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THICK SETS AND QUASISYMMETRIC MAPS

JUSSI VAISALA, MATTI VUORINEN AND HANS WALLIN

1. Introduction

1.1. Thickness. Let E be a real inner product space. For a finite sequence

of points a0,... ,ak in E we let a0.. .ak denote the convex hull of the set {aQy. . . ,

ak). If these points are affinely independent, the set A = a0.. .ak is a A -simplex

with vertices a0,.. .,ak. It has a well-defined k-volume written as mk(Δ) or brie-

fly as m(Δ). We are interested in sets A c £ which are "nowhere too flat in

dimension A;". More precisely, suppose that i c £ , q > 0 and that A: is a positive

integer. We let B(x, r) denote the closed ball with center x and radius r. We say

that A is (q, k)-thick if for each x ^ A and r > 0 such that A\B(x, r) Φ 0

there is a A -simplex A with vertices in A Π i?Cr, r) such that mk(Δ) ^ gr .

It is easy to see that the closure A of a (#, /c)-thick set A is (#', /c)-thick for

each q' < q. In the case dim E < °°, A is in fact (#, A:)-thick. Conversely, if A is

(#, A:)-thick, A is (q'', A:)-thick for all ̂ ' < ^. Without essential loss of generality,

it is thus sufficient to consider only closed sets A c E.

We also say that A is k-thick if A is (#, A:)-thick for some # > 0. It is easy

to see that a />-thick set is A -thick for all k < p.

1.2. EXAMPLES. We consider sets in the Euclidean w-space Rn. A set A c Rn

can be A:-thick only for k < n. A A -dimensional ball and a A -cube are clearly

A:-thick but not />-thick for p > k. The Cantor middle-third set is 1-thick. If A is

an arc which has a tangent at some point, A is not 2-thick. In particular, rectifi-

able arcs are not 2-thick. On the other hand, the Koch snowflake curve in R is

2-thick. A c-John domain [NV], 2.26, and its closure in Rn are (q, n)-thick with

q = q(c, n).

1.3. Background. Thick sets arise naturally from various questions of

analysis. For example, in [Va3], Th. 6.2, it was proved that if A is compact and
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w-thick in Rn, and if M is sufficiently close to 1, then each M-bilipschitz map

f:A-^Rn has an Λ^-bilipschitz extension g:Rn^>Rn, where M1 = M1(M,A)

- > l a s M - > l . "

On the other hand, the ^-thick sets in Rn are precisely the sets for which

certain polynomial inequalities of Markov type are valid. More precisely, let 9k be

the family of all algebraic polynomials of n real variables of total degree at most

A. Then a closed set A c: Rn is w-thick if and only if for each positive integer A

there is a constant c = c(A, n, k) such that

for each P ^ 9>

k and for each ball B = B(x, r) with x e A and r < d(A) here

| | / | |Q denotes the maximum of | f{x) | over x e Q and d(A) is the diameter of A.

This is a similarity invariant version of [WW, Proposition 7]. This condition on A,

introduced in 1980, is important in the study of polynomial approximation and

interpolation and function spaces on A see [JW].

For another example of the idea of thickness, see the recent paper of Rohde

[Ro], p. 111. The linear approximation condition in [MV] is in a sense opposite to

the thickness condition.

1.4. Summary of results. The purpose of this paper is to study the in-

variance properties of thick sets. First observe that since the snowflake curve is a

quasicircle, the property of 2-thickness is not preserved under quasiconformal

maps of the plane. In 6.2 we show that it is not even a bilipschitz invariant.

However, we shall show that a if-quasiconformal map / : Rn—> Rn maps

(q, A)-thick sets onto (qlf A)-thick sets provided that K is sufficiently small: K

< K0(q, k). Moreover, qx depends only on (q, K, k), and qx^ q as K—• 1.

A if-quasiconformal map f :Rn^>Rn is s-quasisymmetric with s = s(K, n)

—•*• 0 as K-+ 1. For this result and for the definition of quasisymmetry, see Section

2. We shall obtain the above result on quasiconformal invariance as a corollary of

a more general result on s-quasisymmetric maps / :A~* E' where A is a closed

set in an inner product space E and Ef is another inner procuct space. More pre-

cisely, we show in Section 4 that if A is (q, A:)-thick and s is less than a number
so = SQ(Q> k), then/A is (qv A)-thick with qx = qx{q, 5, A) —* q as s—• 0.

Bilipschitz versions are given in Section 6. In Section 5 we consider the spe-

cial case where A is an arc. For example, we show that if A is the image of a line

segment under an s-quasisymmetric map, then for all A there is q — q(s, A) such

that A is not (q, A)-thick. Moreover, tf—• 0 as s—* 0.
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Various methods based on normal families are often used in the study of

iί-quasiconformal, if-quasiregular and s-quasisymmetric maps. While such

methods provide a convenient technique for studying qualitative properties of

these maps, they fail to give explicit estimates. Our goal is to give, whenever

possible, explicit bounds that are still significant as K—> 1 or s—»0. The bounds

obtained are presumably not always very sharp. In some cases we also estimate

the sharpness of the bounds by examples.

Our methods are rather elementary in the quasisymmetric and bilipschitz

cases. For quasiconformal maps, an essential tool is [Vu], Theorem 1.8, which

gives explicit bounds for the distortion of ϋί-quasiconformal maps of R with

small K.

1.5. Notation. Throughout the paper, we assume that E is an inner product

space with norm \x\ — ix-x) . We let Rn denote the euclidean n-space with the

usual inner product and the standard basis elf.. .,en. For two nonempty sets A, B

c E, we let diA, B) denote the distance between A and B, and diA) is the dia-

meter of A. Open and closed balls with center x and radius r are written as

Bix, r) and Bix, r), respectively, and Six, r) is the sphere dBix, r).

2. Quasisymmetry and quasiconformality

In this section we give preliminary results on the relations between

s-quasisymmetric and if-quasiconformal maps of Rn. Particular emphasis will be

on the case where s—+ 0 or, equivalently, K-* 1.

2.1. DEFINITION. Let η : [0, °°) —• [0, °°) be a homeomorphism. An injec-

tive map/ : X—• Ybetween metric spaces is η-quasisymmetric or η — QS if

\fa - fx\ , (\a- a
\fb-fx\ ~

for each triple x, a, b ^ X with b Φ x. It follows that for distinct points x, a, b

^ X we have

1 ^\fa-fx\ < (\
\fb-fx\ ^ η \\b-χ

Moreover, the inverse map / : fX~* X is τ/-QS with η'it) = 7] it ) .
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2.2. DEFINITION. Let s > 0. A map / : Z—> Y is s-QS if / is η-QS in the

sense of 2.1 for some η such that

η(t) <t+ s

for all t e (0, max {1, 1/<>}).

