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1. Introduction

In the list of known finite non-abelian simple groups there are infinitely
many pairs of non-isomorphic simple groups which have the same order.
The smallest known example of two such groups are the simple groups A8

and PSZ,(3, 4), of order 20,160.
It should be of interest to investigate the following general problem:
"Are there any non-isomorphic non-abelian simple groups of the same

order, other than the ones already known?"
This question has been ansvered for some particular orders; for exam-

ple, see the papers by R. Brauer [4], T. M. Gagen [9] and R. Stanton [19].
Until recently, the five Mathieu groups were the only known finite

non-abelian simple groups which did not fit into an infinite series. These
groups have other interesting properties as well, and have therefore been
the subject of a number of papers, especially in recent years. For example
the group Mu has been characterized by R. Brauer [3] and W. Wong [20],
the group M12 by Wong [21], the groups M22 and M23 by Z. Janko [15],
and M2i will be characterized in a forthcoming paper of D. Held [141.

From the point of view of the general problem above, R. Stanton [19]
has shown that the groups M2i and M12 are uniquely determined by their
order. This problem for the group M23 is solved in a forthcoming paper by
A. Bryce [7], while the present paper considers the problem for the two
remaining groups M n and M22. In this paper we prove:

THEOREM A. Let G be a finite non-abelian simple group of the order of
M22; i.e. of the order 443,520. Then G is isomorphic to M22-

THEOREM B. Let G be a finite non-abelian simple group of the order of
Mn; i.e. of order 7920. Then G is isomorphic to Mn.

2. Notation and known results

Throughout this paper we use the notation of Janko [15]. Further Gp

will denote a Sylow ^-subgroup of a group G. By the word "character" we
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will mean an "ordinary irreducible (complex) character'', unless otherwise
stated. If pa is the maximal power of a prime p which divides the order \G\
of a group G, we write pa~[ \G\. Finally, p and q will denote distinct prime
numbers throughout the paper.

The first part of the proof of both theorems relies heavily on the results
of R. Brauer, H. F. Tuan and R. Stanton in the field of modular represen-
tations. We now state some of these results which will be used throughout
this paper. (For a definition of the terms used below see [8], [1] or [2].)

RESULT 1 ([6], Lemma 3). Let G be a finite group of order g, where
g = paqbg*, (pq, g*) = 1 and a, b 5: 1. Assume G has no elements of order pq.
Then for every p-singular element x of G,

where the sum extends over all characters Cp belonging to a fixed p-block Ba[p)
and to a fixed q-block Br(q). Here z^ = £^(1).

Suppose now that for a finite group G we have pT \G\. We write
CG{GV) = GpxVv. If Vj, has I conjugate classes in the groupNG{GV), then
G has I ̂ -blocks of defect 1 (see [2]). Let t denote the number of conjugate
classes of elements of order p in G.

To each of the /^-blocks Bx(p) of defect 1 there coiresponds a certain
multiple tx of t, where tK\p — \, so that BA(p) has^> — l/fA characters Ĉ  which
are ^-conjugate only to themselves and one exceptional family of tx ^-con-
jugate characters.

We let 1G denote the principal character of G and B±{p) denote the
j!>-block of G containing 1 G- This notation will be kept fixed throughout the
paper.

RESULT 2 ([2], Theorem 11). For the block B^p), we have ̂  = t. The
degrees z^ of the characters C^ of Bt(p) satisfy:

z^ = dp = ± 1 (mo&p), if Cp is p-conjugate only to itself.
(mod/)), otherwise.

If Ci, • • •, Cj, Cj+i are representatives from the different families of p-
conjugate characters of B^p) then

(1) l+<5222+ . . . +di+1zi+1 = 0,

From this theorem and other results of [2] we get:

COROLLARY 1. Suppose p~Y\G\, qaT \G\, and G has elements of order pq.
Then if % is a character of G and qa\%(l), then % $ B^p).

Let pT\G\ and for each character fA of B^p) let 6^ be as defined in
Result 2.
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If Cp is ^-conjugate only to itself, we say that

Cu is of type 0 if d,, = 1or n jr ?

CM is of type 1 if dp = —1.

If t,p belongs to the exceptional family of Bx{p), then

Cp is of type 0 if dp = + 1

Cp is of type 1 if dp = —1.

