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Abstract. In a previous paper, we studied the homogenized enveloping algebra of
the Lie algebra s¢(2, C) and the homogenized Verma modules. The aim of this paper
is to study the homogenization Op of the Bernstein—Gelfand—Gelfand category O of
s¢(2, C), and to apply the ideas developed jointly with J. Mondragén in our work on
Groebner basis algebras, to give the relations between the categories O and O as well
as, between the derived categories D(O) and D?(0).

2000 Mathematics Subject Classification. Primary 16S30, 17B35, Secondary
17B10.

1. Introduction. In a series of three papers, the author studied jointly with J.
Mondragon homogeneous Groebner basis algebras, or homogeneous G-algebras, B,
and its deshomogenized G-algebra 4, = B,/(z — 1)B,. We proved B, has a Poincare—
Birkoff-Witt basis it is Koszul noetherian Artin—Schelter regular of global dimension
n+1, in particular its Yoneda algebra B! is finite dimensional selfinjective. We
described the structure of the algebras B, and B!, and analyzed the relations among
the algebras B, Bil and A,,. The first two are related by Koszul duality and B, and
A, are related by a homogenization—deshomogenization process. We studied these
connections, both at the level of module categories, and of derived categories.

An application of these ideas to the enveloping algebra U of the Lie algebra
s¢(2, C) was given in a previous paper [18]. We studied homogenized Verma modules
V(L) over the homogenization B of the algebra U, we proved they are Koszul of
projective dimension two. We then describe the structure of the Koszul B'-modules
W()) corresponding to V() under Koszul duality. It is well known that the graded
Auslander—Reiten components of selfinjective Koszul algebra are of type ZA4,, we
proved that each W(A) is in a different component, and that it lies at the mouth.
In this way, we obtain a family of Auslander—Reiten components of a wild algebra
parametrized by C.

The aim of this paper is to study the homogenization Opg of the Bernstein—
Gelfand-Gelfand category O of s¢(2, C) and to apply the ideas developed jointly with
J. Mondragon in the study of Groebner basis algebras, to give the relations between
the categories O and O as well as, between the derived categories D?(Op) and D*(0).
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Groebner basis algebras or G-algebras were considered by Levandosky [16]
generalizing results from Apel [1], Berger [2] and [3]. They include important classes
of algebras like the Weyl algebras, [5,26] the enveloping algebras of the finite
dimensional Lie algebras [14] and the quantum polynomial ring. We considered in
[20] and [21] homogeneous versions of these algebras, as well as the homogenization
deshomogenization process. We proved they are Koszul, Artin—Schelter regular and
noetherian, and gave the structure of both, the homogeneous G-algebra B, and its
Yoneda algebra B!,.

For the convenience of the reader, we recall the definition and some basic properties
of G-algebras.

Let k be a field and 7T = k(Xj, X3, ... X,) the free algebra with n generators
and suppose there is a set F = {f; | | <i <j <n}, where for all j > if;; = X;X; —

C,‘ij,‘/Yj — d,'j, d,‘j‘ = ZZ:lbi‘(ij + aij, with bf-(j, aij € k, Cij € k — {0}, we denote by 4,
the quadratic algebra 7'/(F), with I = (F) the two sided ideal generated by F and
let B, be the homogenization of the quadratic algebra 4, defined by generators and
relations as follows: B, = k(X1, Xa, ... Xy, Z)/I;, where I}, is the ideal generated by the
homogenized relations of I:

j’] = XX, —¢;jX;X; — Zzzlbff'jZXk — a,sz, and the commutators X;Z — ZX;.

Conversely, given an homogeneous quadratic algebra B, = k(X1, Xa, ... Xy, Z)/1;
where 7}, is the ideal generated by the homogenized relations of I:
(1= X Xi — cijX; X; — Y4 b5 Z Xy — a;;Z%, and the commutators X;Z — ZX;.

For any element a € k, there is a deshomogenized algebra A, , defined as A4, , =
k(X1, Xa, ... Xu)/1,;, with I, the ideal generated by the deshomogenized relations
[ =X X; — ¢y X, X; — a)_p_ b\, Xy — aja®. When a=1 we write A, instead of

A1, and for a =0, A4, is just the quantum polynomial ring k,[X1, X2, ... X,] =
k(X1, X2, ... Xo) /(X;Xi — ci;XiX; 1) > i, cij € k—{0}).
In the following proposition, we establish the relations between 4,, , and B,,.

PROPOSITION 1. Given an homogeneous quadratic algebra k{X;,X>, ... X,,Z)/1;, =
B, with I, is the ideal generated by the homogenized relations: f° ]h, =X;Xi—c;; Xi Xj —

ZzzlbfiZXk —a;;7% and the commutators X;Z —ZX; and for ack its
deshomogenization Ay, = kK(X1,X>, ... Xn)/1,, there is an isomorphism of k-algebras:
Bn/(z_a)Bn = An,a~

COROLLARY 1. For an homogeneous quadratic algebra B, = k{X;, X5, ... X, Z)/ I},
there is an isomorphism of (graded) k-algebras B,/ ZB, = k,[X1, X2, ... X,].

DEerINITION 1. Let 7' = k(X1, X3, ... X},) be the free algebra with n generators and
A =k(X1, Xa, ... Xy)/I the quotient by a two sided ideal. We say that A = T//] has a
Poincare—Birkof—Witt basis if every non-zero element of 4 can be written in a unique
way as a polynomial ) ¢, X' X5” ... X%, where the sum is finite and ¢, € k — {0}.

In the next proposition [20], we proved that the existence of a Poincare—
Birkoff-Witt Basis (PBW for short) is preserved under the homogenization-
deshomogenization process.
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PrOPOSITION 2. Let B, =k(X;, Xo,... X, Z)/1;, be a quadratic homogeneous
algebra, a € k-{0} and A, , =k(X;, X, ... Xy) /1, its deshomogenization. Then, A, ,
has a PBW basis if and only if B, has a PBW basis.

For a quadratic algebra, to have a PBW basis is equivalent to have a finite
Groebner basis. Since we do not want to get involved in this paper with the theory of
noncommutative Groebner basis [9—11] we will use the following equivalent definition,
and refer to [9], or to [20] for the proof of the equivalence with the standard definition,
as well as for the main properties of G-algebras.

DEFINITION 2. A quadratic algebra of the form A,, ( B,)) with a Poincare—Birkoff—
Witt Basis will be called a Groebner basis algebra or G-algebra (homogeneous G-
algebra).

We recall now the main results in our previous paper [18].

Through the paper C will denote the complex numbers, with N we denote the
positive integers and with Ny the non-negative integers. Our main concern is s¢(2,C),
the C-vector subspace of the space of two by two matrices M;,>(C) consisting of
the matrices with zero trace. s¢(2,C) is a Lie algebra with bracket product [X, Y] =
XY — YX.Theenveloping algebra U of s¢(2,C) is given by generators and relations by
U = Cle, f, h)/L, where C{e, f, h) is the free algebra with three generators: e,f,h and L
is the ideal generated by the relations: [e, f] — A, [/, €] — 2e, [k, ]+ 2f. It is well known
that U has a Poincare-Birkoff basis [7,25], this means that every element ue U can be
written in a unique way as a combination u =, > 4 ,C; jk€fhF and ¢ € C.

We denote by B the homogenized enveloping algebra of s¢(2,C) [15] defined
by generators and relations as: B = Cle, f, h, z)/I , where Cle, f, h, z) is the free
algebra in four generators and I is the ideal generated by the relations: [e, f] —
hz,[h, e] — 2ez, [h, f1+ 2fz, [e, z], [, 2], [, z]. By the above proposition, the algebra
B has a Poincare-Birkof-Witt basis. Using the ideas and results form [20] and
[21] it was proved in [18] it is Koszul noetherian Artin—Schelter regular of
global dimension four. Its Yoneda algebra is B' = Cle, . h, z) /I, where C(e, f, h, z)
is the free algebra in four generators and I 1 is the ideal generated by
the relations €2, 12, h?, 22, (e, f), (e, h), (f, h), (h, z) + ef. (e, z) — 2eh, (f, z) — 2hf, where
(u, v) = uv + vu is the anti commutator.

We recover U by deshomogenization, this is; U = B/(z — 1)B and the polynomial
algebra C = Cle, f, h] is obtained as B/zB = Cle, f, h]. If we denote by C' the exterior
algebra C' = Cle, f. h,)/ (&, 1%, I?, (e, [), (e, h), (f. h)), then C'is a subalgebra of B'
and there is a decomposition B' = C' @ C'z(B' = C' @ zC") as left (right) C'-modules.

By construction B is a C[z]-algebra, consider the multiplicative set S =
{1,z,z%,...2F, ...} and denote by C[z]. the graded localization C[z]s. There is
an isomorphism of C-algebras C[z]. = C[z,z"'], where C[z,z"'] is the ring of
Laurent polynomials. The algebra B, = B ®cy; Clz, z7!] is a Z-graded algebra with
homogeneous elements b/zX with b an homogenous element of B and degree (b/z") =
degree(b) — k.

There is a commutative diagram:

B B7

B % B./)(z—1)B.
\A /’ ’
q B/(z— 1B v

with ¢, 7, ¢ the natural maps and ¢ an isomorphism of C-algebras.
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Therefore, U = B/(z — 1)B = B./(z — 1)B..

There is an isomorphism 0 : (B,)y — B./(z — 1)B., and isomorphisms of graded
algebras:

Ulz,z7'1= U®c Clz, 2711 = B®¢p; Clz, 271

The ring Uz, z~']is a strongly Z-graded. The ring homomorphism U — Uz, z7!]
induces functors:

Ulz, z'1®u — : Mody — Gryp..- and resy : Gryp..-11 — Mody.

By Dade’s theorem [6] we have:

THEOREM 1. The functors Ulz, z7'] ® y — and resy are inverse exact equivalences,
which induce by restriction equivalences between the corresponding categories of finitely
generated modules mody and gry. ..

COROLLARY 2. The equivalences Ulz, z7'l @y — and resy preserve projective and
irreducible modules and send left ideals to left ideals giving an order preserving bijection.

In view of the previous statements, the study of the U-modules reduces to the
study of the graded B.-modules. We consider next the relation between the graded
B-modules and the graded modules over the localization B..