2.3. Remark The 77-QS maps were introduced in [TVi]. The notion of

s-quasisymmetry is from [TV2]. For values s > 1 our definition of s-QS maps dif-

fers from the earlier definition. A map / : X—> Y is 0-QS if and only if it is a

similarity: there is λ > 0 such that | fx — fy | = λ \ x ~ y | for all x, y ^ X.

2.4. Relations between QC and QS maps. In the rest of this section we

shall only consider homeomorphisms between domains G and Gr in Rn, n > 2. We

adopt the definition of a i£-quasiconformal or a K-QC map from [Vai], based on

the moduli of path families.

2.5. THEOREM. Iff:G—*G' is an s-QS homeomorphism, then f is K-QC

withK= (1 + s)n~\

Proof. Fix x e G and r e (0, d(x, dG)). For a, b *Ξ S(x, r) we have

\fa-fx\ , (\ a — x\

This inequality implies that the linear dilatation of / at x has the upper bound

1 + s, and the theorem follows from the metric definition of quasiconformality

[Vail, 34.2. •

Thus QS implies QC. The converse is false in general but true for certain do-

mains, in particular, for maps of the whole space R . We give a quantitative form

of this fact in Theorem 2.13. It gives an explicit bound for the case K—*\\ the

proof of the earlier result [TV2], Th. 2.6 was based on a normal family argument.

The next result is Theorem 1.8 from [Vu]. The function φκ>n : [0, 1] —»

[0, 1] in 2.6 is an increasing homeomorphism, for which several estimates were

recently proved in [AW]. It is crucial for our later applications that the inequali-

ties in 2.6 (1) and 2.6 (4) are in some sense asymptotically sharp as K-* 1. Note

that the inequalities in 2.6 (4) could be further refined in view of the results in

[AW].
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2.6. THEOREM. Let f :R"-*R" be K-QC. Thenf is r?0-QS with

(1) j?0(l) = exp [6(K+ 1 ) 2 V ^ = T ] ,

(2)

(3)
Furthermore, with a = K — \ / β we have for 0 ^ r < 1 :

(4) 21-*/ΓV < ? w W < r* < r < rα < φκjr) < 2ι'ι/κKra.

2.7. THEOREM. A K-QC map f :Rn->Rn is τ?-QS with rj(t) = φ(K)

max ί Λ ί1/JΓ} where ψ(K) = exp [7 (if + l) 2 y / ΐf τ = ~T].

Write c( iθ = exp [6(K + I)2 y/K~ 1]. Applying 2.6 and the ine-

qualities a>l/K,2<e, K< eκ~ι we get for 0 < t < 1:

1~1/κ Kta < c(K) exp CK 1//Dί1/Ar < ψ(K)t1/κτ?oω < c(K)21~1/κ Kta < c(K) exp CK - 1//Dί1/Ar < ψ(K)t1/κ.

For ί > 1 we use 2.6 and the inequalities β < K, log ϋΓ < If — 1 to obtain

τ?oω < c(K)2K~1KKtK < c(K) exp (If - 1 + Klog K)tκ < φ(K)tκ. D

2.8. LEMMA. The function η(f) — t is increasing in t, where rj(f) is as in 2.7.

Proof The continuous function g(f) = η(f) — t is differentiable for £ > 0,

/ Φ 1. It is easy to show that 0(10 > If. Using elementary calculus we see that

g'(f) ^ 0 for t > 0, f Φ 1. Hence g" is increasing. Π

For the purpose of convenient reference we record two elementary inequali-

ties:

(2.9) xx>exp(-ψ~), x>0,

(2.10) exp

2.11. LEMMA. Suppose that 1 < K < 1 + 10~4 αwd f/iαί

0 < t<

η(f)
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where ϊ] is the function defined in 2.7.

Proof Set u = 1/(7 yTT — 1). By Lemma 2.8 it suffices to show that η(u) — u

< 1/M, or equivalently,

exp[7(X + D'yX^T] < u (1 + u ).

By (2.9) we have

1"* = (7 v/ΐΓ^T)*"1

Hence it suffices to show that

(2.12)

exp

^ ] < 1 +

Writing y = 49\AK - 1 we have 1 + y < 1 + 49/100 < 3/2, and thus

By (2.10) this implies (2.12). D

2.13. THEOREM. A K-QC map f : R -> R is s-QS with s = s(K). For

K<1 + 10"4 we can choose s(K) = 7 # # - 1.

Proo/. The first part of the theorem is well known and follows, for example,

from 2.7. The second part follows from 2.7 and 2.11. •

2.14. The case n = 2. In the 2-dimensional case, the results above can be

refined, since now the function η0 of 2.6 can be replaced by another function,

whose properties are well known. Indeed, a K-QC map/ : R —* R is η-QS with

(2.15) η(t) = ηκ>2(t) = " 2, it = ΨκJJτίlϊ)>

where <pπ>2 is the frequently occurring function in the theory of QC maps defined

in terms of elliptic integrals. See, for example, [Vu], formula (1.9), and [VV]. Next,

as is shown in [VV], the function ηκ>2(t) ~~ t is strictly increasing in / if K > 1.

This and the proof of 2.13 give the following result:
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2.16. THEOREM. A K-QC map f : R2-* R2 is s-QS, where s = s(K) is the

unique solution of the transcendental equation

ηK2(l/s) = s + 1/s.

2.17. Remark. One can show by Theorem 2.16 that for K sufficiently close

to 1, / is 5-QS with 5 = y/K-l.

3. Simplexes

In this section we present auxiliary material on the volume and the flatness of

a simplex. We also consider the distortion of a simplex under an 5-QS map of its

vertices.

3.1. Volume of a simplex. Let a = (a0, . . . ,ak) be a sequence of k + 1

points in E. We set d{j —\ai — CLj |. The Cayley-Menger determinant of a is defined

as

(3.2) Γ(d) =

0

1

1

1

0

d\

1

4
0

• 1

" d\k

- dl

1 0

This determinant is nonzero if and only if a is affinely independent. In this case,

the volume of the λ -simplex Δ = a0.. .ak is

(3.3) mk(Δ) =
2k/2kl

Moreover, Γ(a) > 0 if and only if k is odd. For these results, see [Be], p. 238 or

[Bl], p. 98.