We can now state the "Block intersection theorem" of R. Stanton [19]:

RESULT 3. Let G be a simple group such that ^>T|G|, qi \G\, and G
has no elements of order pq. Let aH be the number of characters* in Bx{p) n B^q)
which are of type i for p and of type j for q (i, j = 0, 1). Then

10-

*If either the exceptional />-family or ^-family (or both) occurs in
B^p) n Bx(q) then we count only one member of the family (or families),
in the numbers au, (i, j = 0, 1). Note that no character can be "exceptional"
for both p and q, and if a character is contained in Bt(p) for any p\ \G\, then
so are all its algebraic conjugates ([19], Lemma 3).

3. Proof of theorem A

Throughout this section, G denotes a simple group of order 27 • 32 • 5 • 7
• 11. By Sylow's theorem and Burnside's transfer theorem ([11], p. 203)
we have the following possibilities for iVe(G11):

\Na(Gu) :Co(G11)| = 2,5,10.
\G:NG(Gn)\ = (a)2»-3, (b) 2* • 3»,

(c) 23 • 7, (d) 25 • 7 • 3,
(e) 27 • 32 • 7.

Result 2 is used to rule out the case |A^G(Gn) : CG(GU)| = 2 immediate-
ly. In case (b) using Sylow's theorem G must have a subgroup of index 12.
Case (a) and case (b) are now ruled out in the same way as A12 has no ele-
ments of order 77.

In cases (c), (d) G has elements of order 33. Using Sylow's theorem we
see that if CG{Gn) = G11xV11 and CG{G5) = G 5 xF 5 then Vn nVb> <1>
in both cases. By R. Stanton ([19], Lemma 5) if Cei?i( l l) , then

£(1) =z ^ 1+2-5-11 = 111.

Using this fact, Result 2, and the fact that 6702 > \G\ we get the following
list of degrees of characters which could lie in Bi(ll) n -Bi(5):
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144 — (0, 1) 126 - (1, 0)

252 — (1, 1) 192 - (1, 1)

384 — (1, 1) 336 — (0, 0).

The numbers in brackets give the type of a character with that degree,
where (i, j) stands for a character of type i for 11 and type / for 5.

By Result 3 B ^ l l ) n J5X(5) has a character of degree 144 or 126. Both
these degrees are divisible by 9 = 32, in contradiction to Corollary 1, as G
has elements of order 33.

LEMMA 1. The Sylow 1 l-normalizer of G is a Frobenius group of order 55.
It follows immediately that B1(ll) has exactly two 11-conjugate char-

acters of degree z = ± 5 (mod 11) and five characters ^ (fx = 1, . . . 5)
with £A(1) = ± 1 (mod 11). All other characters of G have degrees divisible
by 11. Also 11||G :NG(GV)\ forp = 2, 3, 5, 7.

For NG(G7) we get the following possibilities:

\NG(G7) :CG(G7)| = 2, 3, 6.

\G :NG{G7)\ = (1) 2 - 11, ( 2 ) 2 4 - l l , (3) 27 • 11,

(4) 2- 3- 5- 11, (5) 24- 3- 5- 11,

(6) 23 • 32 • 11, (7) 26 • 32 • 11, (8) 32 • 11,

(9) 27 • 3 - 5- 11.

The case \NG(G7) : CG(G7)\ = 2 is ruled out by Result 2 and by ([6],
Lemma 1), and so cases (6), (7), (8) cannot occur.

If \NG(G7) : CG{G7)\ = 6, 5X(7) has seven characters ^ (fi = 1, . . . 7),
all of which satisfy ^(1) = ± 1 (mod 7). We give only an example of the
methods used to rule out this case. For simplification, if £ is a character of
degree z, and if t, belongs to BT(p), then we write BT(p) = {z, . . .} i.e. we let
the degree of a character stand for the character. If £ has a number of p-
conjugates £', £", . . . in BT(p) we write

We now give a list of all possible degrees of characters which could occur
in ^ (11) and all degrees (of characters) which are congruent to ± 1 (mod 5).

