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EXTENSIONS OF NUMBER FIELDS DEFINED

BY COHOMOLOGY GROUPS

HANS OPOLKA

§ 1. Introduction

Let k be a field of characteristic 0, let k be an algebraic closure of
k and denote by Gk = G(kjk) the absolute Galois group of k. Suppose
that for some natural number n > 3 the cohomology group Hn(Gki Z) is
trivial. Then, given any finite factor group G = G{Kjk) of Gk, there is
for every subgroup srf < Hn(G, Z) a finite Galois extension L of k con-
taining K,Lak, such that J/ becomes trivial under inflation inf: Hn(G9 Z)
—> Hn(G(Ljk), Z). Any finite Galois extension L of Kjk with this property
is called an extension of Kjk defined by J/. One purpose of this note
is to show that in case k is a global or local number field every J / defines
an extension L of Kjk which is abelian over K. It seems to be rather
difficult to get precise information about these extensions. For n = 3
the situation is quite well understood: it corresponds to genus theory
and the theory of central extensions. Some informations are provided
for n > 4 in case K/k is cyclic.

§ 2. Notations

k a global or local number field, i.e. a finite extension of
Q or a finite extension of Qp, R or = C

k* the multiplicative group of k
k an algebraic closure of k
Gk =G(Jzjk) the absolute Galois group of k
G =G(K/k) a finite factor group of Gk

Iκ =idele group, if K is global
Cκ =idele class group of K if K is global,

=the multiplicative group K* if K is local
Dκ =the universal norm subgroup of Cκ
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Gκ =G{klK)

GΆκ = Galois group of the maximal abelian extension Kah of

K contained in k

C = the group of continuous homomorphisms of the locally

compact abelian group C into the complex unit circle

v a place of the global number field k

v an extension of v to k

Gkιϋ the decomposition group of v in Gk

Gϋ the decomposition group of vκ in £?, sometimes identified with

the Galois group G(Kϋ/kv) of the corresponding local extension.

§Ί$. Strict cohomological dimension

Our starting point is the following well known theorem, see e.g. [9],

Π, in connection with [10], Section 6.

(3.1) THEOREM. Suppose k is local Then

H^(Gk, Z) = 0 , n > 1

Suppose k is global. Then

H2n+\Gk9 Z) = 0 , n > 1

H2n(Gk, Z) = (Z/2)ri , rt = number of real places of k, n>2 .

(3.2) COROLLARY. Suppose G — G(Kjk) is a finite factor group of Gk.

Then a subgroup stf < Hn(G, Z), n > 3, defines a finite Galois extension

of Kjk in the sense of Section 1 in the following cases:

(a) k is a global or local number field and n is odd > 3

(b) k is local ΦR and n is even > 4

(c) k is global and totally imaginary and n is even

A pair (k, ή), consisting of a global or local number field k and a

natural number n > 3, is called ordinary, if one of the conditions (a),

(b) or (c) of (3.2) holds.

§4. Abelian extensions defined by cohomology

In this section we shall prove the following result.

(4.1) THEOREM. Suppose (k, ή) is an ordinary pair in the sense of
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Section 3 and G = G(Kjk) is a finite factor group of Gk. Then every sub-

group srf < Hn(G, Z) defines a finite Galois extension L of Kjk such that

L/K is abelian. Furthermore, for n = 3 we can choose L in such a way

that G(LIK) c center (G(L/k)).

For the proof we shall use some more notation. Denote by u0 e

H2(G, Cκ) the canonical class. As is well known, the universal Artin

map [1]

is G-equivariant. Hence a induces a map on cohomology groups

Set

u = a*(uQ) .

The group extension defined by u yields a transgression map

τ = r3: G% —-> H%G, Q\Z) ^ H°(G, Z)

which is given explicitly as follows

τ(X)(δ,p) = x ( u ( δ , p ) ) , XeG%, δ,PeG.

This map is part of the Hochschild-Serre exact sequence, [11], II, Section 4,

(4.2) 1 _ > G -^ί> Gk - ^ > Gi -L> H\G, Q/Z) —> 0

τ is surjective because H\Gki Q/Z) ^ H3(Gk9 Z) = 0.