We will make use of the following:

DEFINITION 3. Given a B-module M we define the z-torsion of M as t.(M) = {m €
M | there exists n > 0, with z"m = 0}. The module M is of z-torsion if ¢,(M) = M and
z-torsion free if t.(AM)=0.

The module #.(M) is a submodule of M and a map ¢:M — N restricts to a
map @.m) : t-(M) — t:(N) in this way #,(—) is a subfunctor of the identity with
tz(tz(M)) = tz(M)a

For any B-module M there is an exact sequence:

0—» ttM) - M — M/t..M) — 0,

with 7,(M) of z-torsion and M/ t.(M) z-torsion free.

The kernel of the natural morphism M — M, = B, ®g M is t.(M).

In the next proposition, we describe as a particular case known facts concerning
any localization [28].

PROPOSITION 3. The following statements hold:

(i) Givenagradedmap of B-modules ¢ : M — N the map induced in the localization:
@.: M. — N. is zero if and only if ¢ factors through a z-torsion module.

(i) Assume the localized modules M. is finitely generated and let ¢ : M, — N,
be a morphism of graded B.-modules. Then, there exists an integer k > 0
and a morphism of B-modules ¢ : zZKM — N such that the composition M. >
(Z*M). 5N, @.0 = ¢ and o is an isomorphism of graded B.-modules.

(iii) Let M be a finitely generated B.-module. The module M is by restriction a B-
module and there exists a finitely generated graded B-submodule M of M such
that M, = M.

(iv) Let M, N be finitely generated B-modules amap ¢ : M, — N. is an isomorphism
if and only if its lifting ¢ Z*M — N, ¢. = ¢ has kernel and cokernel of z-torsion.
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1.1. Verma modules. In the representation theory of semisimple Lie algebras
Verma modules have a special role, in this subsection we recall the definition and some
of the main properties of Verma modules over the enveloping algebra U of s¢(2,C), as
well as the properties of the homogenized version of the Verma B-modules, and refer
to [18,25] for the proofs.

For any A € C the Verma module M(1) is M(A)= U/(Ue+ U(h — 1)). It is well
known which Verma U-modules are irreducible.

PROPOSITION 4. A Verma U-module M is irreducible if and only if » ¢ Ny. If ne Ny,
then the Verma U-module M ( n) is indecomposable. Furthermore, the module M(—n — 2)
is the unique simple submodule of M (n) and M(n)/M(—n — 2) = V"D js the unique
finite dimensional simple of dimension n + 1.

Foreach A € C we define the homogenized left ideal 7, of Bby I, = Be + B(h — Az)
and the homogenized Verma module V() = B/I,.
We proved in [18] the following:

PROPOSITION 5. For each A € C the monomials { fz"} form a C- basis of the
homogenized Verma module V () )= B/I,, where I, = Be + B(h — \z).

COROLLARY 3. The homogenized Verma module V(\) = B/I, is z-torsion free.

We call the module (¥ (1).)y the deshomogenized Verma module, it is isomorphic
to the usual Verma U-module, which we denoted by M ().
The next proposition follows by Proposition 4 and by Corollary 2.

PROPOSITION 6. The localization of the homogenized Verma B-module V(). is
irreducible if and only if . ¢ N.

As a consequence of this proposition we obtain the following properties of the
homogenized Verma modules.

PROPOSITION 7.

(i) Given a non-zero submodule X of the homogenized Verma B-module V (1) with
A ¢ No the module V (A)/ X is z-torsion.

(ii) The module V ()) is indecomposable for any A € C.

Consider the case V(n) with n € Ny and a map ¢ : B— V(n) with Be + B(h —
1z) Ckerg. An non-zero element v of ¥ (n) is of the form v = Y ¢;(z)f" with ¢;(z) € C[z]
and for some i, ¢;(z) # 0.

(h =220 = Yai2)h = 22)f' = Y ek '(h — nz) + Yei(2)m — (+20)f'z = 0 if
and only if for all i with ¢;(z) # 0, n = A 4 2i. This means, there is a unique i with
ci(z) #0,A =n+2iand v = ¢;(2)f".

Now, ev = ci(2)ef’ = ci(2)f e + izci(z)f 7 (h — (i — 1)2) = ci(2)f e + ici(z)f ' (h —
nz) + ici(2)f 122 (n — (i — 1)).

Hence; ev = 0ifand onlyifn =i — 1 ori=0.in the firstcase A = —n — 2, (1) =
c(2)f™!, in the second case A = n, (1) = c(2)1.

We have proved:

LEMMA 1. Let ne Ny and A € C, then

moms(v v w={ gy T
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LEMMA 2. Given the exact sequence: 0— V(—n —2) % V(n)—> V(n)/V(—n—
2) — 0, with o(1) = f"', V(n)/ V(=n — 2) is z-torsion free.

Proof. Let Y ci(z)f" + V(—n — 2) be an element of V(n)/ V(—n — 2) and assume
for some k > 0, 253 "¢;(z)f" € V(—n — 2). Therefore: > zFci(z)f" = Y b;(z)f/*"*+! and
ci(z)y=0for0<i<n.

It follows Y ci(z)f" = Y ¢jpnp1 ()7 € V(—n —2). O

LEMMA 3. Let u € C and A € C-Ny. Then,

Homa(v () ()= (L4 o SZ

Proof. Let 9: B— V() be the map ¢(1) = v = Y _¢;(2)f", then hv = Y ci(2)f(h —
2iz), then 0 = (h — puz)v = Y ci(2)f'(h — rz) + Y ci(2)(A — u — 2i)f'z and Y ci(z)(A —
w—2)fz=0in V().

Therefore: ¢;(z) # 0 implies A = p + 2i, v = c(2)f".

Assume i # 0.

ev = c(z)(fle + igf " (h — Az) + i(A — (i — 1))f™'2%) = 0.

It follows A = i — 1, a contradiction.

Therefore, i = 0and A = u, v = ¢(2). O

We will assume the reader is familiar with basic results on Koszul algebras as
developed in [12,13].
The homogenized Verma modules are Koszul [18].

THEOREM 2. Let V() ) be a homogenized Verma B-module. Then V(A ) has a minimal
projective resolution:

0 B-213 BoB-114 B v(n) -0,

with dy(a, b) = ae + b(h — Az) and dy(b) = (b(A + 2)z — h, e). In particular, V(L) is a
Koszul module.

In [20,21] we gave the structure of both, the homogeneous G-algebras B,, and
their Koszul duals B!, The algebras B}, have a structure similar to the exterior algebra,
in fact the exterior algebra C, is a sublagebra of B, and B., decomposes as left (right)
C. module: B, = C, & C'z(B, = C} @ zC').

Given a selfinjective algebra A, there is an automorphism o : A — A, such that
it induces an isomorphism of A-A bimodules A = D(A)o, where D(A) = Homg(A k)
has the usual left A-module structure, but on the right is the multiplication given by
twisting with the automorphism o. The algebra is symmetric, if and only if o = 1. We
refer to Yamagata's notes [29] for the details.

In the Koszul case, any automorphism o:A — A induces a graded automorphism
of the Yoneda algebra 7: I" — T as follows:

I = @ Extk(Ag,Ao), let y € Extk (Ag,A) be the extension:
k>0

y:0>Ag—>E —>E,— ... > E;—> A¢g— 0.
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Define t(y) as the extension:
(y):0—>0A)—>0E  —>0E;—> ... > 0E, >0A)— 0,

where given a A-module M the module o M is equal to M as k-vector space and for
A € A, me o M, the product is defined by Axm= o (1)m.

Since the A-modules Ay and o Ag are isomorphic, 7(y)e Extk (Ag, Ao).

In the case, A is selfinjective and o:A — A is the Nakayama automorphism, we
denote the induced automorphism also by o, and call it the Nakayama automorphism
of I'.

It was proved in [21] that for a homogeneous G-algebra B, and its Yoneda algebra
B!, the Nakayama automorphism has a simple form. It is defined as o(X;) = u;X; and
O'(Z) =uyZ, with uek — {0}

Since the homogenized enveloping algebra of a finite dimensional Lie algebra is a
G-algebra, for the particular case of s¢(2,C) the Nakayama automorphism is defined
in Baso(z) = upz, o(e) = ue, o(f) = uyf, o(h) = ush, with u; € C — {0}.

We remarked above, [24] that graded Auslander—Reiten components of selfinjective
Koszul algebras are of type ZA... In [18], we proved the following:

THEOREM 3.
(i) For any complex ) € C the B'-module W(}) = B'/(B'f + B'(z + Ah)) is the
module corresponding to V(L) under Koszul duality.
(ii) For each x € C the B'-module W(X) is at the mouth of the component.
(iii) For M, € C, A # u the modules W(X\) and W( ) are in different components.

2. Weight modules over the enveloping algebra U of s¢(2,C) and BGG category O.
In this section, we recall for the enveloping algebra U of s£(2,C), some basic results on
Bernstein—Gelfand-Gelfand category O. We refer to Mazorchuk [25] for the proofs
and more results on category O.

Let M be a module over the enveloping algebra U of s£(2,C). For A € C the
weight space is M, = {m € M | hm = Am} and X is the weight. M is a weight module
ifM = @CM », in particular the Verma modules are weight modules.

e

PROPOSITION 8.
(i) Every submodule of a weight module is a weight module.
(if) Every quotient of a weight module is a weight module.
(iii) A direct sum of weight modules is a weight module.
(iv) The tensor product of two weight modules is a weight module.

Denote by 9 the category of weight modules, by the previous proposition it is
abelian. Denote by 9 the subcategory of all weight modules M with dim¢M; < oco.
The Verma modules belong to 9.

Given a weight module M, define for any & € C/27Z the submodule M¢ = @ M,.
re€

If we denote by 9¢ the subcategory of weight modules of the form M?%, then 9 =

@ 9. We denote by M the category ¢ N M.
£eC/27

DEFINITION 4. The category O consists of all U-modules M satisfying the following
conditions:
(i) M is finitely generated.
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(if) M is a weight module.
(iii) For all ve M dimC[e]v< oo.

PROPOSITION 9. The category O is closed with respect to taking submodules, quotients
and finite direct sums. In particular, the category O is an abelian Krull Schmidt category
with the usual kernels and cokernels, and any simple in O is a simple U-module.

