�Þ ! !ðmþÞ such that mx ¼ �mðxÞm, for all
x 2 !ðm�Þ. Here we fix �m, for all m 2M. On E, define mappings �m and  m as fol-
lows: for all y 2 E, set

�mðyÞ ¼ �mðm
�yÞ;  mðyÞ ¼ ��1

m ðymþÞ:

If x; y 2 E, then

�mðxyÞ ¼ �mðm
�xyÞ ¼ �mðm

�xm�yÞ ðby Proposition 2:2Þ

¼ �mðm
�xÞ�mðm

�yÞ ¼ �mðxÞ�mðyÞ:

Thus �m is an endomorphism of E. Similarly,  m is an endomorphism of E. Clearly,
�m and  m are mutually r-inverse. It is easy to see that �mðeÞ ¼ mþ;  m�mðeÞ ¼ m�,
so that rð�mÞ ¼ E�mðeÞ and rð mÞ ¼ E m�mðeÞ ¼  m�mðeÞE.

Take � ¼ f�m : m 2M g;� ¼ f m : m 2Mg. From the definition of �m; �1 is the
identity. Moreover, we can prove that ðM;E;�;�Þ is an SF-system. We still need a
lemma.

Lemma 3.8. Let m; n 2M. Then mn ¼ �m�nðeÞ � ðm � nÞ.

Proof. By Lemma 1.4, for some f 2 !ððm � nÞþÞ with fR�mn;mn ¼ fðm � nÞ and
clearly mn ¼ fmn. Thus mnþ ¼ fmnþ. Since mþmn ¼ mn, we have mþf ¼ f. It follows
that f 2 !ðmþÞ. With the notation above, we have fm ¼ mð��1

m ð f ÞÞ and further

m � ��1
m ð f Þnþ ¼ fmnþ ¼ m � nþ;

so that m���1
m ð f Þnþ ¼ m�nþ. We have, since S is strongly F-abundant,

m�nþ��1
m ð f Þ ¼ m���1

m ð f Þnþ ¼ ��1
m ð f Þm�nþ ¼ m�nþ;

that is, ��1
m ð f Þ � m�nþ. Thus, since �m is isomorphic,

f ¼ �mð�
�1
m ð f ÞÞ � �mðm

�nþÞ ¼ �mðm
��nðeÞÞ ¼ �m�nðeÞ:

From this and the fact that
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f R� mnR�mnþ ¼ m�nðeÞ

¼ m �m��nðeÞ ¼ �m�nðeÞ �m

R� �m�nðeÞ �m
þ ¼ �m�nðeÞ;

it follows from Lemma 1.5 that f ¼ �m�nðeÞ. Thus mn ¼ �m�nðeÞ � ðm � nÞ.

Lemma 3.9. ðM;E;�;�Þ is an SF-system.

Proof. From the statement above, all that remains to be proved is that (SF3)
holds. To verify (SF3), suppose that s; t 2M. Then, by Lemma 1.4, st ¼ ðs � tÞf, for
some f 2 !ððs � tÞ�Þ. Since

�s�tðeÞst ¼ �s�tðeÞðs � tÞf ¼ ðs � tÞef

¼ ðs � tÞf ¼ st

and, by the proof of Lemma 3.8, stR��s�tðeÞ, we have �s�tðeÞ � �s�tðeÞ ¼ �s�tðeÞ. Let
x 2 E. Computing

�s�tðeÞ�s�tðxÞ � ðs � tÞ ¼ �s�tðeÞ � ðs � tÞx

¼ st � x ¼ �s�tðxÞst

¼ �s�tðxÞ � �s�tðeÞ � s � t:

From this and the fact that �s�tðeÞR
�ðs � tÞ, we obtain that, since S is strongly

F-abundant,

�s�tðeÞ � �s�tðxÞ ¼ �s�tðeÞ � �s�tðxÞ � �s�tðeÞ

¼ �s�tðxÞ � �s�tðeÞ � �s�tðeÞ

¼ �s�tðxÞ � �s�tðeÞ � �s�tðeÞ

¼ �s�tðxÞ�s�tðeÞ ¼ �s�tðxÞ;

as required.

Theorem 3.10. S ffi SFðM;E;�;�Þ.

Proof. Define � : S! SFðM;E;�;�Þ as follows:

a! �ðaÞ ¼ ðma; xaÞ;

where, xa 2 !ðm
þ
a Þ with xR�a; a ¼ xama. It is sufficient to check that � is an iso-

morphism.
Let a 2 S. Then, from Lemma 1.4, a ¼ xa �ma, for some xa 2 !ðm

þ
a Þ with

xaR
�a. Now let another element y 2 !ðmþ

a Þ satisfy the same condition as xa. Then
xama ¼ yma, so that

xa ¼ xam
þ
a ¼ ymþ

a ¼ y:

Thus � is well defined. By the proof above, we easily see that for all
ðm; xÞ 2 SF; �ðxmÞ ¼ ðm; xÞ: Accordingly, � is surjective.
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Now let a; b 2 S and �ðaÞ ¼ �ðbÞ. That is, ðma; xaÞ ¼ ðmb; xbÞ. Then ma ¼ mb,
xa ¼ xb. It follows that a ¼ b. Thus � is injective.

Finally, suppose that a; b 2 S. Using the above notation,

�ðaÞ�ðbÞ ¼ ðma; xaÞðmb; xbÞ ¼ ðma �mb; xað�maxbÞÞ

¼ �ðxað�maxbÞðma �mbÞÞ

¼ �ðxað�maxbÞ � ð�ma�mb ðeÞÞðma �mbÞÞ

¼ �ðxað�maxbÞ �mambÞ ¼ �ðxamaðm
�
axbÞmbÞ

¼ �ðxama � xbmbÞ ¼ �ðabÞ:

Thus � is homomorphism.
Up to now we have proved that � is an isomorphism.
Summing up Theorem 3.7 and Theorem 3.10 in one theorem, we have our final

result.

Theorem 3.11. Let ðM;E;�;�Þ be an SF-system. Then SF ðM;E;�;�Þ is a
strongly F-abundant semigroup whose idempotent band is isomorphic to E. Conversely,
any strongly F-abundant semigroup can be constructed in this manner.
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