TABLE I

12, 45, 56, 144, 210, 320 = + 1 (mod 11)

10, 21, 32, 120, 252, 384, 560 = - 1 (mod 11)

5, 16, 60, 126, 192, 280 = + 5 (mod 11)

6, 28, 72, 105, 160, 336 = —5 (mod 11)
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TABLE II

11,

44,

16,

99,

21,

144,

56,

154,

66,

264,

126,

384

176, 231, 336, 396, 616 s +1
= - 1

(mod

(mod
5)

5)

From table land by Result 3 we get that 5^7) n fix (11) = {1, 120,.. .}
or {1, 160, 160', . . .}. By Corollary 1, G has no elements of order 35, and
so we are in cases (4) or (5). We now consider the following cases:

n Btf) = {1, 99}, Bx{5) n 5J11) = {1, 21},

n B^H) = {1, 120} or {1, 160, 160'}.

Under these assumptions if C e B1(5), then £(1) =- ± 1 (mod 5) and by
using table 2 and Result 2 we get:

(a) £j(5) = {1, 21, 99, 21, 56), 1 + 2 1 — 9 9 + 2 1 + 5 6 = 0

(0) 5X(5) = {1, 21, 99, 66, 11}, 1 + 2 1 - 9 9 + 6 6 + 1 1 = 0

(y) Bx(5) = {1, 21, 99, 99,176}, 1 + 21 — 99—99+176 = 0

(77) B x (5 ) = {1, 2 1 , 99, 154, 231,} 1 + 21 — 99—154 + 231 = 0.

The equations on the right is the equation (1) of Result 2 for each of the
four cases. By Corollary 1, as Bt(5) 2 {99} for all four cases, G has no ele-
ments of order 15, so we apply Result 1 to ^ ( 5 ) and B2(3), the second being
the 3-block of defect 1 containing the character of degree 21. The cases (a),
(P), (y) are ruled out by Result 1, as

2 1 ^ 0 (mod 9), 21 + 21 = 42 fzi 0(9), 21 + 66 = 87^0(9) ,

and because all characters in 3-blocks of defect 1 have degrees divisible by 3,
but not by 9 (see [1]). (Note that in case (rj), 21+231 = 252 = 0 (mod 9).)

CASE (J?). Using Result 1, table 1, and the theory of blocks of defect
1 developed by R. Brauer (see [1]), we get three possibilities for 51(11):

= {1,21, 21,21, . . .} (Vl)

= {1,21, 12, . . . } (V2)

= {1,21, 210, . . . } fo.)

By Result 1 and since 3T120, B^ll) n Ba(7) = {1, 160, 160'} in
case (J7X). Equation (1) of Result 2 becomes:

l - 2 1 - 2 1 - 2 1 + 160+(5121 = 0,

hence zx = 98,

where zx denote the degree of the remaining character of .B^ll). Since
98 f \G\, case ( ^ cannot occur.
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In case (»y2) using Result 2, the only possibility for equation (1) is:
1 + 12 —21 — 120—32+160 = 0. However this leads to a contradiction by
Result 1, as 3 J 120.

In case (rja) equation (1) becomes:

1-21+210+160-560+210 = 0, if ^ ( 7 ) n £x( l l ) = {1, 160, 160'}.

Again we have a contradiction to Result 1. Hence 5X(7) n fix(ll) = {1, 120}
and using Result 1 we see that another degree z occurs in B^ll) such that
3 T z. We finally get

B J l l ) = {1, 21, 210, 120, 210, 280, 280'}.

From this we see G as two 3-blocks of defect 1 having non-trivial inter-
section with S1(l l) . We can write these 3-blocks as

B2(3) = {21, 210, 231}, 53(3) = {120, 210, 330}.

However if we sum the squares of the degrees determined so far we get
that their sum is greater than the order of G.

Suppose now that \NG(G7) : CG(G7)\ = 3. 2^(7) n B^ll) must contain
a character of one of the following degrees: 45, 120, 60, 160, 32 (by Result 3).
Using Corollary 1, in the first four cases G can have no elements of order 35.
In the last case by the methods outlined above, 5X(7) = {1, 32, 32', 99, . . .}
or ^ ( 7 ) = {1, 32, 32', 55, . . .}. It follows that either G has no elements of
order 35 or no elements of order 21 and so cases (1), (2), (3) cannot occur.

In case (4) using Sylow's theorem and P. Hall's solubility theorem ([11],
p. 141) we get a contradiction by Lemma 1.

