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Abstract
The three-body problem is famously chaotic, with no closed-form analytical solutions. However, hierarchical systems of three ormore bodies
can be stable over indefinite timescales. A system is considered hierarchical if the bodies can be divided into separate two-body orbits with
distinct time and length scales, such that one orbit is only mildly affected by the gravitation of the other bodies. Previous work has mapped
the stability of such systems at varying resolutions over a limited range of parameters, and attempts have been made to derive analytic and
semi-analytic stability boundary fits to explain the observed phenomena. Certain regimes are understood relatively well. However, there are
large regions of the parameter space which remain unmapped, and for which the stability boundary is poorly understood. We present a
comprehensive numerical study of the stability boundary of hierarchical triples over a range of initial parameters. Specifically, we consider
the mass ratio of the inner binary to the outer third body (qout), mutual inclination (i), initial mean anomaly and eccentricity of both the
inner and outer binaries (ein and eout respectively). We fit the dependence of the stability boundary on qout as a threshold on the ratio of
the inner binary’s semi-major axis to the outer binary’s pericentre separation ain/Rp,out ≤ 10−0.6+0.04qoutq0.32+0.1qout

out for coplanar prograde
systems. We develop an additional factor to account for mutual inclination. The resulting fit predicts the stability of 104 orbits randomly
initialised close to the stability boundary with 87.7% accuracy.
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1. Introduction

The three-body problem had been studied for over 100 years
(Poincaré & Magini 1899) and is notoriously chaotic, with no
analytic solution (Poincaré 1892). For strongly chaotic systems, a
statistical approach is generally preferred to yield a probabilistic
outcome of the scattering in terms of the final states (Monaghan
1976a,b). Only recently, the explicit dependence on the orbital ele-
ments was found with various methods (e.g. Stone & Leigh 2019;
Ginat & Perets 2021a,b; Kol 2021a,b; Manwadkar et al. 2021).

Hierarchical systems are a subset of three-body systems such
that the system can be divided into an inner and an outer binary,
each only weakly perturbed by the other. Hierarchical systems
are deemed stable if they maintain their hierarchical structure
without collision or ejection for a large number of orbits. The long-
term evolution of hierarchical systems had been explored exten-
sively over the years (Harrington 1968; Ford, Kozinsky, & Rasio
2000; Naoz et al. 2013; Toonen et al. 2020).

Hierarchical systems are the only multiple systems observed
in nature, either for triple stars of comparable masses (where the
majority of massive stars are actually in triples or higher multi-
ples, Duchêne & Kraus 2013; Moe & Di Stefano 2017), or systems
with extreme mass ratios where one of the masses is much smaller
than the other ones. Examples of such extreme mass ratio sys-
tems include (but are not limited to) circumbinary planets (Doyle
et al. 2011), moons and binary asteroids (Richardson & Walsh
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2006; Naoz, Perets, & Ragozzine 2010), or binary stars/black holes
around an intermediate or super-massive black hole (Fragione
et al. 2019).

The boundary between stable hierarchical and unstable chaotic
systems has a non-negligible width. For an inner separation ain,
and an outer separation aout, the stability boundary (SB) will gen-
erally depend on the separation ratio α ≡ ain/aout. It is expected
that for α ∼ 1 the system is strongly chaotic, while it should be
stable for α � 1. The exact SB depends also on the masses of the
bodies, as well as other orbital elements of both binaries. Due
to the large parameter space and inherent chaotic nature of the
problem, traditional studies explored the SB over a limited param-
eter space (Eggleton & Kiseleva 1995; Holman & Wiegert 1999;
Petrovich 2015; He & Petrovich 2018; Quarles et al. 2018), while
new methods explore the boundary using a machine learning
approach for specific choices of initial conditions (Lalande &Trani
2022; Vynatheya et al. 2022, hereafter V+22). Of particular impor-
tance are the outer mass ratio qout ≡min/mout, and the mutual
inclination between the two orbits, i. Here min is the total mass of
the inner binary andmout is the mass of the outer companion.

