IRREDUCIBLE AUTOMORPHISMS OF CERTAIN p-GROUPS

D. ž. DJOKOVIĆ AND J. MALZAN

Introduction. The chief purpose of this paper is to find all pairs (G, θ) where G is a finite special p-group, and θ is an automorphism of G acting trivially on the Frattini subgroup and irreducibly on the Frattini quotient. This problem arises in the context of describing finite groups having an abelian maximal subgroup. In fact, we solve a more general problem for a wider class of p-groups, which we call special F-groups, where F is a finite field of characteristic p. We point out that if p is odd, then an F-group has exponent p. On the other hand, every special 2 -group is also a special $G F(2)$-group.

As a byproduct of our theory of F-groups we obtain an interesting result about non-singular subspaces of alternating matrices over finite fields (Theorems 10 and 12). These results can be stated in terms of alternating forms. Analogous results are obtained for quadratic forms over $G F\left(2^{n}\right)$ (Theorem 13). Theorems of this type are known for matrices over reals, complexes or quaternions $[\mathbf{1} ; 2]$.

We conclude with an open problem about non-degenerate F-groups (Section 5).

Notation.

$Z(G)=$ the centre of a group G,
$\Phi(G)=$ the Frattini subgroup of G,
$G^{\prime}=$ the commutator subgroup of G,
$N_{G}(H)=$ the normalizer of H in G,
$C_{H}(a)=$ the centralizer of an element $a \in G$ in the subgroup H of G.
If H is a subgroup of G then

$$
\operatorname{core}(H)=\bigcap_{x \in G} x H x^{-1}
$$

$|S|=$ the number of elements of a finite set S.
$G=N \prec H$ is the semi-direct product of N and H with $N \triangleleft G$. It will always be clear from the context how H acts on N.
A group H of automorphisms of a group G is regular if for every $\alpha \in H$, $\alpha \neq 1$, the centralizer

$$
C_{G}(\alpha)=\{x \in G \mid \alpha(x)=x\}
$$

of α in G is trivial.
Received March 11, 1976 and in revised form, November 9, 1976. This research was supported by NRC grants A-5285 and A-7263.
p will always denote a prime number. We say that a finite group is a p^{\prime}-group if $|G|$ is not divisible by p.

A finite p-group is called special if either it is elementary abelian or nilpotent of class two with $Z(P)=P^{\prime}=\Phi(P)$. If, moreover, $|\Phi(P)|=p$ then P is called extra-special. See [6, Chapter 5] or [7, Chapter III, § 13] for the basic properties of these groups.

1. The structure of G. In this section G will denote a finite group having an abelian maximal subgroup A. In the case where $A \triangleleft G$ we have $(G: A)=p$ where p is a prime. The structure of such groups is known [8]. Hence we will only be interested in the case when A is not normal in G.

First we show how one can construct finite groups G having an abelian subgroup A which is not normal in G.

Let P be a non-trivial special p-group (of exponent p if p is odd) admitting a cyclic p^{\prime}-group of automorphisms H which is trivial on $\Phi(P)$ and acts irreducibly and non-trivially on $\bar{P}=P / \Phi(P)$. Let D be an abelian p-group containing a copy of $\Phi(P)$. Define $K=(D \times P) / R$ where R consists of all $\left(x, x^{-1}\right)$ for $x \in \Phi(P)$. We extend the action of H to $D \times P$ and K by specifying that it acts trivially on D. Now let B be an abelian p^{\prime}-group admitting an epimorphism $f: B \rightarrow H$. Let $G=K \prec B$ where B acts on K via f. The subgroup $A=B D$ of G is abelian and proper. We claim that it is maximal in G. Indeed, if M is a subgroup of G containing A properly then $M \cap P$ contains $\Phi(P)$ properly and the irreducibility of \bar{P} under the action of B implies that $M \cap P=P$. Hence $M \supset A P=G$.

We claim that A is not normal in G. Otherwise it follows from $A=B \times D$ that B is normal in G. Hence $G=B \times K$, contradicting that B acts nontrivially on K.