If we are in case (5) then \NG{G-,)\ = 23-3-7, and CG(G7) = G7xT,
where T is a 2-group of order 8. By Sylow's theorem \NG{T)\ = 26 • 32 • 5 • 7
or 26 • 3 • 7. If 1 < K ^ T with 27| \NG(K) | we get a contradiction by Lemma
1. Let S denote the Sylow 2-subgroup' (of order 64 = 26 in both cases) of
NG{T), and G2 be a Sylow 2-subgroup of G containing S.

If a e G2\S then S = T X Tx by the above remarks.
Suppose that |2VG(r)| = 2« • 3 • 7. If T is abelian, then SjT £ I is

elementary abelian, and NG(T) is soluble. By Gaschiitz ([11], p. 246),
NG(T) = TxK, where K is a soluble group of order 23 • 3 • 7. It follows
that the Sylow 2-subgroup of K is normal in K, and hence S <\NG(T),
which means that ll||2VG(S)|, in contradiction to Lemma 1.

If T is non-abelian, NG(T) is non-soluble, and T s Ds, the dihedral
group of order 8. We now have NG(T)\T £ PSL(2, 7), and by Gaschiitz
([11], p. 246), CG[T) = Z(T)xX where X ~ PSL{2, 7). Let A ^X such
that A ~ Ait and Ea is the Sylow 2-subgroup of A, where E is some four
group of T and a e G2\S. By Sylow's theorem, \NG(E) | = 26 • 32 • 5 • 7, and
by the result of P. Hall, iVG(E) is non-soluble. It follows that O2 = O2 (NG(E))
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is of order 8, 02 ^ iVG(G7) and NG{E)jO2 =? A7. Hence T = 02 and so we
have that |AT

G(T) = 2« • 32 • 5 • 7.
As before NG(T) is non-soluble, T ^ D8, NG(T)jT ^ A7 and

CG{T) ^ -Z(r) x^47. In the same way as above we see that T possesses an
elementary four group E which is conjugate in G to the Sylow 2-subgroup of
a subgroup A of CG{T) where A ^ At. Hence 33||iVG(.E')|, clearly a contra-
diction. Case (9) is the only remaining case, so we have proved:

LEMMA 2. The Sylow 1-normalizer of G is a Frobenius group of order 21.
We now suppose that

(I) G has no elements of order 15,
(II) \NG(G5):CG(G,)\^4.

We get only two possibilities:

(a) |G:iVG(G5)| = 2 - 3 2 - 7 - l l
(b) \G:NG(G5)\ = 2 5 - 3 2 - 7 - l l .

CASE (a). We have CG(G5) = G5xT where T is a 2-group of order 16.
Let S be a Sylow 2-subgroup of 2VG(G5), and G2 a Sylow 2-subgroup of G
containing S. (Note that |G2 : S\ = 2). As T <1 5, there is an involution
t e T such that CG{t) S: G2. Using the two lemmas and Sylow's theorem, we
have |CG(2)| = 27 • 3 • 5. Hence C = CG(t) is non-soluble. Further, we must
have 02(C) = T, CJT s S5, and C = NG{T). As G5 ^ CG{T), CG{T) can-
not be soluble and so C(T)jZ(T) is isomorphic to either Ab or S5.

If wisan involution in T\(ty we claim that 32-f \CG(u)\. This is shown
by way of contradiction. If 32\\CG(u)\, then u $ Z(T), CG(u) is non-soluble
and O2(CG(u)) rgi T n CG(u). (The non-solubility follows from assumption
(I).) As CG(u)jO2(CG(u)) is non-soluble, from our assumptions we get that

CG{u)IO2(CG(u)) ^ N where Aut(^6) ^N ^ A6.

From the order of C, and because A6 is simple and G5 gS CG(T), then
£ $ O2(CG(u)). Since O2(CG(M)) < C, 02(CG(w)) is normal in C(u) n C, and
as Cc[u) is non-soluble, CC(W)/O2(CG(M)) is non-soluble. It follows that
Cc{u)jO2{CG(u)) ^ Lx B, where L is a non-trivial 2-group (since <7> < C)
and Ab i^L B -gL S5. As CC(M) < CG(w) we have a contradiction to the struc-
ture of Aut(^46).