Proof of (4.1) for n = 3. Take a finite subset X c Gi such that τ{X)

= stf and define L to be the fixed field of the intersection of all Ker (X),

XeX. Since X is finite and since every X e X is invariant under the ac-

tion of G, L is a finite central extension of Kjk. The Hochschild-Serre

exact sequence (4.2) shows that J / becomes trivial under inflation

W(G,Z)->H\G{Llk),Z).

In order to prove (4.1) for n > 4 we need some more cohomology.

Suppose g is a profinite group such that its strict cohomological dimen-

sion is 2. Take open subgroups V, W < g such that V is normal in W.

Then there is a spectral-sequence [11], II, Section 4,

E*`* = H*(W/V9 H`(V, QIZ)) = Φ Hr(W, Q/Z).
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By assumption Efq is trivial for q Φ 0,1. Hence the spectral sequence
yields the following exact sequence

• H%W, QIZ) — > # Γ M - ^ > E*+ι'° — • Hί+i(W> Q/Z).

So for ί > 2 there is an isomorphism

(4.3) d2: H`'XWfV, V) -^> Hi+XW/V, Q/Z) ,

which is obtained by cup product with the cocycle class corresponding
to the group extension 1 -> V\V -> W/V -> W\V-+ 1.

Now suppose (k, n) is an ordinary pair in the sense of Section 3 and
n > 4. Then (4.3) with g = W = Gfc, V = G r yields an isomorphism

(4.4) τn: ff—(G, G J • H`-`(Gf Q/Z) s iϊw(G, Z) , Λ > 4 ,

Proof of (4.1) /or τι > 4. For any finite Galois extension L of
L c l , with Galois group G = G(Ljh) there is a homomorphism

such that the following diagram commutes

ri \KJ> (JΓL) > ti (U, Z)

t
inf

Explicitly ^re is given as follows

for all (n — 3)-cocycles ^ on G with values in Gκ, all (y^ ,yn_s) e G(w"3>

and all x e GL; yέ denotes the image of yt under the natural map G — » G.
Now suppose I e τ'Xjrf). Define X to be the set of all characters
λ\xu , «n.s) e G ,̂ (^, , *n_s) e G(n-3), 3 e G, and let L denote the fixed
field corresponding to the intersection of all Ker (%), 1 e X. Then L is a
finite Galois extension of K/k, abelian over K, and λ becomes trivial
under pn. Therefore τn(λ) = fej/ becomes trivial under inflation. Apply
this construction to all f e si and form the composition of all L obtained
in this way. This field is a finite Galois extension of K/k, abelian over
K, such that si becomes trivial under inflation.
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§5. Some special cases

The purpose of this section is to illustrate the general result (4.1)
in the special case n = 3 and, when the given field extension is cyclic,
also in the case n > 4. The case n = 3 leads to the theory of central
extensions, to genus theory and to some questions centering around the
Hasse norm theorem. There is an extensive literature dealing with these
questions, see e.g. [3], [4], [7], [8], [12], [13] and also the references in
these articles. So we shall confine ourselves with some brief remarks.
Suppose k is a global or local number field and G = G(K/k) is a finite
factor group of Gk. A finite Galois extension L of K/k is called central,
if G(LjK) C center (G(L/k)). Two central extensions Lu L2 of Kjk are said
to belong to the same genus if there is a finite abelian extension ko/k,
koak, such that Lrk0 = L2-k0. By (4.1) every subgroup J/ < H3(G, Z)
defines a set M(s/) of central extensions of Kjk. Using the Hochschild-
Serre sequence (4.2) one observes

(5.1) The assignment s/ »-> M(s/) establishes a bijective correspond-
ence between the set of subgroups of H\G, Z) and the set of genera of
central extensions of K/k. Furthermore, for every L e M{srf) the trans-
gression map yields an epimorphism G(L/K)Λ -><$/.