We have next the following:

PROPOSITION 10.

(i) For any ) € C the Verma module M (}.) is in O.
(i) For any M € O dimg M, < oo, thisis: O C M.

DEFINITION 5. The Casimir element of U is ¢ = (h + 1)* + 4fe.
LEMMA 4. The Casimir element is in the centre of U.

As a consequence of the lemma, given a U-module M multiplication by c is a
homomorphism ¢ : M — M.

Let 7 be an element of C. Then for any given U-module M we define M(c, t) =
{m € M | there is k >0 with (¢ — 7)*m = 0}. Then M(c, t) is a U-submodule of M.

For any A € C and M e 9%, multiplication by ¢ is a endomorphism of the finite
dimensional C-vector space M and there is a Jordan decomposition M, = & M; (),

teC
where M, (t) = {m e M, | (c — t)fm = 0 for k > 0}.

The module M(t) = @ M,(t)is a submodule of M = & M,.
reC reC

Denote by 9t &7 the full subcategory of m consisting of all M such that M =
M(7). By definition, M = @Mmér.

reC
Since O is a subcategory of M we can define 057 as O5 = O NM &7, and the
above decomposition induces a decomposition O = @ 057,
£eC/2z
reC

PROPOSITION 11.
(i) Every object in O has finite length.
(i) The category O has enough projective objects and the Verma modules M (A ) are
projective.

We call the categories O%'7 the blocks of O.
There is the following description of the blocks:

THEOREM 4. Let & be an element of C/2Z and t € C.
() If A+ 1)? # 1, for all A € C, then O5F = 0.
(i) If (A + 1)> = 1, for a unique A € C, then O%7 is semisimple, this is: the category
O%%is equivalent to the category of complex vector spaces.
(iii) If (\ + 12 = (M + 1)? = 1, for Ay,hy € C, with Ay # Ay, then T = n?, for some
n e Ny and the block O%7 is equivalent to the category of finitely generated

modules over the algebra © with quiver < and relations aff = 0.
B

Observe that in case (iii) we have an algebra with a “node" in the sense of [22] such
that removing the node we obtain an algebra with quiver —— and no relations, but
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this is isomorphic to the algebra of triangular matrices of size 3 x 3, which is hereditary,
hence, Koszul. It follows from [22] that the algebra ®© is Koszul.

The algebra © is of finite representation type and using the functors given in [20]
we can describe completely its module structure. In fact we have up to isomorphism
only five indecomposable modules.

The blocks of type (iii) are called regular blocks, and since they are all equivalent,
it is enough to consider the principal block ©*%!, which is denoted by O.

The module structure of the block both as graded and non-graded object is fully
understood and we can find the details in Mazorchuk book [25].

We want to describe next the homogenized version Op of the category O.

3. The homogenized category Op. Before describing the homogenized category O
we will give some results concerning the graded localization M, = B, ® g M of a graded
left B-module M and of the deshomogenization process M /(z — 1)M. We give in this
section an explicit description of the graded left B-modules such that M/(z — 1)M is
in O.

We remarked in Section 1, [18,20] that B, is a Z-graded algebra which has in
degree zero U = (B.)o = B/(z — 1)B = B./(z — 1)B.. This result extends to the finitely
generated B-modules.

PROPOSITION 12. Let M be a finitely generated graded B-module and M, = B, @ g M
be its graded localization. For any integer k, the degree k part of M, given by (M), =
{m/z" |deg(m)-€ = k}, is isomorphic to M /(z — 1)M as (B.)o-modules.

Proof. Let’s assume first M is of z-torsion. Then, there is a positive integer £
such that z!M = 0. Givenm € M, zm = 0 = m + (z — D)h(z)m, with h(z) e C[z], hence
m+(z—1)M=0+C—-1)Mand M/(z—1)M = 0.

In the general case, applying the tensor product functor B/(z — 1)B ®p — to the
exact sequence:

0 —> t.,(M) > M — M/t (M) — 0,
we obtain an exact sequence:
:(M)/(z = Dt.(M) - M/(z = DM — (M/t:(M))/(z = 1)(M/1.(M)) — 0,

and t,(M)/(z — D)t,(M) = 0 implies M/(z — )M = (M /t.(M))/(z — )(M [ t.(M)).
If we apply now the tensor functor B .®3- to the exact sequence *) we obtain the
exact sequence:

0—t.(M), > M. — (M/t.(M)). — 0,

and t,(M),; = 0 implies M, = (M /t.(M))..
In view of these remarks, we may assume M is z-torsion free.

Consider the composition ¢ = j of the canonical maps: (M) 4 M. 5
M./(z — 1)M.. The map ¢ is defined as ¢(m/z") = m/z* + (z — 1)M., where deg(m)-
L =k.

We claim ¢ is an isomorphism of (B.)o-modules.

It is clear that ¢ is a morphism of (B.)o-modules and ¢(m/z¢) = 0 if and only if
m/zt € (z — 1)M..
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Assume m/z¢ = (z — )n/z" with m # 0. Since we are assuming M is z-torsion
free, z'm = (z — 1)zn, where n =ny +ny + - - -n, and deg(n;) >deg(n,11). It follows
z'm=zny +znp + ---zng — (ny +ny + - - - ny), in the right zn; is of maximal degree
and n; of minimal degree, using the fact that M is z-torsion free we get a contradiction.

To prove that ¢ is surjective, consider an element n/z' 4+ (z — 1)M,, where n =
ny +ny + - - - ng and deg(n;) >deg(n;11) and consider the homogenization m of n given
by m=n=ny +z2n, + - - - zn;, where t; = deg(n)-deg(n;). It follows as above that
m+(z—1)M=n+ (z—1)M and o(m/z") =n/z' + (z — 1) M.. O

COROLLARY 4. A finitely generated graded B-module M is of z-torsion if and only if
M/(z-1) M = 0.

Proof. In the proof of the proposition we proved that if M is of z-torsion, then
M/(z-1) M = 0. As a consequence M/(z — )M = (M /t,(M))/(z — 1)(M/t,(M)) and
M/(z— )M = 0 implies (M /t.(M))/(z — 1)(M/t.(M)) = 0.

Assume N is a finitely generated graded z-torsion free B-module with
N/(z—1)N =0.

We saw in the proof of the proposition that if # is an homogeneous element of N,
then n € (z — 1)N implies n = 0.

Therefore, (M/t.(M))/(z — 1)(M/t,(M)) = M/(z— 1)M = 0 implies M /1.(M) =
0, and M is of z-torsion. O

As a consequence of the proposition we have (B.)r = B./(z — 1)B. as (B.)o-
modules.
We also have the following:

PROPOSITION 13. Let M be a finitely generated graded B-module, there is an
isomorphism of (B;)o-modules M /(z — )M = M. /(z — 1)M..

Proof. We may assume M is z-torsion free.
We have a commutative diagram:

M 5 M. 5 M.z - 1M,
N /
q M/(z—- 1M v
It is clear that kernj O (z — 1)M. If m € kermj, thenm/1 = (z — I)w/z" and z‘m =
(z — Dw, and zm = m + (z — 1)h(z)m. Therefore, m € (z — 1)M and  is injective.
Let w/z +(z—1)M. be an element of M./(z—1)M.. As above, w/l =
z(w/z%) = w/z* + (z — 1)v/z". Therefore: y(w + (z — VM) = w/z* + (z — DM.. O

COROLLARY 5. Let 0— L — N — M —0 be an exact sequence of finitely generated
graded B-modules. Then applying the functor B/(z — 1)BQg- to the sequence we obtain
an exact sequence:

00— L/z—1)L—- N/z—1)N—> M/(z—1)M — 0.

Proof. The sequence 0 — L, — N, — M, — 0 is exact, hence in degree zero we
have an exact sequence: 0 —(L.)y —(N.)o — (M.); — 0 which is isomorphic to the
exact sequence: 0 > L/(z — 1)L - N/(z— )N - M/(z— 1)M — 0. Il
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We are interested in the subcategory of grp consisting of all finitely generated
graded left B-modules M such that its deshomogenization M /(z — 1)M is isomorphic
to a U-module in the category O. If we have an exact sequence of finitely generated
graded B-modules0— K —- L - M — N —0, then the sequence 0— K/(z — NK —
L/(z— 1)L —- M/(z—1)M — N/(z—1)N —0is exact. From this, it follows that the
category is abelian and has the same kernels and cokernels as in grg.

In the last part of the section, we characterize this category as the homogenized
version Opg of the category O.

3.1. Homogenized weight modules. This subsection will be dedicated to the study
of the homogenized weight modules over the homogenized enveloping algebra B of
$£(2,C). We will also study a homogenized version of Gelfand’s category O [4,25].

Let M be a graded B-module. For a given A € C, we consider the homogenized
weight space V; defined by V;, = {m € M | hm = Azm}.

We have the following:

LEMMA 5. For any graded B-module M the C-vector spacey_, . V. is a B-submodule
of M.

Proof. We claim that given me V; and an integer k > 0, ém € V;_ 5, that ffm €
Vieok, Hm € Vy and zKm € V.

We only prove the first claim, the others are similar.

We have proved above he* = e5h 4 2kez. Hence, (h — pz)ek = & (h — (u — 2k)z).

Let i be u = A + 2k. Then, (h — (A 4 2k)z)e*m = &“(h — rz)m = 0 implies e“m e
Vit2k- O

We are interested in the case the sum is direct.

LEMMA 6. Let M be a graded z-torsion free B-module of the form M =", o V.

Then, M = @ V,.
reC

Proof. Assume 0 =m; +my+ -+ my; with m; € V5, and let h; be h; = (h —
)\.12)(}1 - )\22) ce (/’l — )\.l‘_lz)(h — )L,‘_HZ) ce (h - )\.kZ). Then, h,-mj =0ifi 75] and h,-mi =
1_[()\1 — )\_/)Zkilm,'.
i#]

It follows /’I,O =0= himl + h,'mg + -+ h,’l’}’lk = Hi;éj()"i — )\_/)Zkilm,‘. Since M is
z-tosion free m; = 0. OJ

DEFINITION 6. A homogenized weight B -module is a graded B-module of the

form M = @ V. When there is no risk of confusion we will say a weight B-module,
for short. *<¢

We also need the next lemma.