We let a(k) denote the volume of a unit k-simplex, that is, a regular simplex

of edge 1. Explicitly,

(3.4)

see [So], p. 125.

a(k) = /F+T

2k/2kl
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3.5. LEMMA. For every k-simplex Δ we have rnk(Δ) < a(k)d(Δ)k.

Proof. We may assume that d(Δ) = 1. The lemma is clearly true for k — 1.

Proceeding inductively, assume that it is true for all (k — l)-simplexes. Then the

(k — 1)-measure of each face of Δ is at most a(k — 1). Thus mk_1(dΔ) <

rn^idΔt) where Δo is a unit ^-simplex. This implies that mk(Δ) < mk(Δ0) =

a(k) by the isoperimetric property of the unit simplex [Ha], (187), p. 273. D

3.6. Flatness of a simplex. We define two numbers p(Δ) and o(Δ) to de-

scribe the flatness of a λ -simplex Δ — aQ.. .ak. First we set

Observe that the diameter d(Δ) is the length of the longest edge of Δ. To define

p(Δ) we let bj(Δ) denote the distance between the vertex <2; and the (k — 1)-

plane spanned by the opposite (k — l)-face of Δ. Then we set

(3.8) b(Δ) = m i n {b,{Δ) :0<j<k), p(Δ) =

The number p(Δ) has been used in [Va3].

The numbers p(Δ) and σ(Δ) are obviously invariant under similarity maps.

They are large if Δ is very flat. On the other hand, they cannot be arbitrarily

small. For example, if follows from 3.5 that σ(Δ) is minimized by the regular

A-simplex. Thus σ(Δ) > l/a(k) for every /c-simplex. Clearly we have always

p(Δ) > 1.

For a 2-simplex Δ we obviously have 2m2(Δ) = b(Δ)d(Δ) and hence

(3.9) σ{Δ) =2p(Δ).

We next prove the inequalities

(3.10) 2(k'1)/2(k - \)\yfkp(Δ) < σ(Δ) < klp(Δ)k(k+1)/2

for every A -simplex Δ.

We may assume that Δ = a0. . . ak with b(Δ) = bk(Δ). Let Δx be the face

a0.. ,ak_ι of Δ. Then

mk(Δ) =

By 3.5 we have
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%-iWi) ^ a(k - ΌdiΔy-1 < a(k - l)d(Δ)k'\

Recalling (3.4) we obtain the first inequality of (3.10). It is sharp, since it holds as

an equality for a regular λ -simplex.

The second inequality of (3.10) holds for k = 1 in the form σ(Δ) — 1 =

p(Δ). Proceeding inductively, assume that it is true for (k — l)-simplexes. We

have

and hence

b(Δ) mk-Mi>

Since piΔ^ < β(Δ), this and the inductive hypothesis yield the second inequality

of (3.10), which is not sharp.

3.11. QS maps of simplexes. Suppose that Δ — a0. . . ak is a /c-simplex in

E. We let Δ° = {a0, . . . ,ak} denote the set of vertices of Δ. Let Ef be another

inner product space and let f : Δ —> E' be an s-QS map. If / is a similarity, it

preserves the flatness numbers p(Δ) and σ(Δ). It is therefore natural to guess

that for small s, fΔ defines a simplex whose flatness differs only slightly from

the flatness of Δ. This is easy to prove by normal families, but we want to get

explicit estimates. We prove only what is actually needed in Section 4.

3.12. LEMMA. Let r > 1 and let k be a positive integer. Then there is a num-

ber s — s (r, k) > 0 and a positive decreasing function s •—• λ(s, ry k), defined on

5 ][0, 5 ], such that λ(s, r, k) —» 1 as s~> 0 and such that the following statement is

true:

Let Δ — a0. . . ak c E be a k-simplex with p{Δ) < r and d(Δ) = — aλ

= 1. Letf : Δ0-* E' be an s - Q S map with \ fa0 -faι\ = l.Ifs<l Λ3r), then

(1) (1 - 3rs) I a{ - aj \ < | fa{ - faj | < (1 + 3rs) \ a{ ~ aj \

for all i, j . If s < s*(r, k), then

(2) \Γ(fa)\ >λ(s, r,k)\Πa)\,

where Γ is the Cayley-Menger determinant (3.2) and fa = (fa0,..., fak).

The bounds s (r, k) and λ(s, r, k) are explicit and are explained in 3.16 and,
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fork = 2, iw3.19.

Proof. Suppose that Δ = ao...ak and p(Δ) < r. Write sι = 1/(3r) and sup-

pose that f :Δ°-*E' is s-QS with 0 < s < sv Set

di} = \at- dj\, d = min dφ d-j = \ fa{ - faj |.

Since d,, > bj(Δ) > b(Δ) = l/p(Δ) > 1/r, we have

(3.13) d>l/r.

To prove (1) we may assume that i'• Φ 0 and i Φ j . Since d ̂  dkl ^ <ί01 = 1

for all k Φ I, we have

and doi/dol < 1 < 1/s. Hence the 5-quasisymmetry of/ implies

where (3.13) yields

u = s/doi + sdoi/dυ + s2/dυ < s/d + s/d + s2/d < 3s/d < 3rs,

and we obtain the second inequality of (1).

Similar arguments give

d'u

doL, \(doL , \ _ 1
dti

 + s) W0( / d,,a - v)'

where

_
v

_ sdj + sdti + s2dl}d0t s + s + s2

(doi + sdti) (1 + sdj ^ d

This gives the first inequality of (1).

We turn to the determinant Γ(a). We can write

\Γ(a)\ =p~g, P=Σpu, q=Σqίl
u v

where each pu and qv is a product of k numbers of the form dir The number of

terms of each sum is less than (k + 2) ! /2. Replacing d{j by d ; we similarly

obtain the numbers p'u, q'v1 p', q' with
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I Γ(fa) \=p'- q'.

Writing t = 3rs we obtain from (1):

(χ-tΫkpu<p'u<{l+tΫk

Pu>

and hence

(i-t)2kp<p'< (i + t)2kp.

Similar relations hold for q and q\ Thus

I Γ(fa) \=p'-q'>(l- t)2kp - (1 + t)2kq = λ0 \ Γ(a) \,

where

λ0 = (1 - tfk ~ yzr- [(1 + tfk ~ (1 - t)2k].