We prove next that there are no other examples.
Theorem 1. Let G be a finite group having an abelian maximal subgroup A which is not normal in G. Then
(i) $N_{G}(A)=A, Z(G)=\operatorname{core}(A)$, and $A \cap x A x^{-1}=Z(G)$ for all $x \in$ $G \backslash A$;
(ii) $(G: A)=p^{n}$ for some prime p.

Let $A=B \times D$ where D is the p-Sylow subgroup of A and B its unique p^{\prime} complement. Then
(iii) $Z(\mathrm{G})=B_{0} \times D$ where $B_{0}=B \cap Z(G)$,
(iv) there exists a special p-subgroup P of G such that $P \triangleleft G, P \not \subset A, G=$ $A P, A \cap P=D \cap P=\Phi(P)$, and P has exponent p when p is odd, 2 or 4 when $p=2$.
(v) B acts irreducibly and non-trivially on $\bar{P}=P / \Phi(P)$ and the kernel of this action is B_{0};
(vi) $\bar{B}=B / B_{0}$ is cyclic;
(vii) $D P$ is a p-group and $G=(D P) \prec B$.

Proof. It is clear from our hypotheses that $N_{G}(A)=A$. We have $Z(G) \subset$ $N_{G}(A)=A$. On the other hand if $x \in G \backslash A$ then $x A x^{-1} \neq A$. Hence A and $x A x^{-1}$ centralize $A \cap x A x^{-1}$ and generate G, implying that core $(A) \subset A \cap$ $x A x^{-1} \subset Z(G)$. Thus (i) is proved.

Let $\bar{A}=A / Z(G), \bar{G}=G / Z(G)$. It follows from (i) that \bar{A} is a maximal subgroup of $\bar{G}, N_{\bar{G}}(\bar{A})=\bar{A}$ and that \bar{A} has trivial intersection with each of its conjugates. Hence, by [6, Theorem 7.7, p. 39] \bar{G} is a Frobenius group with complement \bar{A}. By [6, Theorem 3.1, p. 339] we have $\bar{G}=\bar{N} \prec \bar{A}$ where \bar{N} is nilpotent and $|\bar{A}|$ divides $|\bar{N}|-1$. Since \bar{N} is a direct product of its Sylow subgroups and \bar{N} is maximal in \bar{G} it follows that \bar{N} is a non-trivial p-group for some prime p. Since $(G: A)=(\bar{G}: \bar{A})=|\bar{N}|$ the assertion (ii) is proved.

Since \bar{A} divides $|\bar{N}|-1=p^{n}-1$ (say) it follows that \bar{A} is a p^{\prime}-group, i.e., $Z(G) \supset D$ and (iii) is proved. Let N be the pre-image of \bar{N} in G, and let S_{p} be the Sylow p-subgroup of N. Then $S_{p} \supset D, N=Z(G) S_{p}=B_{0} \times S_{p}$, $S_{p} \triangleleft G$ and $G=A S_{p}$. By [6, Theorem 3.8, p. 183] there exists a special p subgroup P of S_{p} such that P is B-invariant and B acts irreducibly and nontrivially on $\bar{P}=P / \Phi(P)$. Thus $P \not \subset A, P \triangleleft G, G=A P$.

We claim that $\Phi(P) \subset A$ Otherwise we have $G=A \Phi(P), \Phi(P) \triangleleft G$ and $P=\Phi(P)(A \cap P)$. By a well-known property of the Frattini subgroup this implies that $P=A \cap P$, which is a contradiction. Hence $\Phi(P) \subset A \cap P \subset P$ and since B acts irreducibly on \bar{P} we must have $\Phi(P)=A \cap P$.

Assume now that p is odd. (If $p=2$, it is immediate that P has exponent 2 or 4 , by definition.) By [6, Lemma 3.9, p. 183] the elements $x \in P$ satisfying $x^{p}=1$ form a subgroup P_{1} of P. We have $\Phi(P) \subset P_{1} \subset P$ and so by irreducibility of \bar{P} we must have either $P_{1}=\Phi(P)$ or $P_{1}=P$. The first possibility is ruled out because P is a non-trivial special p-group and p is odd. Thus $P_{1}=P$, i.e., P has exponent p.