For extreme mass ratios qout � 1, the Hill radius rH ≡
aout

(
qout/3

)1/3 � aout defines the length scale of the SB (Hill 1878).
Tight inner binary orbits with ain � rH will be stable while wide
orbits with ain � rH will be unstable. Numerical studies have
repeatedly shown that the SB lies between between 0.4rH − 0.9rH
(Henon 1970; Hamilton & Burns 1991). The inclination depen-
dence of the SB was examined analytically by Innanen (1979,
1980), Mylläri et al. (2018), who explained the greater stability of
retrograde orbits over prograde orbits by pointing out the asym-
metric role of the Coriolis acceleration in stabilising the former
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Figure 1. Fraction of stable orbits out of 20 evenly spaced mean anomalies against mutual inclination for qout = 1 (left) and qout = 10−5 (right). The left ordinate axis shows ain in
units of aout, while the right ordinate shows ain in units of the Hill radius rH.

and destabilising the latter. Secular analysis reveals more com-
plicated behaviours such as the Lidov-Kozai (LK) mechanism in
mutually inclined orbits, in which the outer perturber exerts a
torque on the inner binary, exciting oscillations in inclination
and eccentricity of the inner orbit (Lidov 1962; Kozai 1962). This
reduces the critical stability radius for mutually inclined orbits.
Grishin et al. (2017) generated a semi-analytic fit of the SB for
arbitrary inclinations which explains the orbital distribution of
irregular satellites of the giant planets (Carruba et al. 2002).

For comparable masses, qout � 1, instability (and later chaotic
evolution and ejection) arises due to resonant interactions
between the inner orbit and harmonics of the outer orbit
(Mardling 2008, 2013). Due to angular momentum exchange,
the outer orbit gains eccentricity, which induces higher harmon-
ics. The structure of overlaps of neighbouring resonances leads
to chaotic interactions (Chirikov 1979) and can be used to esti-
mate stability. Mardling & Aarseth (2001, hereafter MA01) esti-
mated the critical separation ratio for stability in terms of the
mass ratio as α ∝ (1+ 1/qout)−2/5 ∝ (qout/(1+ qout))2/5. Although
strictly valid for comparable masses, qout � 0.2, numerous studies
extrapolate the MA01 stability boundary to very high or very low
mass ratios. Moreover, the MA01 inclination dependence is not
particularly accurate. Very recently, V+22 updated the stability
boundary to include non-monotonic inclination dependence.

Each empirical fit relies on an extensive parameter study and
specific assumptions in the relevant regime which limit its domain
of validity. However, unifying two or more regimes is challeng-
ing due to the very distinct underlying physical processes. For
example, while the comparable masses case relies on exciting
eccentricity in the outer orbit, the extreme mass ratio case cannot
change the eccentricity of the outer orbit at all, and the instability is
due to tidally shearing the inner binary. In addition, many of the
recent population studies regularly check for violation of the SB
during the dynamical evolution of a triple system (Toonen et al.
2020; Hamers et al. 2021; Grishin & Perets 2022). Finally, recent
observations find companions with mass as low as 0.2M� to mas-
sive O-stars, pushing the mass ratio to extreme values (Reggiani
et al. 2022). Given the large multiplicity of massive stars, it is plau-
sible to find triples with extreme mass ratios. A unified stability
boundary for wider range of mass ratios, inclinations and other
parameters is compelling.

In this paper, we find a unified empirical fit for the stabil-
ity boundary for any outer mass ratio, qout, and extend it to any
mutual inclination. By doing so, we bridge together the 1/3 power
law for the extreme mass ratio regime and the 2/5 regime for
comparable masses. We also extend the inclination dependence fit
and explore the dependence on the eccentricities and other orbital
parameters. Our paper is organised as follows: Section 2 describes
the numerical methods and initial conditions. Section 3 presents
the results and the unified stability boundary fit, which is given in
Equations (1) through (4). In Section 4, we discuss the implica-
tions of our findings, and assess the utility of our fit against other
contemporary models, and Section 5 summarises our findings.