Since dtj < 1, we have q < (k + 2 ) ! /2 . Next, because d(A) = 1, we obtain from

(3.3) and (3.10) that

p-q=\Γ(a)\ = 2k(k\Ϋmk(Δ)2 = ̂ ~γ~ > 2kr

Consequently, we have | Γ(fa) \ > λ \ Γ(a) \ with

/ Q 1 ^ \ 5 — 3 f c v l λ — (Λ Λ2ίc - — Γ(Λ 4- A
^o.lOj A — Λ \ O , / , K) — \1 I) \_\L \ I)

where t = 3^5. Clearly λ(s, r, k) is decreasing in 5 and λ(s, r, k) ~+ 1 as s—• 0.

Choose s* = 5*(r, /c) such that 5* < 5X = 1/(3r) and such that λ(s, r, k) > 0

for 5 e [0, s ]. Then the lemma is true with these s and λ. •

3.16. Bounds in 3.12. The numbers s (r, k) and λ(s, r, k) obtained in

the proof of 3.12 are explicitly computable but rather complicated. We shall next

give simpler but somewhat less accurate bounds. The function g(x) = (1 + x)

is convex and hence above its tangent:

g(x) >l+2kx

for every real x. Moreover, 0 < g'(x) = 2A(1 + x)2k~l < 22kk for | x \ < 1, and

hence

0<g(x) -g(-χ) <22k+1kx

for 0 < x < 1. Since t = 3rs < 1 in (3.15), we obtain
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λ(s, r, k) > 1 - 2kt - 2k(k + 2)lkrk(k+1)t

= 1 — air, k)s,

where

(3.17) a(r, k) = 6fcr(l + 2k~\k + 2)!r* (*+ 1 )).

Hence Lemma 3.12 is valid with

(3.18) s*(r, A:) = l/(2α(r, A;)), Λ(s, r, k) = 1- a(r, k)s.

In the case k = 2 better estimates are given in 3.19.

3.19. T/i£ case k — 2. We give an independent treatment of the case k — 2

of Lemma 3.12. Indeed, we show that one can choose

(3.20) 5*(r, 2) = 1 / ( 8 A Λ(s, r, 2) = 1 - 7r2s.

Assume that Δ = aQaιa2 and f :Δ —+Ef are as in 3.12. For b = d(a2,

we have

(3.21) l/b = p(Δ) <r, tn(Δ)=b/2, b

For; = 0,1 write

Uj = \dj — a21, 0 ; = I / α ; — fa21, 2/? = 1 + u0 + uv 2q = 1 + v0 + υv

We may assume that u0 < uv Let A be the 2-simρlex with vertices fa0, fav fa2.

The classical Heron's formula gives

m(Δ')2

Assume that 5 < l/(8r 2 ) . Then (3.21) implies that

s < by/3/16 <b, s< 3/32 < 1/10.

Hence 1/Uj < 1/6 < 1/5 and My < 1 < 1/s. Consequently, the s-quasisymmetry

of / gives

(3.22) J-£J- + S £ ! ± ! f ί,;.<M;. + S ;

which implies

(3.23) q>p/(l + s).

We next show that
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(3.24) p- 1 > 2 / ( 3 r 2 ) .

For given ft, the sum u0 + uγ is minimal when u0 = uv Thus u0 + ux > (1 +

4ft2)1/2. Since (3.21) implies that 4ft2 < 3, this and (3.21) yield

u0 + uγ > 1 + 4ft2/3 > 1 + 4/(3/),

and we obtain (3.24)

The inequalities (3.22) and (3.24) imply

1-3Λ/4

TT7

To estimate the numbers q — Vj we write k = 1 — j . Since 1 + uk — 2p — ujt

(3.22) gives

o/ N i . ^2{p~ U) ~ s(Uj + s)
2(q - Vj) = l + vk-Vj> 1 + s »

and hence

q — Vj 1 — CjS _ Uj + s

p-Uj ~ 1 +5 ' Cj " 2(p-Uj)'

For / = 0 we have 2(p — u0) = 1 + uλ — uo> 1, and hence c0 < 1 + s. Since

5 < 1/10, we obtain

(3.26) l_ V° > Ϊ

For > = 1 we observe that 2p < 3, 2(p - 1) < 1, 2(p - u0) < 2, m(Δ) >

l/(2r), and hence Heron's formula gives p — ux> l / ( 3 r 2 ) . Thus

c, < 3r 2 (l + l/10)/2 = 33r2/20,

and hence

(3.27)
p-Ui 1 + 5

Joining the estimates (3.23), (3.25), (3.26) and (3.27) yields

m(ΔfΫ > 1 / _ ^r 2 5\/, 11s

m(Δ)2 (1 + 5)4 ^

Since (1 + 5) > 1 — 45 and since
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(3.28) (1 - tx) - (1 - tn) > 1 - (t, + + Q

for all positive tj, these inequalities and (3.21) easily give rn(Δ') > λrn(Δ)2 with

λ as in 3.20.

If we replace the condition s < l/(8r ) by s < 2/(5r ), it is easy to show

by the same arguments that we still have m(Δ') > 0. Since σ(Δ) = 2p(Δ) by

(3.9), we obtain the following result, which is useful in Section 5:

3.29. LEMMA. Suppose that Δ is a 2-simplex in E and that f : Δ° —• Er is an

s-QS map with s < 3/(2σGύ) ). ThenfΔ is not contained in a line. •

4. Thickness and quasisymmetry

4.1. Thickness. This section gives the main result of the paper: The thick-

ness of a set can change only slightly under an s-QS map with small s.

As before, E and E' will denote inner product spaces. Let q > 0 and let k be

a positive integer. We recall from the introduction that a set A c £ is

(q, k)-thick if for each x ^ A and r > 0 such that A\B(x, r) Φ 0 there is a

/c-simplex Δ with vertices in A Π B(x, r) such that mk(Δ) > qrk. The volume of

a λ -simplex Δ in B(xf r) is maximal when Δ is a regular Λ -simplex with edge

(2k + 2)U2k~1/2r. From this and from (3.4) it follows that the number q of a

(q. A;)-thick set satisfies the condition

(4.2) 0 < q < qo(k) = ^—^ .
k k\

4.3. THEOREM. Let k be a positive integer and let q > 0. There is a number

s0 = so(q, k) > 0 and a positive decreasing function s *-> qχ(q, s, k), defined on

[0, s0], such that:

(1) lim^Ctf, 5, k) = q.