Hence we have proved (iv) and the first part of (v). Assume that $a \in B$ acts trivially on \bar{P}. Then $\langle Z(G), a\rangle$ is normalized by A and P and hence it lies in $\operatorname{core}(A)=Z(G)$. Thus $a \in Z(G) \cap B=B_{0}$ and (v) is proved.
Let $a \in B$ be such that $\bar{C}=C_{\bar{P}}(a)$ is non-trivial. Let C be the pre-image of \bar{C} in P. Since B is abelian it is clear that B normalizes C. Since $P \cap A \subsetneq C \subset P$ we must have $C=P$ by the irreducibility of \bar{P}. Thus a acts trivially in \bar{P} and by (v) we have $a \in B_{0}$. This proves that \bar{B} is a regular p^{\prime}-group of automorphisms of \bar{P}. By [6 , Theorem 3.14, p. 187] \bar{B} is cyclic and (vi) is proved.

It is clear that (vii) holds because $D \subset Z(G), D$ is a p-group and consequently $D P$ is a p-group normal in G.

The theorem is proved.
It is clear that the problem of constructing finite groups G having an abelian maximal subgroup A is now reduced to the following problem:

Construct all pairs (P, θ) where P is a non-trivial special p-group (of exponent p if p is odd) and θ is a p^{\prime}-automorphism of P fixing $\Phi(P)$ elementwise and acting irreducibly on $\bar{P}=P / \Phi(P)$.

We shall solve this problem completely in the remaining part of this paper. In fact, we solve this problem for a somewhat larger class of groups which we call F-groups (F being a field).
2. F-groups. Let F be any field, and let V_{0} and V_{1} be F-vector spaces. Let also $\phi: V_{0} \times V_{0} \rightarrow V_{1}$ be an F-bilinear form. We construct a group $V=$ $V_{0} \times V_{1}$ having the following multiplication:

$$
(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+\phi\left(x, x^{\prime}\right)\right)
$$

This is a group because ϕ is a normalized 2 -cocycle. The elements $(0, y)$ in V form a subgroup of V, canonically isomorphic with V_{1}. Further, $V_{1} \subset Z(V)$ and V_{0} is canonically isomorphic with V / V_{1}. The group V will be called in this paper an F-group. Whenever we refer to an F-group V we shall regard V_{0}, V_{1} and $\phi=\phi_{V}$ as part of the structure of V.

In V we have $(x, y)=(x, 0)(0, y),(x, y)^{-1}=(-x,-y+\phi(x, x))$ and hence the commutator

$$
\begin{aligned}
{\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right]=} & {\left[(x, 0),\left(x^{\prime}, 0\right)\right] } \\
= & (-x, \phi(x, x))\left(-x^{\prime}, \phi\left(x^{\prime}, x^{\prime}\right)\right)(x, 0)\left(x^{\prime}, 0\right) \\
= & \left(-x-x^{\prime}, \phi(x, x)+\phi\left(x^{\prime}, x^{\prime}\right)\right. \\
& \left.+\phi\left(x, x^{\prime}\right)\right)\left(x+x^{\prime}, \phi\left(x, x^{\prime}\right)\right) \\
= & \left(0, \phi\left(x, x^{\prime}\right)-\phi\left(x^{\prime}, x\right)\right) .
\end{aligned}
$$

Further, it is easy to check that

$$
V^{\prime} \subset \Phi(V) \subset V_{1} \subset Z(V)
$$

Given two F-groups V and W, we shall say that a homomorphism $\theta: V \rightarrow W$ is an F-homomorphism if $\theta\left(V_{1}\right) \subset W_{1}$ and the induced map $\theta_{0}: V_{0} \rightarrow W_{0}$ and the restriction $\theta_{1}: V_{1} \rightarrow W_{1}$ are F-linear.