2. Methods

All integrations were computed using the REBOUND N-body
code, with the IAS15 adaptive symplectic integrator, accurate to
machine precision for a billion orbits (Rein & Spiegel 2014). An
orbit was considered disrupted if the distance between the inner
binary components m1 and m2 exceeded half the outer pericen-
tre separation rp,out/2≡ aout(1− eout)/2. In orbits with qout ≤ 1,
the inner binary can be disrupted before its separation exceeds
aout/2. However in practice such orbits soon reach this separa-
tion, and the above criterion is sufficient to define stability, thus
it is a conservative definition of stability. Reaching inner orbital
separations of half the outer orbit’s pericentre also requires sig-
nificant changes in the orbital energy, which coincides with other
definitions of stability (e.g. V+22). We compare different stability
thresholds in Section 4.2. Systems with large values of qout 	 1 can
be non-hierarchical and stable, where our criterion is not satisfied
(Bhaskar et al. 2021, V+22).

An orbit was classified as stable if it survived for 100 outer
orbital periods (Pout) without disruption, following previous work.
Grishin et al. (2017) integrated for 100Pout to incorporate the
impact of secular changes that occur on timescales of� 10Pout for
systems close to the stability boundary. Grishin et al. (2017) also
ran one grid of initial conditions for longer times of 104Pout and
obtained similar results. V+22 also used a simulation duration
of 100Pout, arguing that 99% of the unstable orbits are classified
as such within 100Pout (see their Figure 1). However, the actual
timescale for instability may be sensitive to initial conditions.
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Table 1. Initial conditions for the plots presented in this paper. Variables rep-
resented by an interval are distributed uniformly unless given in exponential
form (i.e. [10−2, 100]), in which case they are distributed logarithmically. The
value of ain on the ordinate of each plot is scaled as appropriate to the figure.

Variable Figure 1 Figure 2 Figure 3 Figure 4

i [0,180] 0, 150 0 [0,180]

ein 0 0 [0, 0.85] 0

eout 0 0 [0, 0.85] 0

qin 10−2 10−2 10−2 [10−2, 100]

qout 1, 10−5 [10−4, 100] 10−2 10−1, 10−3

# of runs/105 2× 4.68 2× 12 2× 1.36 4× 4.68

While this paper was under review, Hayashi, Trani, & Suto (2022)
integrated a limited sample of initial conditions for much longer
timescales to show that some orbits (especially orbits with large
eout and large mutual inclinations) could reach instability much
later, after� 104Pout.

2.1 Initialisation

The system was initialised in Jacobi coordinates, described as fol-
lows. m1 was initialised at the centre of the system initially with
zero velocity. REBOUND initialisation tools were used to placem2
in an orbit defined by ain and ein. Finally, mout was initialised in
orbit around the centre-of-mass of m1 and m2, based on aout, eout
and inclination i.

Each plot shows a high-resolution grid of systems, with one
input parameter on the abscissa and a suitably scaled ain on the
ordinate. Eccentric orbits were initialised at apastron for greater
precision. Since orbits at different mean anomalies exhibit slightly
different stability, systems with 20 evenly-spaced mean anomalies
were chosen for each grid coordinate, and the plots show the frac-
tion of these systems that were stable at each coordinate. Red areas
exhibited a high fraction of stable orbits, while the unstable regions
are blue. For a detailed breakdown of initial conditions, see Table 1.

In order to obtain our results, we overall integrated over
5 million orbits. The last row of Table 1 lists the number of panels
for each figure times the number of runs to generate each panel.

3. Results

Here, we explore the dependence of the SB on the various system
parameters: the inclination (Section 3.1), mass ratios (Section 3.2)
and eccentricity (Section 3.3). We present our empirical fits in
Section 3.4. All logarithms in this paper are base 10.

3.1 Inclinations

Figure 1 shows the SB dependence on the mutual inclination. It
closely follows previously reported non-monotonic fits (Hamilton
& Burns 1991; Grishin et al. 2017). The boundary is essentially
identical to the qout � 1 Hill approximation up to log[qout]≤ −1,
with prograde orbits stable up to around 0.5rH, and retrograde
orbits as far as 0.8rH. Stability peaks at inclinations of 60◦, and
reaches maximal values again near 180◦. The ∼ 90◦ inclinations
are the least stable, as expected from the prominent LK resonances
that excite large eccentricities in this regime.

The left panel of Figure 1 shows the qout = 1 case. Here the pro-
grade and retrograde SB’s are similar with a small dip in the high
inclination range. This is because the Hill approximation does not
apply and instead the critical separation is somewhere between
α = ain/aout ≈ 0.3 (for prograde) and α ≈ 0.4 – 0.55 (for retro-
grade), compatible with the MA01 and V+22 stability boundaries
for both prograde and retrograde cases.