LEMMA 7. Let M, N be graded B-modules, where M is of the form M = erc Vy
and o:M — N is a surjective homomorphism of B-modules. Then, N =", .« W, with
W,={neN]|(h—-rz)n=0}

Proof. Let meV,. Then, ¢(h—xrz)m)=¢0)=0=(h—Arz)p(m) and
e(V3) C Wi.
Hence, o(M)=N =}, co(V) C > ;ccWi C Nimplies ), W, = N. O
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COROLLARY 6. Assume M = "V, and let t.(M) be the z-torsion part of M. Then
reC
M/ t.(M) is a weight B-module and M/ t.(M) = @& W, with W, = (V).
reC

Proof. We have a canonical epimorphism M — M/t,(M) — 0. By the lemma
M/t.(M) =3, .cW,.and by lemma 6, the sum is direct.
We know ¢(V;)C W;. Let we W,. Then, w = ¢(v;) + ¢(v2) + - - - @(v) with
V; € V)L,,.
k k
Hence, [[(h — Aiz)w = [](A — A;)zw = 0 implies A = A; for some i. Therefore, 0 =

i=1 i=1
o)+ @(v2) + - - (v;) — w + @(vit1) + - - - @(vg) and the fact that the sum is direct
implies ¢(v;) = 0 for i # jand w € ¢(V)). 0

We have the following homogenized version of a result in [25].

PROPOSITION 14. Let M be a graded B-module of the form M = Y_ Vi, N a graded
reC
submodule of M and W = {n € N | (h — Az)n = 0}. Then N/Y_ W, is of z-torsion.
reC

Proof. Let n be an element in N. Then n = my + my + - - - my with m; € V3,
As above h,‘ = (/’l — )\.IZ)(h — )LzZ) . (h — )\.[_IZ)(h — )x,‘_HZ) - (/’l — )\.kz). Then
hin = hyjm; = H()\,’ — )\.]‘)Zk_lml‘ e NN VM = W)Ll..
i#f
It follows z"'n € 3, . Wi.
We have proved N/, o W, is of z-torsion. O

We will consider the subcategory C of the category Grp of graded B-modules
defined as follows:
A module M is in C if and only if M/¢.(M) contains a homogeneous weight
submodule EB@ V, such that the cokernel of the inclusion map: j : EBC Vi, — M/t,(M)
re re

is of z-torsion.
Informally it means M can be “approximated” by a homogeneous weight module,
or that up to z-torsion M is a weight module.

DEerINITION 7. We will call C the category of generalized homogeneous weight
modules, or just the generalized weight modules.

We have the following:

PROPOSITION 15.
(i) Every submodule of a generalized weight module is a generalized weight module.
(ii) Each quotient of a generalized weight module is a generalized weight module.
(iii) A sum of two generalized weight modules is a generalized weight module.
(iv) If M, N are two B-modules, then M @c(;) N has structure of B-module and if both
M, N are generalized weight B-modules, then M ®cp;) N is a generalized weight
B-module.

Proof.
(i) If N is a submodule of M, then ¢.(M) N N = t.(N).
By hypothesis, there is an exact sequence 0 — 69 Vi, —> M/t,(M) - X — 0,

with X of z-torsion. Letting W be W = EB Vs ﬂ (N /t:(N)), we have an exact
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commutative diagram:

0 0 0
\ \ \:

0— w — @CVA - L' =0

re

\: \ \:

0—- N/t.N) - M/t. (M) - L —0-
\: \ \

0— X’ — X - X' =0
\’ | \
0 0 0

ere, X of z-torsion implies X’ is of z-torsion.
Here, X of z-t lies X' is of z-t

Since W iscontained in @ V), and itis z-torsion free, Lemma 6, and Proposition
reC
13imply Y = W/ & W, is of z-torsion .
reC

We have an exact commutative diagram:

0
\
0 0 Y
\ \ \
0— GBCWA — N/t.(N) - Y —0
re
\ \ \ ’
0— w —- N/t.(N) - X' -0
s \: s
0— Y 0 0
\
0

where Y and X’ are of z-torsion. Therefore, Y’ is of z-torsion.
(if) Let M be a generalized weight module and f: M — N an epimorphism. Then,
we have the following commutative exact diagram:

0 0 0
\: \A |

0—- (L) — t.(M) — N =0
I ! !

0— L — M — N -0
\ | |

0—- L/t.(L) - M/t..(M) — N/N —0
\: \A A
0 0 0

The module N’ is of z-torsion, hence N’ Ct.(N) and there is an epimorphism
N/N' — N/t.(N) — 0. It follows that there is an epimorphism: M/r.(M) >
N/t.(N) = 0.

By hypothesis M/t.(M) has weight submodule @ ¥ such the cokernel of the
reC

inclusion is of z-torsion.
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Bylemma 6, 7(&® V;) = EB W, is a weight submodule of N/z.(N) and we have
eC
an exact commﬁtatwe dlagram

0—- &V, —»> M/tM) - X —0
reC

\ \ i
0— GBCWA —- N/t.(N) - X' —0,
re
Il Il '
0 0 0

and X of z-torsion implies X" is of z-torsion.
(iii) Let M, N be B-modules in C . Then, there exists exact sequences

0> @V, >M/'t.M)—> X —>0,0—> @& W, > N/t,(N)—» Y -0, with
reC reC
X, Y of z-torsion.

Then the sequence:
0—>(eVi® & W) —> M/t:2(IM)®N/t:(N))> X &Y -0
reC reC

is exact with X @ Y of z-torsion (69 V., ® EB w,) = EB (V O W), , t.(M)®
t.(N) = t.(M & N), where V = @ Vk,and W &) WA

reC
Therefore, M & N € C.
O

To prove part (iv) of the proposition we need some preliminary results.

Since zis in the center Bis a C[z]-algebra and the inclusion C[z] — Bisa morphism
of graded C-algebras.

From the existence of a Poincare-Birkof-Witt basis of B, it follows B is a free
Clz]-module.

Let M, N be two left B-modules. Using the Poincare-Birkof—-Witt basis we want
to define a B-module structure on M ®cp N.

Let ¢ be an element of {e, f, 1} and define ¢;:M x N — M ®cp; N as the morphism
p(m,n)=(tm@n+mQ tn).

The map ¢, is bilinear and C[z]-balanced ¢,(m; + my, n) = (t(m; + my) @ n+
m+m)@m)=m Qn+tm @n+m Qm—+m Qtn) =({tm Qn+m; Qn)+
(tmy @ n+ my @ tn) = @,(my, n) + @ (ma, n).

Similarly, ¢,(m, n; + ny) = ¢,(m, ny) + ¢,(m, ny) and @,(m, zn) = (M QS zn + M
tzn) = (tzm @ n + zm Q tn), since z is in the center of B.

For t=z we define ¢,(m, n) = tm ® n = m ® tn, which is also bilinear an z-balanced.

Hence; ¢, induces a morphism ¢;: M Qcp;) N = M ¢y N given by ¢,(m @ n) =
mn+mmandp.(mOn) =zmOn=me zn.

We can see that this morphism induces the structure of B-module on M ®c[ N.

LEMMA 8. Given two left graded B-modules M, N the C[z]-module M Qcp;) N has
a structure of B-module.

Proof. We prove the equivalent statement that there is a representation

®:B — Endc(M ®c N).
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We define first a ring homomorphism ® : Cle, f, h, z >— Endc(M ®cpz N), as
follows: by the universal property it is enough to give the map in words w. Let w =
tity. ..t with #; € {e, f, h, z}. Then ®(m ® n) = ¢, @y, . . . ¢, (M @ n).

To give the map ®: B —Endc(M ®cp; N) it is enough to check that the defining
relations of B are in the kernel of ®.

We check it for the relation Af — fh + 2fz and the rest is left to the reader.

hfo@w)=h(frew+vRfw) =hfrQw+fvhw+h fw+vhfw

fhv@w)=fhv@w+ v hw)=flhv@w+hvQ fw+ fv® hw + v ® fhw
2z @ w) =2zfv Qw + v R fw) =2v @ w+ v ® 2z7fw

Hence, (hf =fh+2f2)wv@w)=(f—fh+2f)V)@w+v& (S —fh+
2fz)(w) = 0. U

LEMMA 9. Let M be a z-torsion free graded B-module. Then M is torsion free as
Clz]-module.

Proof. Let m be a non-zero element of M and ¢ € C[z], ¢ # 0, with gm = 0. Since
g isnon-constant ¢ = (z — A1)(z — A2) ... (2 — Ap).

m # Oimplies thereisaninteger 1 < i < nsuchthat(z —1;)...(z—A,)m=m #0
and (z — A;_)m’ = 0.

Changing m for m’ and A for A;, m # 0 and (z — A)m = 0.

Since M is graded m has a decomposition in homogeneous components: m =
my + my + - - - my with degree(m;) >degree(n; ).

0= —AMm=zmy +zmy+ ---zmy — Amy; — Amy ... — Ay and zmy # 0 and it
is of maximal degree, since it does not cancel with any other term in the sum, a
contradiction. U

COROLLARY 7. Let M be graded z-torsion free B-module. Then M is flat as C[z]-
module.

Proof. The module M is a direct limit of finitely generated torsion free modules.
In a principal ideal domain a finitely generated torsion free module is free [17] , hence
M 1is a direct limit of flat modules, then flat. O

PROPOSITION 16. Let M and N be graded B-modules, X and Y submodules
of M and N, respectively, such that M/X and N/Y are z-torsion free. Then,
there are monomorphisms: X ®ciqg N — M ®cg N and M ¢ Y — M ®c N such
that X®C[z] Y= X®C[z] NN M®C[z] Y and M®C[z] N/(X ®@[Z] N + M®C[z] Y) =
(M/X)®cp(N/ Y ).