Using the structure of C, if K is a Sylow 3-subgroup of C, then
\CC(K)\ = 25 • 3. Denote by Y the Sylow 2-subgroup of CC(K) and R the
Sylow 2-subgroup of CG(K). If Y < R then |2? : Y| = 2, and \R : T\ = 4.
Thus there is an involution j eT with / e Z(R). As T ^ CG(j), T = 02

(CG(/)) and hence T <i R. This contradicts C = NG(T) and hence 2? = Y.
We have shown that .D = CG(K) is of order 25 • 32. Since for any ele-

ment x e 7\ 3T |CG(a;)|, either C^Gs) = G3 or C ^ ^ ) = ND(G3) > G3, where
G3 is a Sylow 3-subgroup of G containing /£.
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In the first case 0 = O2(CG(K)) is of order 16 and \T n 0\ = 8. In the
second case, Y <\ D, and by a transfer lemma of John G. Thompson [17],
D has a subgroup M of index 2. Again, 0 = Y n M is normal in D, of order
16, and \0 n T\ = 8. We may put 0 = (5 and note that there is an (inner)
automorphism a of D, a3 = 1, such that a acts fixed-point-free on 0. Hence
there exists a subgroup E of T such that £"• = E, and £ is elementary of
order four. Since G5 < Cg{E), we get CG{E)JO2{CG{E)) = 5 where
,45 ^ B <L S5. However as \NG{E) : CG(£)| = 6 and

Aut(S5) = Aut(^5) = S
6,

G has elements of order 15, contradicting (I). Case (a) is ruled out.
We return to the block theoretic argument and show that assumptions

(I) and (II) actually hold in G.
Using the lemmas proved above and the methods outlined previously

we get that
B^l) = {1,22,22,45,45'}

or Bx(l) = {1, 99, 55, 45, 45'}.

In the first case the characters of degrees 1, 22, 22 are modular 7-irre-
ducible and by Theorem 13 of [1], the two characters of degree 22 must be
complex for some 7-regular element of G (and hence they are complex con-
jugates), as the two characters of degree 45 are real for 7-regular elements.

Applying Result 3 it follows immediately that the two characters of
degree 22 are the two 5-conjugate characters of the special family in Bx{5).
It follows that |2YT

G(G5) : CG(Gb)\ = 2 and the two characters of degree 22
take real values on 5-singular elements and hence take real values on all
elements of G, a contradiction.

Using Results 1, 2, 3 and the results of [1] (on blocks of defect 1) we
quickly get the following block decomposition for G:

= {1, 45, 45, 21, 210, 280, 280'}
5j(7) = {1, 99, 55, 45, 45'}
5X(5) = {1, 21, 99, 154, 231}
52(3) = {21, 210, 231},

where S2(3) is a 3-block of defect 1. Since B1(5) consists of 5 characters and
since the degree 99 occurs in B^S), assumptions (I) and (II) must hold,
and we have:

LEMMA 3. TheSylow 5-normalizer of G is a Frobenius group of order 20.
By Lemmas 1, 2, 3 we see that the degree of any character of G not

listed above must be divisible by 5 • 7 • 11. Summing the squares of the
degrees of the characters determined so far we get that there is only one
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remaining character of degree 385 = 5 - 7 - 1 1 . We have therefore proved
that G has twelve conjugate classes.

Using Result 1 we determine £x(3) and see that it is the only 3-block
of defect 2 (i.e. of lowest type). Applying [5], Theorem 2, we have proved
that CG{G3) = G3 i.e. a Sylow 3-subgroup of G is self-centralizing.

So far we have determined the order of a representative of nine of the
twelve conjugate classes of G. Further, G must have at least one conjugate
class of elements of order 6 by M. Suzuki, [16].

Using the results so far determined and Sylow's theorem,

\NG(G3) :CC(G,)| = 8.

The structure of GL(2, 3) shows that NG(G3)IG3 is isomorphic to either the
quaternion, cyclic or dihedral group of order 8.