(2) If Acz E is (q, k)-thick and if f : A-+ Er is s-QS, s < s0, then fA is

(qly k)-thick.

The bounds are explicit.

Proof. Let A c E and / : A-* E' be as in (2). Suppose that x0 eA, y0 = /r 0 ,

and that r > 0 such that the set F ' = fA\B(y0, r) is not empty. We must find a

/c-simplex Δf with vertices in B(yQf r) Π /Λ and an estimate

(4.4) tnk(Δ') > qλ(q, s, k)r\
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valid on an interval 0 < s < so(q, k). We may assume that 5 > 0, since in the

case s = 0, / is a similarity, and we can choose qx — q.

We set

F = f~ι F', rλ = d{F, x0), r2 = rγ/{\ + 5).

Then

0 Φ F(zA\B(x0, rj.

We assume that s < 1 /2 and give more restrictions on s later.

By the definition of (q, k) -thickness, there is a Λ -simplex Δ — a0. . ,ak with

vertices in A Π B(x0, r2) such that

(4.5) mk(Δ) > qr2.

We choose the order of the vertices so that

I a0 - a, I = d(Δ)9 \ a o - χ o \ > d(Δ)/2.

Write a] = fdj and Δ! = a'o . . . ak. Since | a}•, — x0 \ < r2 < rlf the points a] are in

B(y0, r) Π fA. Hence it suffices to show that Δ' satisfies (4.4) with suitable num-

bers qγ and s0.

We can use auxiliary similarities to normalize the situation so that

d(Δ) = I a0 - aγ \ = 1, | a'o - a[ \ = 1.

Choose xx ^ F such that

1 xγ — x01 < (1 + 5 )^ .

We want to apply the s-quasisymmetry of/ to the triples (r0, xv a0) and (a0, x0,

aλ). For this we need the inequalities

XΛ XΓ\

a* — Xn I ~ 5 ' I a, - a,
(4.6)

Setting

(4.7)

where a(k) is as in (3.4), we show that (4.6) is true if s < s^q, k) and 5 < 1/2.

Indeed, we have

_ _ 1#
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From Lemma 3.5 and from (4.5) we obtain

3rx = 3(1 + s)r2 < 5r2 < 5(mk(Δ)/q)W1' ^ 1/s^q, k),

and (4.6) follows.

From now on, we assume that s ^ Si(ί» k) and 5 ^ 1/2. Since fx1 ^ F' and

since / is s-QS, (4.6) implies

r ^ \fχχ - y01
0 | β - » l

Ui - g01 , \ /I Jo-gpl

< (1 + s)^ + s(r2 + 2(1 + s)^ + s).

Since s ^ 1 /2 and

(4.8) 1 = rf(4) < 2r2,

this yields

(4.9) r/d(Δ') < (1 + 9s)r2.

By (3.10) we have

p(Δ) < 4σ(Δ) = c'k/mk(Δ),

where

= 2kc'Since (4.5) and (4.8) give mk(Δ) > q/2k, we obtain p(Δ) < ck/q where ck = 2kc'k.

Write s2(q, k) = q/(3ck) and assume from now on that 5 < s2(q, k). Since 5

l/(3p(Δ)), 3.12 (1) gives

d(Δf) < (1

By (4.9) this implies

(4.10) r<

3p(Δ)s.

95)(1 +3cΛs/?)r 2 .

Since ^W) > 1 for every simplex Δ, we have q / ^ > 1. Let 5 (r, k) and
/ί(s, r, /c) be the functions given by 3.12. We set

(4.11) s3(q, k) = s*(ck/q, k), λ^q, s, k) = >l(s, cΛ/?, k)

and assume that s < s3(q, k). Now (3.3), 3.12 (2), (4.5) and (4.10) give (4.4) with
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(4.12)

This is valid for

s < so(q, k) = min {1/2, s^q, k), s2(q, k), s3(q, k)}.

Since q^q, s, k) —• q as 5 —* 0, the theorem is proved. •

4.13. Bounds in 4.3. The bounds so(q, k) and qγ(q, s, A:) obtained in the

proof of Theorem 4.3 are explicitly computable but somewhat complicated. We

shall give more explicit bounds in the case k — 2.

The function so(q, 2) was obtained as the minimum of the numbers 1/2,

sx(q, 2), s2(q, 2) and s3(q, 2). With the notation of the proof we have c2 = 2. By

(3.20) and (4.10) we can choose

s3(q,2) = s*(2/ί, 2) = q2/32.

Since q < qo(2) = 3\f3 /4 by (4.2), it is easy to see that so(q, 2) =

From (3.20) and (4.11) we obtain

λγ{q, 5, 2) = 1 -2%s/q\

By (4.12) this gives the bound

This can be simplified by the elementary inequalities y/1 — t ^ 1 — t, (1 + f)

> 1 — ί, (3.28), and the upper bound q < 3\/3 /4; see (4.2). We obtain the lower

bound

Q

2 / rj A TT . . _ _ -i ~ ί ~ o\ ~2which is positive for 5 < q /74. Hence we can choose 50(^, 2) = q /75 and

4.14. THEOREM. L ί̂ A; te α positive integer and let q > 0. 77ιen ί/iere t5 if0 =

K0(q, k) > 1 and an increasing function K *-> q2(q, K, k), defined on [1, Ko], such

that

(1) Iimq2(q, K, k) = q.
ΛΓ—1

(2) If A c Rn is (q, k)-thick and iff : Rn-^ Rn is K-QC with K < Ko, then
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fA is (q2, k)-thick.

The bounds are explicit

Proof. This follows directly from Theorems 2.13 and 4.3. Π

4.15. Remark. The intuitive meaning of the (q, k) -thickness is that the

sets with this property avoid in a uniform way all /c-dimensional affine subspaces.

Sets with the opposite property, that is, sets which can be well approximated by

λ -dimensional planes were studied in [MV].

5. Arcs

5.1. QS and QC arcs. By an arc in a topological space we mean a set a

homeomorphic to [0,1]. If there is an s-QS homeomorphism / : a—• [0, 1], we say

that a is an s-quasisymmetric arc. Let R — R U {°°} be the one-point

extension of R . If a c R and there is a K-QC map / : R —* R carrying a onto

a line segment, a is a K-quasiconformal arc or briefly a K-quasiarc.

An s-QS arc a c R is always a if-quasiarc with K = K(s) —• 1 as s—• 0.