We shall denote by $\operatorname{Aut}(V ; F)$ the group of F-automorphisms of V.
If F has characteristic p, an odd prime, then every non-trivial F-group has exponent p. This follows directly by computation. If $p=2$, then every nontrivial F-group has exponent 4 or 2 .

For each bilinear function ϕ we define

$$
\phi^{\prime}(x, y)=\phi(x, y)-\phi(y, x) .
$$

We shall say that an F-group V is special if V_{1} is generated (as a vector space or, equivalently, as a group) by the image of $\phi_{V}{ }^{\prime}$, where ϕ_{V} is the bilinear function associated with V.

Definition 1. Let $\phi: V_{0} \times V_{0} \rightarrow V_{1}$ be an F-bilinear map. Then we shall say that ϕ is non-degenerate if for every non-zero linear function $\psi: V_{1} \rightarrow F$ the composite bilinear form $\psi \circ \phi$ is non-degenerate. Similarly, if $Q: V_{0} \rightarrow V_{1}$ is a quadratic map of F-vector spaces V_{0} and V_{1} then we shall say that Q is
non-degenerate if the bilinear map $Q(x+y)-Q(x)-Q(y)$ is non-degenerate. We shall say that an F-group V is non-degenerate if the bilinear map $\phi_{V}{ }^{\prime}$ is non-degenerate.

Our definition of non-degenerate quadratic maps is analogous to the definition of non-degenerate quadratic forms given in Bourbaki [3, Definition 2, p. 54]. Some other authors call such quadratic forms non-defective if char $F=2$. See, for instance [5, p. 33].

Lemma 2. Every non-degenerate F-group V is a special F-group.
Proof. Assume that V is not special. Then there exists a non-zero linear form $\psi: V_{1} \rightarrow F$ such that $V^{\prime} \subset \operatorname{Ker}(\psi)$. Hence $\psi \circ \phi^{\prime}=0$, contradicting that V is non-degenerate.

Lemma 3. If V is a non-degenerate F-group, then $V^{\prime}=\Phi(V)=V_{1} \subset Z(V)$. If also $V_{1} \neq 0$, then $V_{1}=Z(V)$.

Proof. From the previous lemma V is a special F-group, and so $V^{\prime}=V_{1}$. It follows that $V^{\prime}=\Phi(V)=V_{1}$.

If $V_{1} \neq 0$, and $(x, y) \in Z(V)$, then also $(x, 0) \in Z(V)$, and therefore $\phi^{\prime}(x, z)=\phi(x, z)-\phi(z, x)=0$ for all $z \in V_{0}$. Since $V_{1} \neq 0$ we can choose a non-zero linear form $\psi: V_{1} \rightarrow F$, and since $\psi \circ \phi^{\prime}$ is non-degenerate, we must have $x=0$, completing the proof.

Lemma 4. Let p be an odd prime. If P is a p-group of exponent p with a central subgroup P_{1} such that P / P_{1} is abelian then P is a $G F(p)$-group.

Proof. We may consider $P_{0}=P / P_{1}$ and P_{1} as $G F(p)=F$-vector spaces. First, we choose a family of elements $a_{i} \in P(i \in I, I$ totally ordered $)$ such that the $\bar{a}_{i} \in P_{0}$ form a basis of P_{0}. Then the elements

$$
a_{i_{1}}^{\alpha_{1}} \ldots a_{i_{k}}{ }^{\alpha_{k}}, \quad i_{1}<i_{2}<\ldots<i_{k}, \alpha_{i} \in F
$$

are coset representatives for $P_{1} \subset P$. The 2 -cocycle ϕ associated with this extension can be computed as follows:

$$
\begin{equation*}
a_{i_{1}}{ }^{\alpha_{1}} \ldots a_{i_{k}}{ }^{\alpha_{k}} a_{i_{1}}{ }^{\beta_{1}} \ldots a_{i_{k}}{ }^{\beta_{k}}=a_{i_{1}}{ }^{\alpha_{1}+\beta_{1}} \ldots a_{i_{k}}{ }^{\alpha_{k}+\beta_{k}} \prod_{r>s}\left[a_{i r}, a_{i_{s}}\right]^{\alpha_{r} \beta_{s}} . \tag{1}
\end{equation*}
$$