Proof. Since M/X and N/Y are flat as C[z]-modules, Tor?[z](-,N /Y)=0 and
Torqf[Z](M /X,-)=0, there is an exact commutative diagram

0 0 0
\ | A

00— X®@[Z]Y — X®@[Z]N — X®@[Z]N/Y — 0
' I I

0— M®C[z]Y — M®@[2]N — M®@[Z] N/Y -0,
\ \ A

0— M/X(X)@[Z]Y M/X(X)C[Z]N M/X(X)C[Z]N/Y -0
| \ 2
0 0 0
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which implies XQc Y=EX®cy ) NN M@ Y and M Q7 N/(X [z N)
= M/X ®cia N, M/ X Qcpy N/(M/X@q:[z] Y)= M/X QcqN/Y.
Hence, we have the following chain of isomorphisms:

(M ®cp N)/ (X ®cj) N+M Q¢ ¥)
= (M Q¢ N/X Qe N)/ (X Q¢ N+M Qcpy Y)/ (X Qcpz N))
= (M/X Q¢ N)/ (M Qcp Y)/ X ®cpg Y))

= (M/X Qcy N)/(M/X Q¢ Y)=M/X Qc N/ Y.

We will also need the following:

PROPOSITION 17. Let M, N be graded z-torsion free B-modules. Then, M ®cjz N is
z-torsion free.

Proof. Let Zlemi ® n; be a non-zero element of M ®c[-; N and £ >0 such that
z¢ Zf;lmi ® n; = 0. We may assume m1;, n; are homogeneous.

Zk([:[z]n,- is a finitely generated z-torsion free submodule of N, hence it is a free
Clz]-module.

k
Let (p:é@[z]—> > Clzln; be an isomorphism and e¢; =(0,0...0,1,0...0) the
j=1

t
canonical basis of & C[z].
j=1
The morphism ¢ induces an isomorphism:

t k
1®§0M ®C[Z] @IC[Z] —- M ®C[z] ZC[Z]ni-
J= i=1

Since M is a flat C[z]-module, the inclusion j:ZleC[z]ni — N induces a
monomorphism 1&®j:M ®cpy Y Clzln; - M &ci N.

We have ¢~ !(n)) = Y"1, c;je; with ¢;; € C[z].

Then (1 ®/)(1 ® ¢)(Li m@(T i cije) = Limi@n;

Yim® (Zk;:lcijei) = Y Y mic®c;. .

Then  z) ) m@n,=0=z(10)(1 @)L m® (i cje) lQj a
monomorphism implies Y z(3""_ m;c;)®e; = 0. Hence; z(Y"_ m;c;;) = 0, and
M z-torsion free implies _;_ m;c;; = 0.

Therefore, Y% m;@n,=(18))(10¢)(X ., > mic;;®e) = 0.

We have proved M ®cp;) N is z-torsion free. g

Applying the previous results we get:

LEMMA 10. Let M and N be graded B-modules and denote by t,(-) the radical
corresponding to z- torsion. Then, t.(M ®c N)=t-(M)®cqN + M®c[7t-(N ).

Proof. Since N/t.(N) and M/t.(M) are flat C[z]-modules, the exact sequences:

0—- tM) > M —- M/t (M) —0,
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0— t.N) - N — N/t.(N) —0.

Induce by tensoring exact sequences:

0— t.,(M) Qcyz] N—-> M Qclz] N — M/IZ(M) Qc[z] N — 0,

0—- M Qcrz] t.(N) > M Qcyz] N—-> M Qc[z] N/IZ(N) — 0.

Since t.(M)Qc N, MQc[qt-(N) are z-torsion modules, t.(M)®c N+
MQqcpt-(N) is a z-torsion submodule of M ®cp;) N, hence it is contained in
t.(M ®cpz N).

In the other hand,

M ®cp) N/(t:(M) Qcpzy N + M @cp) t:(N)) = (M /t.(M)) Qcpz) (N/t(N)).

By Proposition 17, (M/t.(M))®cj;(N/t.(N)) is z-torsion free.
It follows, t.(M ®cp N)=t-(M)®cgN + M Qc[t-(N). ]

After these results, we can finally prove:

Claim 1. Let M and N be generalized weight B-modules. Then M ®cjj N is a
generalized weight B-modules.

Proof. By hypothesis, we have exact sequences:
00— ®&V,—>M/t.(M) > Z— 0,
reC
00— &W, > N/t.(N) > R - 0,
reC

with Z, R, z-torsion modules.
Since &V, & W, M/t.(M), N/t.,(N) are flat C[z]-modules, we have the
reC reC

following commutative exact diagram:

0 0 0
\ \ \
0= ®ViQcyg W, - M/tM)®cg Wy, — ZQcy ®W,—0
reC reC reC reC
\ \ \
0— @V,Qcy ®W, — M/t:(M) ®cy N/t:(N) — L—>0
reC reC
\ \ \
0 — M/t.(M) ®cjg R — M/t:(M) &z R — 0
\ \
0 0

Since Z Qcy AGEBC W) and M /t.(M)®c7 R are of z-torsion, L is of z-torsion.

Letting V' and W be the weight spaces V' = @& V, and W = & W, we only need
to prove that V' ®c W = )\EEB@(V ®crz1 W = <

We will actually prove (V ®c;) W), = k:?w V. ®cg Wo-
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We have a decomposition as C[z]-module: V ®&cy W= & V, ®cq Ws.
n,oeC

Let v be an element of (V ®cp;) W),.Then, v =vi+vy + - - v with v; € V), ¢y
W,., thisis: v; = Z}’:]vj(-') ® W}l) , V;l) eV, and wj(-l) e W,,.

1; . . t; . .
Using the structure of V ®¢p;) W as B-module, hv; = (Zhv}”@w}’) + ZV}”@hwj’))
j=1 i=1

. . . . ti . .
= Z(Z]{[:I/\,Livj('l)(gwj(}) + Z]’,’zlvj(]) ® O’jW](,l)) — (Mi + Uj)ZZ;VEI)@W](l) — (/,Ll- —+ O']-)ZV,'.
I:

Hence, hv=hv,+hvy + - - hvog = 2((1e1 + 01)v1 + (w2 + 02)va + - - - (i + o)vg) =
Azv = z(Avy + Avy + - - - Awg).
Therefore, z(A — (u; + 03))vi =0, V Qcp;) W is z-torsion free. It follows A = p; +
gj.
We have proved (V @cp; W C @V, Qcig Wo.
A=p+o

Now, let ve V), and we W, withA = pu +o.

Then, h(v@w) =(hv@w+v®hw) = (u +0)z(vR W) = 1z(vQ W).

Then, v w e (V ®crz Wi

We have proved (V Qcp;) W), = . i9+0 Vi ®cia Wo. O

DEFINITION 8. The homogenized category Op is the subcategory of the category
of generalized weight B-modules C satisfying the following two conditions:

(/) The module M in Op is finitely generated.
(ii) For all ve M /t.(M), dimCle]Jv< oco.

We will see below that the homogenized Verma modules form a subcategory
of OB.

THEOREM 5. The category Op is closed under submodules, quotients and finite direct
sums. In particular it is an abelian Krull-Schmidt category.

Proof. By proposition 15 we only need to prove that condition (ii) is satisfied by
submodules and quotients.

If N and M are finitely generated graded B-modules and N is a submodule of M,
then N/t.(N) is a submodule of M/t.(M) it is clear that N/t.(N) satisfies condition
(i1)) whenever M/t (M) does.

Assume there is an epimorphism 7:M — N. Then, kerrNt,(M)=t.(kerr) implies
there is an epimorphism M /t,(M)— N/n(t.(M))—0 and 7 (t.(M))Ct.(N). Therefore,
there is an epimorphism N/m(t,(M))— N/t,(N) and, hence an epimorphism
M/t.(M)— N/t,(N)—0. It is clear that N/t.(N) satisfies condition (ii) whenever
M/ t.(M) does. Il

REMARK 1. Since Bis a Koszul algebra of finite global dimension, for a given finitely
generated B-module M there is a truncation M ;[k] which is Koszul in particular if M
is in Op the Koszul module M5;[k] is in Op.
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Moreover, there is a commutative exact diagram:

0 0 0
\ \ \

0— t-(Ms) — t.(M) — X —- 0
\ \ |

0— My — M - M/Ms — 0,
\ \ i

0—> Moy/t.(Msy) — M/t.(M) — Y -0
\ \ \
0 0 0

with both X, Y finite dimensional C-vector spaces.
PROPOSITION 18. Every homogenized Verma module V(1) is in Op.

Proof. We proved above that the graded B-module /(1) is defined as V' (L)= B/(Be+
B(h-1z)) and that as C-module it decomposes V' (A)= Bk»o(B =k CF 7).

An element b of V(1) has a decomposition in homogeneous components: b=b;, +
b, + - - b; with b; homogeneous of degree m;.

We have: (h-pz) b=0=(h-pz)b;, +(h-j1z)b;, + - - - (h — uz)b;, if and only if for all j,

(/’l-,lLZ)b,‘j =0. A
We may assume b is homogeneous of degree k. Then, b=}, ._,c;f'7, with
Cij eC.

(h-pu2)ft = hfi-pzf! = h-2if z-pzf! = fi(h-Qi+p)z).

It follows (h — pz)f" = 0in V(1) if and only if A = 2i + pu.

Therefore, (h — (A — 2i)2)f'Z =0 foralli, j,i+j=k.

Since V(1) is z-torsion free it follows V(1) = @50 Vi —2; s a weight module.

By induction we have the following equality: ef” =" ¢ + n "'z (h- Az) +
n(A—(n—1)) 122,

Hence, ef” + (Be + B(h—iz)) = n(A—(n—1))f""12? + (Be + B(h—Az)).

By induction we have for k<n, e¥ {" + (Be + B( h—12))=n(n-1). . . (n-(k-1)) (A-(n-1))
(A-(1-2)). . . (A-(n-k)) "% 2% 4-(Be +B (h—12)).

In particular for k=n, e" ' +(Be +B(h—Az))= nl(A-(n—1))(A—(n—2))...(r—1)
rz¥+(Be+B(h—A1z)).

Therefore, "+!'f* = 0in V(}).

It follows that for any element 'z of V' (1), e’z = 0.

From this it follows V(1) is in Og. ]

3.2. Homogeneous weight modules and the category Op. In this subsection, we
continue the study of weight B-modules, and concentrate in those that are z-torsion
free and belong to the category Op. For the full subcategory of Op containing such
modules we define a duality.

Let V =@®,ccVy be a graded weight B-module. Then, V' decomposes in
homogeneous components as V' = ®;czV;. We compare both decompositions. Let
ve V, and v =v;, +v;, +---v; be a decomposition in homogeneous components
vij € Vi withiy <iy <... <ig.