Moreover, the K-QC map / can be chosen to fix the point °°. We prove this in

5.2, but the result is well known. Conversely, if / : R —» R is K-QC and if

/(°°) = °°, then / maps each line segment onto an s-QS arc with s = s(K) —> 0

as K—>1. This follows from 2.13. However, if /(°°) Φ °o , even a conformal

mapping / can map a line segment onto a circular arc of angle close to 2ττ, and

then a is not an s-QS arc with small s.

In this section we derive upper bounds for the thickness of s-QS and K-QC

arcs. By means of an example we also study the sharpness of these bounds. We

formulate the results for 2-thickness, but bounds for the /c-thickness of s-QS

arcs can be obtained by similar methods.

Every arc is trivially 1-thick. For k ^ 2, a /c-thick arc cannot have a tangent

at any point. In particular, a rectifiable arc in Rn is never /c-thick for k > 2.

5.2. LEMMA. Suppose that a is an s-QS arc in R . Then there is a K-QC map

f : R —> R such that fa is a line segment and such that K = K(s) —• 1 as s —• 0.

Proof. Choose an s-QS homeomorphism g:a—> [0, 1]. Then g is weakly

(1 + s) - QS in the sense of [TVJ. By [Va4], Th. 2.9, g is ry-QS with η = ηs.

Hence g~ι is 7/-QS with η'(f) = η'1^'1)'1. Thus g is #-quasimόbius with θ =

θs, by [V&2], Th. 3.2. It follows that the distortion of a in the sense of Rickman [Ri]
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is at most 20(1). By Theorem 1 of [Ri] and by the subsequent Remark, there is

Kλ = K^s) and a Kγ -QC map fγ: R —* R carrying a onto the positive half R+

of the real axis. The map fγ is fl'-quasimόbius with θ' = θ's\ cf. [Va2], p. 232.

Write y = /(°°) and choose x ^ a with | fx \ = y. Let a and b be the en-

dpoints of a with fa = 0, fb = °°. Considering the quadruple (z, δ, <z, °°) we

obtain

It follows that | arg y \ is bounded from below by a positive constant depending

only on 5. Hence there is K2 = K2(s) and a if2-QC map / 2 : R ~^ R such that

f21 i?+ = id and f2y lies in the negative half of the real axis. Let f3 be a Mόbius

map which carries {f2y, 0, °°) onto (°°, 0,1). Then the composite map / = /3/2/i

is KλK2-QC with/(oo) = oo a n d / α = [0,1].

The construction above is valid for every 5 > 0. For small 5 we can make use

of the fact that the line segment [0,1] has the QS extension property (QSEP) in

R2; see [Va3], Th. 4.6. The map g~ι : [0,1] -+a is v Q S , w h e r e sλ = s^s) ->0

as s-^ 0 cf. [Pa], Lemma 1.4. By the QSEP of [0,1], there is a universal constant

s0 > 0 such that if 0 < s < s0, we can extend g~ to an S2-QS map F : R —• R ,

where 52 = S2(5) —> 0 as 5 —> 0. Then / = F'1 is the desired map by 2.5. D

5.3. LEMMA. Suppose that a is an s-QS arc in E and that a contains the ver-

tices of a 2- simplex Δ. Then

oiAΫ > A

Proof This follows directly from 3.29. D

5.4. Remark. Lemma 5.3 is nontrivial only for s < 9/32, since we always

haveσ(d) > l / α ( 2 ) = 4 Λ / 3 .

5.5. THEOREM. Suppose that a is an s-QS arc in an inner product space E and

that a is (q, 2)-thick. Then q <

Proof Assume that a is (qf 2)-thick. Choose x Ξ a and r > 0 such that

a\B(x, r) Φ 0 . Then there is a 2-simplex J with vertices in a Π B(x, r) such

that m2G4) > qr2. Since d(4) < 2r, we have σ(4) < A/q by (3.7). The theorem
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follows from 5.3. •

5.6. Quasiarcs. Suppose that a is a (q, 2) thick iC-quasiarc in R . Then

there is a K-QC map f : R —> R such that fa is a line segment. If /(°°) = °°,

then / is s-QS with s = s(K) -> 0 as # - > 1 by 2.13. By Theorem 5.5, we have q

< y Ί ϊ s . For small K, 2.13 gives

One can show that this is also true if /(°°) Φ °°. However, we give a better

bound in 5.9 below using directly the quasiconformality of / We need the follow-

ing result on the distortion of QC maps of the plane:

5.7. LEMMA. Suppose that f : R2 —• i? 2 is a K-QC map with /(0) = 0 ,

) = elf K < 2. Then for each x Ξ [0, ej we have

d(fx, [0, ej) <\

G(iD t5 defined by 1/G(K) = 2φK2(l/y/2)φ1/K2(l/y/2), and φκ>2 is as in

[Vu].

Proof By [Vu], Cor. 3.15 (see also [AG], Th. 2), we have

\fx\ + \fχ- e,\< GOO <8K~\

Hence fx is located in the ellipse with foci 0 and eι and with focal sum G(K).

Thus d(fx, [0,^]) < b where 2b = (G(K)2 ~ 1) 1 / 2 is the smaller axis of this

ellipse. We have

U2 = 64*" 1 - 1.

Since the expression (ax — l)/x is increasing in x for a > 1, x > 0, and since

K < 2, we obtain

4δ2 < 63CK- 1),

and the lemma follows.

5.8. Remark If we apply the results from [VV], we can slightly improve the

upper bound in Lemma 5.7.
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5.9. THEOREM. Suppose that a is a (q, 2)-thick K-quasiarc in R . Then

Proof. Since we always have q ̂  3 y/3 /4 by (4.2), we may assume that

K < 2. Choose a K-QC map / : R2 -* R2 with fa = [0, ej. Let a be the endpoint

of a with fa = 0. We first treat the case /(°°) Φ °°, and set R = \ a — f~l(°°) .

Choose a positive number f < 1 such that a\B(a, tR) Φ 0 . Since a is

(#, 2)-thick, there is a 2-simplex Δ with

(5.10) / c α ί l β(α, tR), m{Δ) > qt2R2.

There is Kx = Kx(t) and a ^ - Q C map g : R2-> R2 such that #(°o) ^ / " ' ( o o ) ,

^ |5(f l , ίΛ) = id, and K^t)-*! as ί-*0. The map f1=fg:R2^R2 is

iί1iϊ'-QC,/1(°o) = °° , and fL=fin B(a, tR). Using auxiliary similarities and

Lemma 5.7 we see that

m(Δ) < 8t RyK.K - 1.