Using now additive notation we have

$$
\phi\left(\alpha_{1} \bar{a}_{i_{1}}+\ldots+\alpha_{k} \bar{a}_{i_{k}}, \beta_{1} \bar{a}_{i_{1}}+\ldots+\beta_{k} \bar{a}_{i_{k}}\right)=\sum_{r>s} \alpha_{r} \beta_{s}\left[a_{i_{r}}, a_{i_{s}}\right] .
$$

Hence ϕ is F-bilinear, and it is now clear that P is isomorphic to the $G F(p)$ group built using P_{0}, P_{1} and ϕ.

Lemma 5. Let P be a 2-group with a central subgroup P_{1} of exponent 2 such that P / P_{1} is of exponent 2 . Then P is a GF(2)-group.

Proof. Again, we may consider $P_{0}=P / P_{1}$ and P_{1} as $G F(2)=F$-vector spaces, and choose a family of elements $a_{i} \in \mathrm{P}(i \in I, I$ totally ordered $)$ such
that the $\bar{a}_{i} \in P_{0}$ form a basis of P_{0}. The elements

$$
a_{i_{1}}^{\alpha_{1}} \ldots a_{i_{k}}{ }^{\alpha_{k}}, \quad i_{1}<i_{2}<\ldots<i_{k}, \alpha_{i}=0,1
$$

are coset representatives for $P_{1} \subset P$. In order to compute the 2 -cocycle ϕ we can use formula (1) of the previous lemma noting that if for some index i, $\alpha_{i}=\beta_{i}=1$, then

$$
a_{i_{1}}{ }^{\alpha_{1}+\beta_{1}} \ldots a_{i_{k}}{ }^{\alpha_{k}+\beta_{k}}
$$

is not in general a coset representative. In this case, however, if we let $a_{i}{ }^{2}=b_{i}$, then $b_{i} \in P_{1}$ and

$$
a_{i_{r}}{ }^{\alpha_{r}+\beta_{r}}=a_{i_{r}}{ }^{\gamma} b_{i_{r}}{ }^{\alpha \tau \beta}
$$

where $\gamma_{r}=0,1$ and $\gamma_{r} \equiv \alpha_{r}+\beta_{r} \bmod 2$. Hence in this case

$$
\begin{aligned}
& \phi\left(\alpha_{1} \bar{a}_{i_{1}}+\ldots+\alpha_{k} \bar{a}_{i_{k}}, \beta_{1} \bar{a}_{i_{1}}+\ldots+\beta_{k} \bar{a}_{i_{k}}\right) \\
&=\sum_{r=1}^{k} \alpha_{\tau} \beta_{r} b_{i_{r}}+\sum_{r>s} \alpha_{\tau} \beta_{s}\left[a_{i_{r}}, a_{i_{s}}\right]
\end{aligned}
$$

Thus again ϕ is F-bilinear, and we are done.
Lemma 6. If V and W are F-groups, and $\theta: V \rightarrow W$ is an F-homomorphism then

$$
\theta(x, y)=\left(\theta_{0}(x), \theta_{1}(y)+\theta_{01}(x)\right)
$$

where $\theta_{i}: V_{i} \rightarrow W_{i}, i=0,1$, are F-linear maps, and $\theta_{01}: V_{0} \rightarrow W_{1}$ is a quadratic map such that we have

$$
\begin{equation*}
\phi_{W}^{\prime} \circ\left(\theta_{0} \times \theta_{0}\right)=\theta_{1} \circ \phi_{V}{ }^{\prime} \tag{2}
\end{equation*}
$$

and
(3) $\quad \theta_{01}\left(x+x^{\prime}\right)-\theta_{01}(x)-\theta_{01}\left(x^{\prime}\right)=\phi_{W}\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)-\theta_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)$.