The values of the twelve characters of G can be determined immediately
for elements of order 5, 7, or 11 by the results of Brauer, [2]. The values of
all (irreducible, complex) characters on elements of order 3 or 6 can be
determined by using the orthogonality relations, Brauer's relations for char-
acters in blocks of defect 1 (see [1]), and the fact that all characters in B2(3)
take integral values. At the same time we determine that if c, d are elements
of orders 3, 6 respectively, then \CG{c)\ = 22 • 32 = 36, \CG{d)\ = 22 • 3 = 12.
Using these values and the orthogonality relations for f 12, where £12 (1) = 385,
we prove that the Sylow 2-subgroup of NG{G3) is not dihedral. Hence all
elements of order 3 are conjugate in G, and it then follows that G has only
one class of elements of order 6. Using these results and summing the orders
of conjugate classes of G we get that the orders of the centralizers of rep-
resentatives of the remaining four conjugate classes are 27 • 3, 2s, 24, 23. We
have proved:

LEMMA 4. The group G has one class of elements of order three and one
class of elements of order 6. The centralizer of an element of order three is of
order 36 and has a normal elementary Sylow 2-subgroup of order four. The
centre of a Sylow 2-subgroup is elementary, all central involutions are conjugate
and have centralizers of order 27 • 3.

From Burnside's lemma ([11], p. 203) for any Sylow 2-subgroup of G,
|Z(G2)| = 4 or 2.

Let z be a central involution of G2 and let Q be a Sylow 3-subgroup of
C = CG{z). Since CC(Q) = QxE where E is an elementary four group,
O2(C) must be of order 26 = 64. Clearly E < O2(C) and Z(G2) < 02(C).

LEMMA 5. E is not normal in O2(C).

PROOF. Suppose E is normal in O2(C). Then E < C and we have
\NG(E) : C\ = 3 by Lemma 4. If 02{C) n C{E) < 02{C), then

Ca{E) nO2(C) =S
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is of order 32. 5 is "(Mnvariant", (regarding Q as an automorphism group
of O2(C)), and hence E < CG(Q) n S, a contradiction. Therefore 02(C) is a
subgroup of CG{E) and so O2(C) <NG(E) as 02(C) = O2(CG(E)). The
Frattini subgroup D = Z)(02(C)) of O2(C) is normal in NG(E) and hence
of order 4 or 16.

Let Q < G3 < NG(E) for some Sylow 3-subgroup G3 of NG(E), and put
G3 = (̂  Xif. The subgroup Z) is certainly invariant under G3.

Let \D\ = 16. If K acts fixed-point-free on D, D is elementary abelian.
Otherwise, C(K) n Z) is of order four, and D is again elementary. Ap-
plying Maschke's Theorem, CD(K)xE = D. If \D\ = 4, then D = E and
02(C)[D is elementary abelian. G3DfD cannot act fixed-point-free on
02(C)/D and we get a group FF of order 16, such that W < O2(C), W is G3-
invariant and E < W. We can then put W = D, when Z) is of order 16.
We may now suppose that QD/D centralizes O2(C)/D and hence Q normal-
izes a subgroup L of O2(C) of order 32 with D ^ L, which is a contradiction,
since E ^ L. The lemma is proved.

LEMMA 6. The centre of a Sylow 2-subgroup of G is (cyclic) of order 2.

PROOF. Suppose Z = Z(G2) is elementary of order four. By Lemma 4,
the involutions of Z are conjugate in G, hence in NG(G2), which must then
be of order 27 • 3. From Lemma 5, Z = Z(O2(C)) is of order eight, and
<£> = Z n E. Z is elementary abelian. as is the group / = Z • E, of order
16. Because Q normalizes N(J) n 02(C), it follows that / < C, CC(J) = J
and CjJ s 54.

Using Lemma 4 and Burnside's transfer theorem, the Sylow 2-subgroup
U of NC(Q) (and hence of NG(Q)) is dihedral of order eight. Hence
\NG(E)\ = 2 5 - 3 2 , and J<Ne{E) as CG{E) = CC(E) = J • Q. As we
have shown that NG(J) > C, from the structure of ^48, we must have
NG{J)IJ S ^6-

Certainly / is not normal in NG{G2), and hence J has two other con-
jugate subgroups J2, J3 in NG(G2). If / n / 2 n / 3 = Y is of order eight,
then Y n Z = Z, and Y • Z = J. As Y. Z are both normal in G2 and both
contain Z, J ^L Z2(G2) (the second centre of G2), and hence \Z2(G2)\ = 32
a s GilJ = ^ s - Hence Z2(G) = J • J2 • J3 and Z2(^) is elementary, contra-
dieting Ce(J) = J.