The SB also peaks around inclination 50◦ more smoothly in the
qout = 1 case, while the decay is more abrupt in extreme qout cases
and occurs close to 60◦. The increase of the critical inclination for
the onset of LK oscillations for triples with mild hierarchy (close
to their stability limit) has been observed by Grishin et al. (2017),
was later derived analytically by Grishin, Perets, & Fragione (2018)
for small qout, and was recently extended to any mass ratio by
Mangipudi et al. (2022). These results are consistent with the
analytic expectations.

3.2 Mass ratios

Figure 2 shows the dependence of the SB of the mass ratio qout.
In the Hill approximation, where log qout < −1, the power law of
1/3 dominates across all inclinations. The inclination-dependent
boundary of equal-mass systems manifests in a relative increase in
the gradient of the SB towards log qout = 0 in the low-inclination
systems (left panel), and a corresponding decrease in the gradient
of the stability boundary for more inclined systems (right panel).

3.3 Inner and outer eccentricities

Previous work has demonstrated that in systems with qout ∼ 1, the
stability boundary of hierarchical triples depends on both outer
and inner eccentricity (MA01; V+22). Preliminary consideration
suggests that the circular stability boundary condition may be
translated into one for a general eccentric boundary by consid-
ering the ratio between semi-major axis of the inner orbit ain and
the Hill pericentre radius rH,p ≡ rH(1− eout), rather than ain/rH.
The impulse from the outer object is greatest at its pericentre.
However, the eccentricity of the inner orbit is determined by the
three-body interactions rather than by its initial value for qout < 1
(e.g., themaximum eccentricity in the Lidov-Kozai regime is set by
the masses, separations and the mutual inclination Grishin et al.
2017; Mangipudi et al. 2022).

Figure 3 shows the dependence of the SB on the initial eccen-
tricity, for qin = qout = 0.01. The left panel shows that the SB is
largely independent of ein. The right panels shows that the depen-
dence of the SB on the outer binary’s eccentricity is indeed well
approximated by using rH,p in place of rH in the SB threshold. Both
of these approximations begin to break down when qout � 1. The
initial eccentricity of the inner binary is more significant when
qout � 1; in this case, the apocentre separation of the inner orbit
becomes a relevant parameter ra,in ≡ ain(1+ ein), since m2 is most
weakly attracted to m1 at apocentre (see (MA01; V+22) for a
discussion of eccentricity in this regime).

3.4 Fits

Constructing a fit to a multivariate parameter space entails sig-
nificant challenges, due to the numerous potential correlations
between the various parameters. In order to tackle this problem,
we first attempt to approximately describe the SB by the prod-
uct of single-variable functions for each parameter, since the plots
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Figure 2. Fraction of stable orbits out of 20 evenly spaced mean anomalies against the mass ratio qout, for inclinations i= 0 (left) and i= 150◦ (right). The white line indicates the
Hill radius rH in both panels. At extreme mass ratios, the relationship is consistent with the Hill regime, while at qout ≥ 0.1, high inclination orbits become relatively less stable,
while low inclination orbits becomemore stable, although the inclination dependence is not monotonic (see Figure 1).

Figure 3. Fraction of stable orbits out of 20 evenly spacedmean anomalies against ein (left) and eout (right), plotted for qout = 0.01. In the left panel, eout = 0, and in the right panel
ein = 0.

for inclination look similar at different mass ratios. Furthermore,
since ein is mostly irrelevant and the effects of eout can be explained
by considering the critical separation as a fraction of the outer
periastron separation, the problem is reduced to only two vari-
ables, inclination and mass ratio:

ain
Rp,out

= f (qout) · g(i) · h(qout, i). (1)

A piecewise linear regression with two segments was used to
describe the log–log mass ratio boundary accurately in the low-
inclination limit, and a smooth interpolation between these two
regimes provides the first factor, f (qout):

f (qout)= 10−0.6+0.04qoutq0.32+0.1qout
out , (2)

where the numerical pre-factor is chosen to optimise classification
accuracy across eccentricities (see Section 4 for more details on
classification accuracy).