Given a subgroup $tf < H3(G, Z) one can ask for canonical representa-
tives of M(J/), for instance, one can try to find representatives with small
degree or "small" conductor. As far as I know there are no complete
answers to these questions in the literature. It seems obvious that
complete solutions to these problems and further precise arithmetical
interpretations of the cohomology group H3(G(K/k)9 Z) for finite p-exten-
sions K/k will help to get deeper insight in the theory of nilpotent ex-
tensions of number fields.

In order to study local-global questions one introduces in the global
situation the kernel $P = $f(K\K) of the localization map

H\G,Z)—>UH3(G,,Z).
υ

As Tate observes [2], p. 198, Jf has the following arithmetical interpre-
tation.

(5.2) 3/f is dual to the obstruction group X = 3f(K/k) for the Hasse
norm principle, i.e. 34? is dual to X` = {a e k* | a is a norm locally every-
where in Kjk) modulo Norm^ (if*).
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This observation has been the starting point for investigations which

try to classify extensions of number fields for which the Hasse norm

principle holds, see e.g. [7]. It is amusing to dualize the statemant "$?

defines the central extension L of Kjk". It reads as follows, see [6],

(5.3) Suppose aek* is a norm locally everywhere in Ljk. Then a

is a global norm in Kjk.

Now suppose k is a global or local number field and (k, ή), n > 4,

is an ordinary pair in the sense of Section 3. In the following we assume

that K/k is cyclic and try to give some information about extensions of

K/k which are defined by Hn(G, Z). We shall prove

(5.4) THEOREM. Suppose Kjk is cyclic. Then every finite Galois ex-

tension L of K\k which is defined by Hn{G{Kjk), Z), n > 4, corresponds to

a G-invarίant norm subgroup A < Cκ with the property A Π Ck <

`Noττaκ/k Cκ and contains an obelίan extension Kjk such that K: k divides

K0:K.

Proof. For cyclic groups cohomology is periodic mod 2, so we have

0 , if n is odd

[ , it n is even

and

ΓO , if n is odd
W~3(G, Gκ) = , ^

H~\(jr, uκ) , it λi is even

The Artin map induces isomorphisms G = #°(G, C^)A and H~X(G, Gκ)

^ H~ι(G, (Cκ/Dκy). The isomorphism (4.4) induces an isomorphism

H~\G, Gκ) = G. Moreover, the restriction map induces an isomorphism

res: H\G, (CKIDK)Λ) -> H°(G, Cκ)\ A tedious but straightforward compu-

tation shows that all maps fit together in the following commutative

diagram

Hn~\GyGκ) ^—> Hn(G,Z)

I

H\G, Gκ) — > G

Artin \ I \ I Artin

l-`(fi, {CKIDKY) =—> H\G, CKY
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Now suppose that L is a finite Galois extension of K/k, abelian over

K, which is defined by Hn(G, Z), n > 4, see (4.1). Then L defines a

G-invariant norm subgroup A < Cκ. Denote by (X) a. generator of

H-\G,{CKIDKY). The above diagram shows that A < Ker 00 for some

representative X of (X). Furthermore we have Ker (X) (Ί Ck = Ker (XCί) =

Noτmκ/k Cκ, hence A Γ) Ck < Noτmκ/k Cκ. Now we shall use the following

group theoretic version of Hubert's theorem 94 which is due to K.

Miyake5*0.

(5.5) Suppose H is a finite group with abelian normal subgroup

N<\H and cyclic factor group G = H/N. Then \G\ divides Ker (transfer:

H-+N): [H,H]

In the above situation set H = G(LJk), where Lx is the normal

closure of the extension of k corresponding to Ker (X) < Cκ> and N =

G(LX/K). It is well known that the following diagram commutes

N

inclusion | | transfer
"Artin"

The equation Ker (X) Π Cfc = Norm/c/fc Cκ implies Ker (transfer: H'-» N)

< N. Therefore (5.5) shows that K: k divides L[: K where Uχ is the

maximal abelian extension of k contained in LΓ This completes the

proof of (5.4).
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