By (5.10) this implies

q< Sy/K,K - 1.

Letting t—> 0 we obtain q < 8y/K — 1. If /(°°) = °°, the argument is simpler, be-

cause the auxiliary map g is not needed. We choose r > 0 such that a\B(a, r)

Φ 0 and choose Δ as above with tR replaced by r. •

5.11. EXAMPLE. For K > 1 let q^K) be the least upper bound of all q > 0

such that there is a (q> 2)-thick Zf-quasiarc in R . By 5.9 we have

\u.±ώ) q1\i\) -^ oyA 1.

We next show that for K < 9/4 we have

{K- 1 ^ K- 1
(5.13) ?1(/Q

1920

by constructing a if-QC map f : R -* R which maps the segment [— elt eλ] onto

a (ί, 2)-thick arc with q = WE ~ D/768.

The map / will be a limit of piecewise linear ίί-QC maps fj'.R ~^ R . Let /0

be the identity map. We next construct fv
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Let Qo be the closed square with vertices ± ev ± e2. Let 0 < t < 1/24, and

let /x : Qo-* Qo be the simplicial homeomorphism described by Figure 1: the point

^(0) is chosen to be te2. The four shaded areas Qv Q2, Q3, QA are squares of dia-

meter 1/2, and each fx \ Q{ is a similarity. Indeed, fλ \ Qλ U Q4 = id. Since fγ \ dQ0

= id, we can extend fγ by the identity to a homeomorphism fγ:R —> R . The map

fγ is if-QC with K = iί(rt, which will be computed later.

The map f2 is described in Figure 2. Outside the four squares Qt we have

/2 = fv In Qf , f2 is of the form βj^ where α f : 0 ^ Qo and ft : Qo~*AQi are

similarities. The map /2 is K-QC with the same K as /j.

Proceeding inductively we obtain a sequence of K-QC maps /)• : i? —* i? . The

map / i + 1 agrees with ^ outside 4 ; squares of diameter 2 4" ;, and f} is a similarity

in these squares. The maps f} clearly converge to a K-QC map / : R —• i? . Thus
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a — / [ — eί9 ej is a if-quasiarc.

We show that a is (q, 2)-thick with q = f/64. Let x e a and r > 0 be such

that a\B(x, r) Φ 0 . In t h e / step of the construction, x belongs to the/J-image

of one the 4 ; squares of this step; call this image Rj. Then Qo — Ro ^ Rλ ^> . . .

and d(Rj) ^ rf(i?; _1)/4. Let be the smallest integer with Rj c Z?Cr, r), and set

Uj — d(Rj). Since α c Qo = j?0> we have j > 1. Moreover, .r ^ i? ; _x <£B(x, r),

which implies that uj_1 > r, and hence

My > r / 4 .

The square i? ; has two opposite vertices <20, αx in a. There is also a point a2 ^ Oί

such that the 2-simplex aoa1a2 is similar to the 2-simplex with vertices ev — ev

te2. Thus

m(Δ) = tu2j/4: > tr2/6i.

Since Δ c i?y c jB(χ, 2/), α is 9-thick with q = ί/64.

We next show t h a t / is iί"-QC with K — (1 + 12ί) . Consider the basic trian-

gulation T of Qo given in Figure 1. If υ is a vertex of T, then fxv Φ v only for υ —

0 and for the four vertices υ = ( ± ex ± ^2)/4. It is easy to see that for these # we

have I f{V — υ \ < i If -4 is a 2-simplex of Γ, /x keeps at least one vertex of Δ fix-

ed. The smallest height b(Δ) of 4 is at least 1/4. By Lemma 5.14 below, fx \ Δ is

(1 + 12£)-biliρschitz. Hence fϊ:R
2^R2 is (1 + 12f)-bilipschitz and hence

(1 + 12t)2-QC. Hence we can choose K = (1 + 12/)2.

It follows that

t 4κ-
q 64 768

and we have proved (5.13). It is possible to compute the dilatation oί fλ exactly,

but this would only replace the constant 768 by a smaller one, and there would

still remain an essential difference between the bounds (5.12) and (5.13).

5.14. LEMMA. Suppose that Δ = a0a1a2 is a 2-simplex in R and that f : R

—* R is an affine map such that

fa0 = a0, I fa, -a,\<> ab(Δ)/3

forj = 1,2, where 0 < a < 1/2. Thenf is (1 + a)-bilipschitz.

Proof. In [TV2], Lemma 3.5, one proved t h a t / is (1 + 2a)-bilipschitz with-

out the condition fa0 = a0. The proof of the present lemma is obtained by a slight

modification. •
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6. The bilipschitz case

6.1. Bilipschitz maps. A map / : X—> Y between metric spaces is called

M-bilipschitz, M > 1, if

\χ-y\/M<\fχ-fy\<M\χ-y\

for all xy y ^ X. An Λf-bilipschitz map is η-QS with η(t) = M t and hence

s-QS with

s= (M2 - 1)1/2 for 1 <M<J2,

s = M2-l for M < y[2.

In particular, s—• 0 as M-* 1. Hence the preceding sections give estimates for the

change of the thickness of a set under a M-bilipschitz map. Hewever, using direct-

ly the bilipschitz condition we can easily obtain better results.

We start with an example which shows that thickness is not a bilipschitz in-

variant.

6.2. EXAMPLE. We shall construct a bilipschitz map f : R —> R which car-

ries a subset A of the xγ -axis onto a set which is 2-thick. Observe that A cannot

be an interval, since then / A would be a rectifiable arc and hence not 2-thick.

Figure 3

Figure 4
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Let 0 < t < \/3"/2. We define a sequence of continuous real-valued functions

ψj on / = [0, 1] as follows: Divide / into successive intervals Ilf. . . ,75 of length

1/5. Then φ^x) = 0 for x e 7X U 75, and ^ C r ) = 4 / 5 for x e 73. In the inter-

vals 72 and 74 φ1 is affine. Then φ x : I—*R is 4ί-Lipschitz. See Figure 3, where

t = 1/2. The function <p2 agrees with φ1 on 72 U 74. For z = 1,3,5, the graph of

φ21 If is similar to the graph of φv For example, φ2(x) = ^ X ( 5 J : ) / 5 for x ^ 7X.

The function <p2 *
s ^ s o 4ί-Lipschitz. See Figure 4.