Hence Z = / n / 2 n / 3 , and as z has 15 conjugates in NG{J), it fol-
lows that C ^NG{J) nA'c(Jj) nNG(J3). We have therefore that J2, J3

are normal in C, and hence Z <3 C, clearly a contradiction.

LEMMA 7. If z is the involution in the (cyclic) centre of a Sylow 2-sub-
group of G then CG(z) is an extension of an elementary abelian subgroup of
order 16 by S4.
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PROOF. Denote by F a maximal normal elementary abelian subgroup
of C. If F n E = <z> then F has order 2, 8, or 32. Using [12], p. 18, \F\ = 32
gives that Z(G2) > <z>. If \F\ = 8, then CC(F) > F and as CjCc(F)
is isomorphic to a subgroup of PSZ,(2, 7), either CC(F) = F • E or
^ ( i 7 ) = 02(C). In the first case CC(F) is elementary abelian, and in the
second, using [12], p. 18 again, Z(G2) > <z>.

If F = <2>, as E is not normal in C, <2> = Z(O2(C)) also. Let D denote
the Frattini subgroup of 02(C). If \D\ = 32, D is cyclic; if |D| = 4, D = E;
if |D| = 2, D = Z(O2(C)) = 02(C)' = <z> and 02(C) is an extra special
2-group; if \D\ = 8, since D < C, D must be isomorphic to ()8) the quater-
nion group of order 8. All these cases are impossible, the last by a result of
Gaschiitz, [10]. Finally, if \D\ = 16, and if it is abelian it must be elemen-
tary abelian. Hence D is non-abelian, and as Q acts faithfully on D,
<2> = Z(D) = D' = D(D); i.e. Z) is an extra special 2-group of order 16,
which is impossible.

We have shown that E 5j F, and as E is not normal in C by Lemma 5,
F is of order 16. Because CC(F) < C, then CG(F) = CC(F) = F and hence
C/F ^ S4. The lemma is proved.

By a theorem of D. Held [13], Lemma 7 and the fact that |G| = 443, 520,
we get finally that G is isomorphic to M22.

4. Proof of Theorem B

In this section G denotes a simple group of order 7920 = 2* • 32 • 5 • 11.
If n is the degree of a (complex, irreducible) character of G, then 6 < n < 89,
since 892 > 7920, and n > 6 because of a result of Tuan, [18].

Using the methods outlined at the beginning of § 3 we can quickly show:

The Sylow W-normalizer of G is a Frobenius group of order 55.

We then get the following block decomposition for G:

J B ^ I I ) = {1, 10, 10, 10, 45, 16, 16'}

Bt(5) = {1, 16, 16, 11,44}.

Hence G has no elements of order ten, by Corollary 1, and so we have:

The Sylow 5-normalizer of G is a Frobenius group of order 20.
Any character not in 51(11) or B^b) has degree divisible by 11.5 = 55.

Summing the squares of the degrees of the known characters, G has only one
further character of degree 55.

The determination of B1(S) yields that this block is the only 3-block
of defect 2, and hence CG(G3) = Gs by [5], Theorem 2. By Sylow's theorem
and the transfer theorem, \NG{G3) : G3| = 4 or 16, and in both cases G3 is
elementary abelian. Further, NG(GS)JG3 cannot be elementary of order four,
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otherwise we have too many conjugate classes in G.
If NG(G3)/G3 is cyclic of order four, then if c is an element of order 3,

T < CG(C) where T is the Sylow 2-subgroup of CG(C). If T — G%, G has at
most one class of elements of order 3. Hence T is elementary of order four
and |CG(C)| = 22 • 32. G has only one class of involutions, by considering the
number of classes so far determined. It now follows that the centralizer of
any involution of G is 2-closed, contradicting Suzuki's result [16].

From the structure of GL(2, 3) we have:

The Sylow 2-subgroup of NG(G3), and hence the Sylow 2-subgroup of G

is isomorphic to the semi-dihedral group of order 16.

Using the results proved so far, and the assumption on the order of G,
a result of Wong ([20], Theorem 3) gives that G s Mn.

The theorem is proved.

Finally, the author would like to acknowledge his indebtedness to
Professor Z. Janko, who suggested and supervised this work, which is part
of the requirements for the Ph.D. degree at Monash University.
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