The inclination boundary is more complicated, and requires
more careful treatment. A cosine function describes the curve up
to 60◦, while the high-inclination region is fit by a fourth-order

polynomial. The combination of these equations gives the func-
tion g(i) (here, all inclinations are given in radians):

g(i)=
⎧⎨
⎩

−0.4 cos i+ 1.4 i< π/3

−0.1773i4 + 1.1211i3 − 1.9149i2 + 0.5022i+ 1.6222 i≥ π/3
(3)

Given these two independent fits, it is necessary to account for
the mutual interaction between inclination and mass ratio. The
factor h(qout, i) reduces stability at high inclinations for roughly
equal-mass systems (Equation (4)). Thus, the empirical fit to the
stability is given by Equation (1) with

log h(qout, i)= −iq1.3out
1500

. (4)

4. Comparison to other stability boundary fits

Here, we compare our stability boundary with other works.
We first summarise the fractions of orbits correctly classified as
stable/unstable, then directly compare to the recent algebraic fit
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Table 2. Range of orbital elements used for fit evaluation. Inclination fol-
lowed an isotropic distribution, mass ratios were distributed logarithmically,
and all other elements were distributed uniformly. ain,crit refers to the critical
ain of the stability boundary predicted by Equation (1).

ain/ain,crit log qin log qout i ein eout

[0.5,1.5] [−2,0] [−6,0] [0,π ] [0,1] [0,1]

from V+22 and discuss the performance of different instability
thresholds and their regions of validity.

4.1 Overall fractions of correctly classified orbits

Equation (1) was compared to other well-known hierarchical
stability boundary models by predicting stability for 104 orbits ini-
tialised according to Table 2. In order to focus on the regime of
interest and better differentiate between the quality of the differ-
ent fits, ain/Rp,out was restricted to be between 0.5 and 1.5 times
the stability boundary as described by Equation (1). This results in
less impressive classification scores than are found in other work
(V+22), since we focus on the region in which it is most difficult
to predict stability. As in Section 2, we classified an orbit as stable if
the distance betweenm1 andm2 remained smaller than rp,out/2 for
100 outer orbital periods. Equation (1) predicted stability correctly
for 87.7% of orbits, compared to 67.4% for the fit proposed by
MA01 and 70.5% for the adjusted fit put forward in V+22. Of the
misclassified orbits, 53.3% were unstable (classified stable) and the
rest were stable, but classified as unstable, compared to 97.6% and
98.6% of misclassified orbits being stable (classified as unstable)
for the MA01 and V+22 fits, respectively. This stark discrepancy
arises from the inconsistency of the 2/5 power law with the 1/3
power law Hill regime in mass-hierarchical systems, in which both
the MA01 and V+22 fits drop off too quickly with qout, causing
them to over-classify orbits as unstable.

4.2 Varying the instability threshold

The definition of stability used in this paper differs somewhat from
that put forward by V+22, who extend instability to include any
system for which ain or aout change by more than 10% after 100
Pout, in order to catch systems which have not yet been disrupted
but will be in the near future. Figure 4 compares the stability
boundaries put forward by this work, MA01 and V+22 against
inclination, for different mass ratios and different stability criteria.

It is clear that Equation (1) most closely approximates the
stability boundary when qout � 1, due to its adherence to the
Hill mass-ratio dependence in this regime. Since the MA01 and
V+22 stability boundaries both approach a 2/5 power law at small
qout, they underestimate the maximum stable ain in these sys-
tems. At qout = 0.1, the stability boundary is best fit by the V+22
formula.

As for the different definitions of stability used, they seem to be
largely consistent below ∼120◦ inclination, however in retrograde
systems, the V+22 definition provides a much broader region of
ambiguous stability, with a fraction of orbits being labeled stable
depending on the initial mean anomaly. This is probably due to the
large chaotic extent of meta-stable orbits that are unstable accord-
ing to the V+22 criterion, but are stable for our criterion. This
retrograde region is accurately fit by the V+22 stability boundary
in regimes of moderate qout, however that fit underestimates the
high inclination stability boundary when using our definition.

For 10−6 < qout < 1, our definition of stability appears to pro-
vide a more clearly defined, smooth, boundary. However, for
qout > 1, the V+22 definition is more appropriate, as it considers
changes to both ain and aout. In these systems, instability can mean
ejection or disruption of mout, which may not be detected by the
definition of stability we use.