Proceeding similarly we obtain an increasing sequence of 4^-Lipschitz func-

tions ψj converging to a 4^-Lipschitz function φ : I—>R . The function φ} is con-

stant on 3 closed intervals of length 5 let A} be the union of these intervals.

Then the intersection of all A, is a Cantor set 4 c / . The graph C of φ | A is a

self-similar Cantor set in R . It can be obtained from the triangle Δo with vertices

0, ev ex/2 + te2 by first replacing Δo by the three shaded triangles of Figure 3

and repeating this process infinitely.

Extend φ to R by setting φ(x) = 0 for x e R \7. Then φ is 4^-Lipschitz

oni? 1 . Define/ : R2-^ R2 by

fix, y) = (x,y+ φ(x)) = (x, y) + φ(x)e2.

Then / i s (1 + 4β-Lipschitz. Since / is a homeomorphism with / (x, y) —

(x, y— φ(x)), we similarly see that / is in fact (1 + 4£)-bilipschitz. Furth-

ermore, / maps the set A in the real axis onto C.

We show that C is (q, 2)-thick with q = t/50. Suppose that x ^ C and r > 0

with C\B(x, r) Φ 0 . Since d{C) = 1, we have r < 1. Choose an integer j with

5~J < r < 5~;+1 then j > 1. In the j t h step of the construction, x belongs to a

triangle Δ such that d(Δ) = 5~;, 4° c C, and Zl is similar to ΔQ. Thus w(4) =

5~2it/2. Since r < 5" ; + 1, we have m(Δ) > r 2 ί/50. Clearly 4 c β ( χ , r), and

hence C is (#, 2)-thick with q = t/50.

We have proved that if 1 < M ^ 1 + 2\/3\ then there is an M-bilipschitz

homeomorphism / : R —> R such that / carries a subset of the real axis onto a

(?, 2)-thick set with ? = (Λf - Ό/200.

Observe the striking difference between bilipschitz homeomorphisms and

diffeomorphisms of R . In a diffeomorphism /z : R —• i? , the curve /zi? has a

tangent at every point and cannot contain any 2-thick set.

Let g : A—> C be the homeomorphism defined by / Of course, g is also (1 +

At) -bilipschitz. However, we show that g is in fact (1 + 8/ )-bilipschitz. The map

g : C~^A is the restriction of the orthogonal projection and hence 1-Lipschitz.

On the other hand, if x, y <Ξ C, then | x2 — y2 \ < 4t\ xγ — yγ |. From this it fol-

lows that
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I x - y |2 < ( 1 + l & t 2 ) \ x , - y x \
2 < ( 1 + 8 t 2 ) 2 \ x x - y x |2,

which implies that g is (1 + 8t )-Lipschitz. Hence, for every M < 7 there is an

M-bilipschitz map g :A~^R2 such that gA is (q, 2)-thick with q = \jM — 1

/(50\/8) > V M - 1/142.

6.3. Bilipschitz theory. We shall give bilipschitz versions of parts of Sec-

tions 3 and 4. Corresponding to 3.12, we first consider a λ -simplex Δ = a0 . . . ak

c E with p(Δ) < r and an M-bilipschitz map / : Δ —• £ ' . With the notation of

3.12 we then have the inequalities

M^dij < d-j < Mdφ

which replace (1) of 3.12. The proof of 3.12 then gives

(6.4) \Πfa)\ >λ(M,r,k)\Γ(ά)\,

λ(M, r, k) = M~2* - 2~k~\k + 2)lrkik+1]\M2k - M~2k).

Thus λ(M, r, k) -> 1 as Af-> 1 and λ(M, r, k) > 0 for 1 < M < M * with

some M = M (r, k).

Corresponding to 4.3, we next suppose that A c: E is (q, A:)-thick and that

/ : A—> Ef is M-bilipschitz, M > 1. We want to find a lower bound for the thick-

ness of fA. Let y0 = f(x0) <= /A and let r > 0 with fA\B(y0, r) = F'Φ 0 .

Writing F = f~ι Ff and rx = d ( F , ,r0) we have rx > r/M. Set r2 = rι/M and

choose a /c-simplex ^ == a0 ... αΛ such that β ; ^ A ίl 5teo> 2̂) a n d wιk(Δ) ^

^r2

Λ. Writing a] — fa^ and 4 ' = a'o . . . a'k we have | fly — y0 \ < r. As in 4.3 we

obtain p(Δ) < ck/q with the same constant ck. Using (6.4) we get mk(Δf) > qγr ,

where

q1 = qx(q, M, k) = qM~2kλ(M, ck/q, k)ι/2.

This function is positive for 1 < M < M (ck/q, k) = M0(q, k). We have proved

the following bilipschitz version of Theorem 4.3:

6.5. THEOREM. Let k be a positive integer and let q > 0. There is a number

Mo = M0(q, k) > 1 and a positive decreasing function M>-> qγ{qy M, k), defined on

[1, M o], such that:

(1) lim q^q, M, k) = q.

(2) IfA<^Eis (q, k)-thick and iff \ A^ Er is M-bilipschitz, M < Mo, then

fA is (qlf k)-thick.

The bounds are explicit. D
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6.6. A special problem. We consider M-bilipschitz maps f :A-^> E where

A c ] ? and E is an arbitrary inner product space. Let q (M) be the supremum

of all q such that fA is (q, 2)-thick for some/ and A. The example in 6.2 shows

that

(6.7) q*(M) >

for M < 7. We show that this estimate has the correct order of magnitude by pro-

ving that

(6.8) q*(M) < 3VM- 1

for all M > 1. Since (4.2) gives q (M) < 3\/3V4 for all M, we may assume that

M < 5/4.

Suppose that A c R , that / : A—» £ is an M-bilipschitz map and that fA is

(#, 2)-thick. We must show that q < 3^/M — 1. Choose x ^ fA and r > 0 such

that fA\B(x, r) Φ 0 . Since /A is (#, 2)-thick, we can choose points a < b < c

in A such that Δ = f (a) f (b) f (c) is a triangle with m(4) > qr2. Write α =

|/tf — fc I, and let /z be the height of 1̂ from/ft. The bilipschitz condition gives

Let Γ be the 2-dimensional plane containing Δ. Then/ft is within the ellipse of T

with foci fa and fc and focal sum M a. This obviously implies that

4h2 <M*a - a =a(M2 + 1 ) ( M + 1 ) ( M - 1) < 6 α 2 ( M - 1).

Since a < 2r, we obtain

as desired.
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