(h—r2)v =0 = (h— Az)v;, + (h — Az)v, + - - (h — Az)v;, and (h=rz)vij € Vi
implies (h—Az)v;; = 0 for 1<j<k.and v;; € V;; N V.

We have > .V, N V; C V, C Y, Vi NV, therefore: @iz Vi N Vi = V.
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For the other decomposition >V, N V; C V.

)
Let v be an element of ¥, and take its decomposition v =v| + vy + - - - v, with
vielV, = Djez Vi N V

Then each v; = Z le "and w ) e Vi, N V; and degree(w; ’)) =]

We write v as v=Y"_, Y lw(') Zj=12i=l j(’). It follows Y% | wﬁi) is
homogeneous of degree j . ‘
Since v is homogeneous of degree ¢ the element Z, ! (’) =0 for j# ¢, and

v=Y" wwithw! e v, NV,

We proved V, C era: V, NV, It follows V, = @;,ec Vi, N V.

Then V = DreC Diz0 (VA N Vl)

As a consequence we have, Vok = ®isk Vi = ®isk(Brec(Va N
Vi))= @rec(@izk(Vo. N V) and (Vi) = @i=k (Vi N V).

It follows Vi = @sec(V>i)a, thisis, any truncation of a weight module is a weight
module.

We have actually proved:

THEOREM 6. Let V = ®,ccVi be a graded weight B-module. Then there is a
truncation Vs which is Koszul and V. is a weight module.

COROLLARY 8. Let M be a finitely generated generalized weight B-module. Then,
there exists a weight submodule V = ®,cc V. of M/t.(M) such that for some integer k,
V[k] is Koszul and (M /t.(M))/V is of z-torsion.

Proof. By definition, there is an exact sequence: 0— GB W, - M/t.(M)— R —0

with R of z-torsion. Since M/t.(M) is finitely generated and B-noetherian, W =

@ W, is finitely generated and there is a truncation V' = W5, with V[k] Koszul and
reC

V = & V, a weight module,
reC

We have an exact commutative diagram,

- M/t.(M) —

1y
- M/t.(M) —

S W X N o
)
o

o
+
O N« I« N« o

with L a finite dimensional C-vector space and R of z-torsion.
Therefore: X is of z-torsion. g

THEOREM 7. Let V = EB Vibe a z-torsion free weight module and assume V' is in the

category Op. Then, for each k e C, V, is a finitely generated C[z [-module, in particular
each V; is a free C[z J]-module of finite rank.
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Proof. We have proved the following equalities: se" =e"h + 2ne"z and Af" ={"h-
2nf"z.

By hypothesis V' is a finitely generated B-module and for each ve V' there is a
positive integer £ such that e‘v = 0.

We have decompositions V' = @ V;in homogeneous componentsand V' = & Vj,

izko reC
decomposes in weight spacesand V= & & V, N V.
reC l’Zk()
Hence, we can assume V is generated by homogeneous elements v;,,v;,, ... V; of
degree v;, = i; and (h—4;z)v;, = 0.
For each j there is an ¢; such that e“v; = 0, then for £ =max{¢;}, e‘v; = 0 for
all j.

Let v be an element of V. Then, v = Wy, +Wi,+1 + - - - Wi, +n 1S @ decomposition
in homogeneous components Wi, 4; € Vi, N Vi

We write Wi, ; = Z/ 1byvi, with b, = > c\,,,mfY "hW'z" and c\ ram € C.

S+r+nt+m=t—i;
Then, Wi+, = Z, DD i csrn mf’e"h'Z"v; .

Hence each wy, 4, 1s a linear combination of the vectors{ f’e"/"z"v; } and changing
for a smaller set if necessary we my assume they are linearly independent and wy, ., is
still a linear combination of such vectors.

We have h"v; = ATE hence wy,+/ = ZJ D i )\”c3 ramf’€Z";

From the equah'ues (h—Az)fe" = (h-(A+2(s — 1))z) and (h (A+ 2(s- r))z)v,} =
(A= (A+2(s-1)))zv;, it follows:

k

0=(h—A2)Wipr =2 Y (y(A+2(s- r)))k”cé ramf’eZ";

j=1 str+nt+m=t—i;

Since V is z-torsion free Z 1D srt et iy (= (A+2(s- r))))»"cwnmf“e 2"y, = 0.
By the hypothesis that they are linearly independent A; = A+2(s r)andv; € VHZ(S_,)
Therefore, f¢"v; € V; with 0<r< ¢-1, s>0.

If f'¢"v; is another element of V;, then A; = A+2(s'-r’). It follows s’ = s+1'-r with
0<r < ¢-1and e” Vi, = f‘*”*"e”v,-j. For any pair of fixed elements (s,r), 0<r< £-1, s>0
, there are only a finite number of elements of the form "+ "¢ ,V = F’e/v,, in V.

This implies wy,+; is a polynomial combination kaH 2 A(@)s.rife"v;,
with ¢(2)s,..;; € Clz].

It follows V; is a finitely generated C[z]-module and V torsion free implies V; is a
free C[z]-module of finite rank. O

Let M be an object in Op. Then, there is a weight B-module V' and an exact
sequence:

0> vV 5 M/ 5 R o,
with R of z-torsion, which induces an exact sequence:
0= Vi & (M/t(M), 5 p(M/L(M),) —0
with p((M/t,(M)),)a C[z]-submodule of R, hence of z-torsion. There is an integer k>0
such that Z“p((M/ t.(M),))=0.1t follows Z*(M /t.(M)),)C V5.

But (M/t.(M)), z-torsion free, implies the map given by multiplication
(M /1. (M)),, —Z(M/t.(M)); is an isomorphism and there is a monomorphism
ZK:(M/t.(M)),, — V,, hence, (M/t.(M)), is a finitely generated torsion free C[z]-
module. We have proved the first part of the following:
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PROPOSITION 19. Let M be an object in Op. Then,
(i) For any A € C the Clz]-module (M/t.(M)), is either zero or it is a free C[z]-
module of finite rank.
(i) There is a C[z]-module decomposition M, =t,(M,)®M,/t.(M;,) where
M, /t. (M, ) is either zero or it is a free C[z J-module of finite rank.

Proof. (11) We have the following commutative exact diagram:

0 0 0
I v V

0— tM), — M, — pM) —0,
Vo I

0> tM - M 5 M/M) -0
where p(M,;)C(M/t,(M)),. It is clear that t,(M,)= M,Nt.(M) =t.(M),. Therefore:
p(M;)= M, /t.(M;)
By the first part, (M/t.(M)), is either zero or a free C[z]-module of finite rank. In
the first case, p(M;)= M, /t.,(M,)=0 and the decomposition holds.
In the second case, p(M; )= M, /t.(M,) is a free C[z]-module of finite rank and we
have again the decomposition M, =t.(M,)®M,; /t.(M,). O

Assume now M € Ogp is z-torsion free. By hypothesis there is a weight submodule

V and an exact sequence: 0— V' — M — R —0with V= & V; and R of z -torsion.
reC
Since V;, C M; implies Y V5 C Y M, and M z-torsion free implies > M, = & M,.
) ) reC reC reC reC
There is an epimorphism: M/V — M/( & M,;)—0 and M/( & M,) is also of z-
reC reC

torsion. Hence, @ M, is another weight module approximating M and we may assume
reC

V = @ M, where each M, is either zero or a free C[z]-module of finite rank.
reC

We saw that forme M;,ekme M, o, *'m € M;_o,h¥m € M;,72"m € M;. Let M}
be M5 =Homc(M,, Clz]) and define (@ M,)* = @ Homcj(M,, Clz]))= & M;.
reC reC reC

Given amap ¢ =(0,0. .. ¢5,,¢1,, - .- 92,0,0, ... .)€ GBC(MX)*'
re

We define e¥¢ =(0,0,..¢5p;, .5 ¢y,, ... %0, 0,0, ....), where e“g) :M;, o — C[Z]
given by e, (m)= g, (¢"m).

Similarly f*¢ = (0,0,..f¢; @y, .. . 5¢;0,0,. .. .), with ¢, :M; o — C[z] given
by s, (m)= ¢, (f‘m).

h*p =(0,0,..h%p;, ,hkg;,, ... 0¥, 0,0, ....), with hkg, :M; — C[z] given by
hk(p)»i(m): (p)»i(hkm)'

o =(0,0,..25 ¢, ,Z* s, .. Z9:,0,0, ....), with ZzXg,:M; — C[z] given by
g, (m)= g, (Zm).

With these operations ( @ M;)* becomes a B-module.

reC
We claim ( @ M;)* is a weight B-module with weight space (@ M,);, =(M,)*
reC reC

Given a map ¢:M, — C[z], (h—pz)p(m)=¢((h—uz)m)=0, hence
(M) C(chx),’i.

Therefore, Y (M,)* C Y ( @CM,\)Z ( EBCM)\)*.
s re

reC pneC A€
By definition ) (M,)* =( @ M,)*. Therefore, ) ( @ M,); =( & M,)".
ueC reC ueC reC reC
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Each M; 0 is free of finite rank, hence (M, )* is free of finite rank and ( & M, )*
reC

is a free C[z]-module, hence z-torsion free.

It follows Y (@& M,);, = @ (& M,);.
neC re neC reC
We have proved ( & M)"is a weight space with ( ® M;)™ = & M;.
reC reC reC

We have proved the following:

THEOREM 8. Let Wy be the full subcategory of Op consisting of the z-torsion free
weight B-modules. Then there is a duality (—)* : Wp — Wg given by: (AEBCMA)* =
€

® (M, )", where ( ® M, )y, =(M,)" and & ( ® M;)}, =( & M;)".
reC reC neC reC reC

We end the section with the following.

PROPOSITION 20. Let M be a finitely generated graded B-module. Then M € Op if
and only if its deshomogenization M/ (z-1)M is in O.