The stability boundary described by Equation (1) unifies our
previous understandings of the Hill regime (Grishin et al. 2017)
and the similar-mass regime (MA01). It provides an accurate
prediction of stability for any system with qout � 1, and cap-
tures the complexity of the inclination dependence. However, the
dependence of the ain/aout SB cannot be extrapolated far beyond
qout = 1, since ain and aout become comparable at the SB, and the
system ceases to be hierarchical. Hence, in that regime it is neces-
sary to adopt a fit that asymptotes toward independence from qout
(V+22; MA01).

5. Conclusions

We have obtained an empirical fit to hierarchical three-body
stability for systems with qout � 1. This fit attempts to bridge
the gap between the well understood hierarchical-in-mass Hill
regime (Grishin et al. 2017) and previous understandings of the
equal-mass regime (MA01; V+22). We have mapped the stability
boundary extensively across mass ratio and inclination within this
range, and determined a ’turn-off’ point from the Hill regime at
qout ≈ 0.1.We have also confirmed the accuracy of our fits through
an extensive test, correctly predicting stability in 87.7% of systems
on or near the SB.

Our empirical fit captures the features of the non-monotonic
inclination dependence of the stability boundary more accurately
than other contemporary works which derive semi-analytic fits
(Mardling & Aarseth 2001; Grishin et al. 2017; Vynatheya et al.
2022). Furthermore, it is the only stability boundary fit which
unifies the resonant equal-mass regime and the Hill regime, dom-
inated by tidal shearing. This is reflected in its classification
performance, where it out-performs alternative algebraic stability
boundary models for systems with qout � 1 while maintaining a
comparable accuracy for those with qout ≈ 1.

The stability boundary fit presented in this paper is limited
by its treatment of qout as it approaches 1. Equation (2) defines
a stability boundary which increases indefinitely with qout, and
with an increasing gradient. This arises from a somewhat myopic
analysis of the behaviour of qout in co-planar prograde systems, a
relationship which is not borne out in more inclined systems (see
Figure 2), and cannot be sustained as qout exceeds 1. Furthermore,
this work deals only in passing with eccentricity as a factor impact-
ing stability, and does not attempt to consider its interaction with
inclination, nor to model its effect beyond a simple linear fit. This
approximation is accurate for qout < 0.1, but fails in the equal-mass
regime and beyond.

Equation (1) provides a promising foundation for a generalised
stability boundary for all hierarchical triples. Future work should
consider the fits for systems with qout > 1 provided by MA01,
V+22 and others, and expand our study of the parameter space
to evaluate the interactions of eccentricities with other parameters,
in order to construct this unified fit. Analytic future work may also
reveal the exact transition between the resonant and Hill regimes,
to be compared with our empirical findings.

The study of populations of triples and their evolution can be
numerical (Anderson, Lai, & Storch 2017; Toonen et al. 2020;

https://doi.org/10.1017/pasa.2022.57 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2022.57


6 M. Tory et al.

Figure 4. Fraction of stable orbits out of 20 evenly spaced mean anomalies against i, plotted for qout = 0.1 (top row) and 0.001 (bottom row). Left panels: our threshold for
instability (ain > aout/2). Right panels: V+22’s threshold for instability (either separation varies by>10%).

Hamers et al. 2021; Grishin & Perets 2022), or semi-analytical
(Muñoz et al. 2016; Mangipudi et al. 2022). However, even numer-
ical population studies generally require secular approximations
to reduce computational costs, and therefore rely on dynamical
stability checks during the evolution. Our new stability bound-
ary fit will aid in distinguishing stable and unstable systems, which
will most likely affect the overall branching ratios of the different
outcomes.

Recently, machine learning tools have also been utilised to
study triple stability (Lalande&Trani 2022; Vynatheya et al. 2022).
Due to their complexity, large neural networks have the poten-
tial to capture non-linear multi-dimensional interactions between
parameters more accurately than any algebraic fit to the stabil-
ity boundary, and further study should endeavour to apply these
methods to a wider range of systems for more broadly applica-
ble classification. However, neural networks could be harder to
implement in simple population-synthesis style studies, where our
simple algebraic stability fit will be useful.
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