Proof. If M is in Og, then it is a generalized weight module, this means that there

is an exact sequence 0— V — M/t.(M), where V= & V; and V3 ={me V |hm=
reC

Azm}. It is clear that V; is a C[z]-module and V, /(z—1) V,, = {m € V/(z-1) V |hm =
am}is a weight U-module. Tt is also clear that V/(z-1) V = M/(z-1)M .
If ve M/t.(M) has dimC[e]v finite, then vV € M/(z-1)M has dimCle]v finite.
Let’s assume that M/(z-1)M € O. We know that if M/t.(M)= N, then N/(z-1)
N = M/(z-1)M is a weight module N/(z-1)N = @C(N/(z-l)N),\ .
re

Let N, be the C[z]-submodule of N, N ={ne N |(h—Arz)n=0} and 7:N —
N/(z-1)N is the natural projection, then for ne N, (h—A)n + A(z—1)n = (h—Az)n implies
w(n)e(N/(z—1)N);.

Given an element n+(z-1) N of (N/(z-1)N),, we decompose n in its
homogeneous components n=n;+n, + - - - ng, with deg(n;) >deg(i;+1) and t; =deg(n)-
deg(n;). Hence, m=n;+z"n, + - - - z'niis an homogeneous element of N with 7 (m)=
7 (n).

(h—xz)m+(z-1) N = (h—X)n+(z-1) N. Therefore, (h—Az)me(z-1) N and, as above,
(h—Az)m homogeneous implies (h—Az)m=0. We have proved that 7 induces an exact
sequence: 0—kerm NN, — N, —(N/(z-1)N);, =0, where (z-1) N, Ckerrm. Hence,
there is an epimorphism: N, /(z-1) N, —(N/(z-1) N); —0.

Since N is z-torsion free there is an exact sequence: 0— @ N, - N — K —0
reC

which induces an exact sequence: 0— @CN,\/ (z-1)N;, — @C(N /(z—1DN), — K/(z-
re rE
K —0.

It follows K/(z-1)K =0, and by Corollary 4, K is of z-torsion and M is a
generalized weight module.

Let v € N/(z-1)N be such that dimCl[e]v < oo, this is equivalent to say that there
is a polynomial f(e) in e such that f(e)v = 0, by [25] page 136, there is an integer k such
that ev = 0.

As above, we may assume v homogeneous, therefore e v an homogeneous element
in (z-1) N implies e* v=0.

We have proved dimCJe]v is finite. ]

We obtain as a corollary the following:
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THEOREM 9. The full subcategory (Og). of modp._ consisting of all modules M such
that M is a module in Og and the category O are equivalent.

Proof. By Proposition 3 any finitely generated B.-module is of the form M,
with M a finitely generated B-module. We proved in Proposition 13 that there is an
isomorphism of (Bz)y-modules M /(z-1)M = M./(z-1)M which in turn by Proposition
12, isomorphic to the degree zero part of M.. Since (Bz)y = U, by the previous
proposition, the equivalence res:grp. — mody induces an equivalence of categories
(0p). = 0. g

Let V= @ V) with V, ={ve V |[(h—Xz)v=0} be a weight B-module and assume
reC

V, #0. Then, for ve V; eve V,_s, fve V,42, hve V;, define £ by £ = A+2Z. Then, V¢
= @ V, is a submodule of ¥, moreover V decomposesas V' = & V*.
neE £eC/27
LeEMMA 11. Consider the homogeneous Casimir element C of B, defined as C=
(h+z)>+4fe. Then, C is an element of the center of B.

Proof. hC=h(h+z)*+4hfe=(h+z)>h+4(fh-2fz)e=(h+z)*h+4f(eh+2ez-2ez)=
k((h+z)*+4fe)h=Ch.

In a similar way, we check eC=Ce and fC=Cf, C commutes with the generators
then C commutes with any element of B. O

Let M be a finitely generated graded z-torsion free B-module. Then, M, ={me
M |(h—xz)m=0} is a C[z]-module, and (z-1) M, is a submodule of M.
We claim (z-1) M, =((z-1) M), It is clear (z-1) M, C((z-1) M);.

Let (z-1)m be an element of ((z-1) M),. Then, (h—Az)(z-1)m=(z-1)(h—1z)m=0.
Then, n=(h—X\z)m n#0 decomposes in homogeneous components n=n;+ny + - - - 1
with deg(n;) >deg(n;1) and (z-1)(n;+ny + - - - ng) =zny+zny + - - - zng -ny-np-. . . -ng = 0
where deg(zn;)>deg(n;) for all i and deg(zn;)>deg(zn;) for i#1. It follows zn; = 0, but
this is contradicts the assumption M is z-torsion free. Therefore, me M,.

Given 1 € C, define M, (r)={me M, |there is k>0 with (C-z>t)*m=0}.

M, (7) is a C[z]-submodule of M.

Since C is in the center of B then C M, C M, and C(z-1) M, C(z-1)M;.

For any integer k>0 and t € C, we have an exact commutative diagram:

0—- ()M, — M, - M,/(z-)M; —0

| (C2) L (Cr2) | (G
0> (DM, — M, ~ M /DM, —0

Assume M is in Op. Then, the des homogenized module M/(z-1)M is in
O and by [25 pag 137] M, /(z-1)M, =(M/(z-1) M), has finite dimension as C-
vector space. Then, it has a Jordan form decomposition (M/(z-1) M), = @C

TE

(M/(z-1) M); (7).

Denote by M, (7); the kernel of (C—7z%)*. Then by the snake lemma we have an
exact sequence: 0— (z-1)M; (t)x — M. () = (M(z-1)M); (7))x.

We want to prove that i is an epimorphism. Let m € M, be such that 7 (m)e (M(z-

1)M),(1))x. As above, we may choose m homogeneous. (C-1z2) (7 (m))=0 implies there
is ne(z-1)M,, such that (C—72z2)*(m)=n. Since we are assuming m homogeneous, n is
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homogeneous, then n should be zero, and me M, (1) . If k< £, then M, (t)r C M, (1),
and M, (t)= kaM 5(7)r. We have proved that the sequence:

0 — (z-)M, (1) - M,(1) > (M/(z — 1)M), (1)) = 0
is exact and it induces the exact commutative diagram:

0— (z-1)( QEBCM,\(I)) — GGBCM,\(r) — ?C(M/(Z_l)M)'\(T)) -0

Lu bv Lo
0— (Z-l)M)\ — MA — M)L/(Z-I)M)\ — 0

where the vertical maps u,v, o are the maps induced by the inclusion and the last
column o is an isomorphism, since M/(z-1)M is in O.
Restricting to the images of, u,v, o, we have an exact sequence:

0— (z-l)X(]::Mx(t) — Z@ Mi(t) > TEEBC(M(Z — M), (t)) = 0

Since M is graded B-module, it is also graded as C[z]-module. and ) M,(t) is a
teC
graded z-torsion free C[z]-module. We prove now that the sum is direct.

Assume my+mj + - --nmy, = 0 with m; € M, (z;) and decompose each m; in its
homogeneous components: m;= ) ‘m;;. Then, for each j, mj+my; + - --my; = 0 and
J

7 (my;)+7(my;) + - - - 7w (my;)=0.

But in M,/(z-1)M, the sum is direct. Therefore, m(m;;)=0 and m;;
(z-1)M,.. By the argument used above, m;; = 0, for all i, j. It follows each m; = 0.

We have proved there is an exact commutative diagram:

0 0 0
! ! V

0— (z-1) @C M,(tr)) — @CM,\(I) — @C(M/(Z-I)M))L(‘L')) -0
lu lv lo

0— (z-)M,;, — M, — M, /(z-1)M,, -0 -
2 2 \!

0— K* — K* — 0
\: \2
0 0

Applying the functor B/(z-1)B® - to the exact sequence:

0—> @ M (t)—> M, - K* =0,
teC

we obtain the exact sequence:

0— EEBC(M/(Z—I)M)A(r)) 5 M, /(z— 1M, — 0.

Therefore, K*/(z — 1)K* = 0, and by Corollary 4, K* is of z-torsion.
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Adding over all A, we get an exact sequence:

0> & @& My(t)> &M, - &K - 0.
reC reC reC reC

Then, M = @& M, is a weight module and K = @ K*is a module of z-torsion.

reC reC
Interchanging sums we have an exact sequence:

0— ®&(® M(r)) > M - K— 0,
teC reC

where @ M, () is a submodule of M.
reC

We showed in Section 2 that the usual category O has a decomposition in blocks
O = @ %57 and in Theorem 4 we gave the structure of the blocks.

t£eC/2z
teC .
It follows by the above remarks that the homogenized category Op decomposes
as a union of subcategories Op = U O%’T, where M € Oi’r if and only if, its des

£eC/27
7eC

homogenization M/(z — 1)M € O%7. We call to the categories O%Tthe blocks of Op.
The categories (’)EB’Tare abelian and it is clear that if AM and N are in different
blocks, any map ¢: M — N factors through a module of z-torsion.
By definition, each block O%T of Op contains the full subcategory of grp of all
B-modules of z-torsion, in particular, it contains the finite dimensional B-modules.

By Theorem 9, (Op). is equivalent to O and (Op). = [] (O%T)Z, where each
£eC/2z
teC

(O%7). is equivalent to O,

4. The categories (O3p)., Q(Op), O. We start recalling the construction of the
categories of “tails" QGrpg and Qgrp.
Let M be a graded B-module, (M) = ) L,and J = {L | L € M dimyL < oo}.

LeJ

Claim: t(M/t(M)) = 0.

Let N be a finitely generated sub module of M such that N + ¢((M)/t(M) = N/N N
t(M) is finite dimensional over k. Since B, is noetherian N N #(M) is a finitely generated
submodule of #(M), hence of finite dimension over k. It follows N is finite dimensional,
so N C t(M).

Let N be an arbitrary sub module of M, with N + #(M)/t(M) finite dimensional
over k, then N =Y N;, with N; finitely generated, each N; + t(M)/«(M) is finite
dimensional, therefore N; C #(M). It follows N C #(M), and t is an idempotent radical.

If we denote by grp, and gr(p), the categories of finitely generated graded B, and
(B)z-modules, respectively, then the localization functor Q restricts to a functor Q: grp
— 8l(B),-

DEFINITION 9. We say that a (graded) B-module is torsion, if #(M) = M, and
torsion free if t(M) = 0.

It is clear #(M) is Z-torsion and #(M) C tz(M). Therefore if M is torsion, then it
is Z -torsion, and if M is Z-torsion free, then it is torsion free.

The torsion free modules form a Serre (or thick) subcategory of Grp, we
localize with respect to this subcategory, as explained in [8,28]. Denote by QGrp
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the quotient category, and let 7:Grp —QGrp be the quotient functor, QGrg =
Grp/Torsion, is an abelian category with enough injective objects and 7 is an exact
functor. When taking this quotient we are inverting the maps of B-graded modules, ¢:
M— N such that Kerp and Cokerg are torsion.

The category QGrp has the same objects as Grp and maps:

HomQGI‘B (77" (M),TL’(N)) = h_I)nHOmGrB (M/’N/t(N))v

the limit running through all the sub modules M’of M such that M/M’ is torsion.
If M is a finitely generated module, then the limit has a simpler form:

Homqgy, (r(M),n(N)) = h_n)lHomGrB (M54, N/t(N)).
k

In case N is torsion free, Homgg,, (7w (M),7(N)) = li_n)qumGrB(MZk,N).

k

The functor 7w, Grg —>QGrp has a right adjoint: @w: QGrg —Grp such that
nw =1.[28].

If we denote by grp the category of finitely generated graded B-modules, and
by Qgrp the full subcategory of QGrp consisting of the objects 7 (N) with N finitely
generated, then the functor # induces by restriction a functor: m:grg —Qgrg. The
kernel of 7 is, Kerm = {M € grg | n(M) =0} = {M e grg | t(M) = M}.

In the other hand, the functor

0= (B)Z%)-: grg —gr(p, has kernel {Megrp | M7 =0} = {M egrp | tz(M) =
M).

It follows: Kerm CKer((B)Z%)-).

According to [28] (pag. 173 Corollary 3.11) there exists a unique functor ¥ such
that the following diagram commutes:

grp - Qgrp
(B), %J -\ v v
&),
This is Yy =(B)z®-.
B

PROPOSITION 21. The functor y Qgrp —gr(p), is exact.

By definition the category Op contains all z-torsion modules, in particular the
torsion modules and we can consider the quotient category Q(Op) of Op and identify
it with the full subcategory of Qgrp consisting of objects in Op . The functors 7, (B)z®-

B

and ¢ induce by restriction a commutative diagram of exact functors:

Os - Q(0s)
B)z®- \ v oY

(OB)Z

We proved in [21] the following:
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PROPOSITION 22. Denote by Q the localization functor Q = (B,)z®- and by
B

C’(-), the category of bounded complexes. The induced functor C*(Q):C?(gr, )—
CP(gr,),) is dense.

COROLLARY 9. The functor C? (w).'Cb(QgrB”)—> ct (gr(8,),) Is dense.

Proof. There are functors
Ch(m): C"(gry,) — C’(Qer) and C"(y) : C"(Qgry ) — Ch(grs,),)

such that C*(y) C?()= C’(Q), and C’(Q) dense implies C’(r) is dense. O

COROLLARY 10. The induced functors

K'(Q):K'(gry ) — K'(grg,, ), and K’ (v ):K"(Qgry ) — K’(grs,,)
are dense.

COROLLARY 11. The induced functors

D"(Q):D(gry) — D’(gr,,) and D" (¥ ):D"(Qgrg ) — D (grep,),)
are dense.

We will describe next he kernel of the functor D?(y). By definition, KerD?(y) =
N N
{M° |D’(¢)(M°) is acyclic}.

PROPOSITION 23. There is the following description of T = KerD"():
T ={nM° | M° € D’(grg,) such that for all i, H'(M°) is of z-torsion}.

Let’s recall some further results on G-algebras from [21].

One of the main theorems of the paper is that there exists an equivalence
of triangulated categories D?(Qgrp,) /7 =D”(gr(s,),), where the category 7 is an
“épaisse" subcategory of D?(Qgrp,), and D?(Qgrp,) /7 is the Verdier quotient. [27]

We then consider a full embedding of a subcategory F of D?(Qgrp,) in D? (8r(8,)2)-
Here F is the full subcategory of D?(Qgrp,) consisting of the 7 -local objects [27], this
is: F ={ X° [Homp g, ) (7, X°)=0}.

We then go to the Yoneda algebra B, of B, and use the duality

E:EBEX - Db(QgrB,l)a

given in [19] and [23]. We obtain a pair of triangulated subcategories (F',7") of
grp, such that 7 — F and 7’ — 7 under the duality ¢. We obtain the following
characterization of the subcategories 7’ and F' of gry: 7" is the smallest triangulated
subcategories of grp containing the induced modules B, ®c;, M and closed under the
Nakayama automorphism, 7’ has Auslander—Reiten triangles, and they are of the type
Z A . For the category F’ we obtain the following characterization: F” consists of the
graded finitely generated B'-modules, whose restriction to C} is injective. Furthermore,
the category F' is closed under the Nakayama automorphism, it has Auslander—Reiten
triangles, and they are of type ZA4..

In order to obtain an equivalence, instead of a duality, we apply the usual duality
D:grp —grpm to obtain subcategories 7" and F of gryop, with 7'=D(7"), and F =
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D(F’), where T is the smallest triangulated subcategory of 8r gov containing the induced
modules, and closed under the Nakayama automorphism, and F is the full subcategory
of gr o consisting of those modules, whose restriction to C! is projective.

Fmally, we obtain the main results of the paper: there is an equivalence of
triangulated categories grg/ T =D’(mod,,), and there is a full embedding of
triangulated categories F —D’(mod,,).

We will apply here these results to the particular case of the homogenized
enveloping algebra B of s¢(2,C) its Yoneda algebra B' and the enveloping algebra
U of s¢(2,C) and the corresponding Gelfand categories O, Ogand O.

Using the restriction of the functor (B) Z%- to Op and the restriction of ¥ to Q(Op)

we obtain the following:
PROPOSITION 24. The functors (B)z®- :Op —(0Opg), and  :Q(Op)—(Opg).,
B

induce by restriction dense functors in the categories of bounded complexes:

C(0):C°(0p) — C((O).) and

Cy):C(0(0p)) — C°((Op).).

Using the exactness of the functors (B)z®- and v we obtain induced dense functors
B
in the corresponding homotopy categories.
PROPOSITION 25. The functors ( B) z®- and v induce dense functors of triangulated
B

categories in the corresponding homotopy and derived categories, respectively:

K’ (Q):K"(Op) — K'((Op).) and K’ (v ):K*(Q(Op)) — K’ ((Op)..).
D'(Q):D"(Op) — D'((Op).) and D’ (¢ ):D"(Q(Op)) — DP((Op).).

Denote the kernel of D¥(Q) by To,={M° D (Q(O5))| D (1 )(M®) is acyclic}.

PROPOSITION 26. There is the following description of T = KerD():
0, ={mTM° |M° eD”(Op) such that for all i, H' (M°) is of z-torsion}.

We remarked in Section 1 that the Nakayama automorphism o: B — B is of
the form o (z) = upz, o(e) = wye, o (f) = uyf, o (h) = ush, with u; € C — {0}. Hence, it
is clear that Nakyama’s automorphism send weight modules to weight modules an
induces an automorphism in the full subcategory of grp of the modules of z-torsion,
hence on the full subcategory of z-torsion free modules. It follows o induces an
automorphism o: Op — Op , where o(M) is the C-vector space M with twisted
multiplication b xm= o (b)m.

As a consequence we have that there is an auto equivalence o: D?(05)—D’(Op),
inducing by restriction an equivalence o:7p, — Zo,.

The subcategory 7o, is a thick (épaisse) subcategory of D?(O3) and we can take
the Verdier quotient D?(0p)/ 73 [27].

It follows by Proposition 26 and [21] the following:

THEOREM 10. There are equivalences of triangulated categories.
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(i) D*(Op)/To, ZD"((Op).)=D"(0)
(i) D' ((0p).)= T DP((OF7).)= T1 DP(O5T).

§eC/2z £eC/27
teC teC

Proof. (1) Is obtained by restriction of the equivalence given in [21] and by Theorem
9. (ii) is the block decomposition given above, plus Dade’s theorem. ]

We can use know the equivalence D¢: grpw —D’(Qgrp) to obtain a triangulated
full subcategory Opw of gr B which is by restriction equivalent to D?(O5). We will call
Opw the Gelfand category O of the algebra B'.

REMARK 2. The category O g has Auslander—Reiten triangles and they are of type
ZAx.

Proof. Let M be an indecomposable finitely generated B'”-modules in O gu.
There is an almost split sequence: 0— Q’0M—E—M—0, which induces an
Auslander—Reiten triangle Q>0 M—E—M— QoM in grgw. Applying the equivalence

D¢, and observing that the equivalence sends the shift to the shift, we obtain an
Auslander—Reiten triangle D¢(o M)[2]— D¢ (E)— D¢p(M)— D¢ (o M)[1]. Since D?(O3)
is invariant under the Nakayama permutation o both D@(M) and Dg(o M)[1]
are in D?(Op) the map Dgp(M)—Dep(oM)[1] induces a triangle in D?(Op) of the
form D¢(oM)[2]—-X—Dp(M)—Dp(eM)[1]. It follows that X is isomorphic to
D¢(E) in D?(Op) and Dg(o M)[2]— D¢ (E)—Dp(M) —Dp(oM)[1] is a triangle in
D?(Op). By definition of Qps the triangle Q’°0M—E—M— QoM is a triangle
in Opo. O

The pair of triangulated sub categories (7',F) corresponding to the pair (7,F)
under the equivalence D¢, where 7 is the subcategory of D?(Qgrp,) of all complexes
with homology of z-torsion and F the corresponding category of 7 -local objects, was
described in [21] as follows:

(i) 7 is the smallest triangulated sub category of gr . containing the induced

modules M ®c; B,

(i) T has Auslander— Relten triangles and they are of type ZA4,

(iti) The category F consists of the objects M in grpowhose restriction to C! is
projective.

(iv) F has Auslander—Reiten triangles and they are of type Z A4
We can define now the corresponding categories in O pgw.
The category 7o, is TNOp» and the category of 7o -local objects is Fo,, =
FNOpgo.
Hence, 7o, is an épaisse subcategory of Ops and the Verdier quotient
Opw/To, isequivalent to [ DP((O5F).

£eC/27
teC
There is a full embedding Fo, in [] D’((O%7).
£eC/2z

teC
Since the triangles in Opw are the same as in gr, o, the categories 7o, and

Fo,have Auslander-Reiten triangles and they are ¢ of type Z Ao
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