In particular, $\phi_{W}\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)-\theta_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)$ is a symmetric bilinear map. If $\operatorname{char}(F)=2$, then this map is alternating. Conversely, if θ_{0}, θ_{1} and θ_{01} satisfy these conditions, then $\theta \in \operatorname{Aut}(V ; F)$.

Proof. From $\theta(x, y)=\theta(x, 0) \cdot \theta(0, y)=\theta(x, 0) \cdot\left(0, \theta_{1}(y)\right)$ and the definition of θ_{0} it follows that $\theta(x, y)$ has the form given in the Lemma. Equation (2) follows from

$$
\begin{aligned}
& \phi_{W^{\prime}}\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)=\left[\left(\theta_{0}(x), \theta_{01}(x)\right),\left(\theta_{0}\left(x^{\prime}\right), \theta_{01}\left(x^{\prime}\right)\right)\right] \\
&= \theta\left(\left[(x, 0),\left(x^{\prime}, 0\right)\right]\right)=\theta_{1}\left(\phi_{V}^{\prime}\left(x, x^{\prime}\right)\right)
\end{aligned}
$$

Equation (3) follows from

$$
\begin{aligned}
\theta\left((x, 0)\left(x^{\prime}, 0\right)\right)=\theta\left(\left(x+x^{\prime},\right.\right. & \left.\phi_{V}\left(x, x^{\prime}\right)\right) \\
& =\left(\theta_{0}\left(x+x^{\prime}\right), \theta_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)+\theta_{01}\left(x+x^{\prime}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\theta(x, 0) \cdot \theta\left(x^{\prime}, 0\right) & =\left(\theta_{0}(x), \theta_{01}(x)\right)\left(\theta_{0}\left(x^{\prime}\right), \theta_{01}\left(x^{\prime}\right)\right) \\
& =\left(\theta_{0}(x)+\theta_{0}\left(x^{\prime}\right), \theta_{01}(x)+\theta_{01}\left(x^{\prime}\right)+\theta_{W}\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)\right)
\end{aligned}
$$

The converse is straightforward.
3. Irreducible automorphisms of finite F-groups. For the rest of this paper the field F and all the groups will be assumed to be finite.

Definition 2. If V is an F-group we denote by $\operatorname{Aut}_{0}(V ; F)$ the subgroup of $\operatorname{Aut}(V ; F)$ consisting of those F-automorphisms which fix all the elements of $V_{1} \subset V$.

Proposition 7. If V is a special F-group admitting an automorphism $\theta \in$ $\operatorname{Aut}_{0}(V ; F)$ such that the induced automorphism $\theta_{0} \in \operatorname{Aut}\left(V_{0}\right)$ is irreducible as an F-linear transformation, then V is non-degenerate.

Proof. By equation (2) of Lemma 6 , it follows that ϕ^{\prime} is preserved by θ_{0}.
Let ψ be a non-zero linear form on V_{1}. By the irreducibility of θ_{0} if follows that $\operatorname{Ker}\left(\psi \circ \phi^{\prime}\right)=0$ or V_{0} because θ_{0} preserves the form $\psi \circ \phi^{\prime}$. We have $\operatorname{Ker}\left(\psi \circ \phi^{\prime}\right) \neq V_{0}$ because otherwise $\operatorname{Im}\left(\phi^{\prime}\right) \subset \operatorname{Ker}(\psi)$ contradicting the hypothesis that V is a special F-group. Hence $\operatorname{Ker}\left(\psi \circ \phi^{\prime}\right)=0$ and $\psi \circ \phi^{\prime}$ is non-degenerate.

This completes the proof of the proposition.
Definition 3. Let $f(X)$ be a monic irreducible polynomial over a finite field $F=G F(q), q=p^{n}$. An F-representation of $f(X)$ is a pair (V, θ) where V is a special F-group, $\theta \in \operatorname{Aut}_{0}(V ; F), \theta$ has p^{\prime} order, and the induced automorphism θ_{0} has $f(X)$ as its characteristic polynomial. (This last implies that θ_{0} is irreducible on V_{0}).

Definition 4. If (V, θ) and (W, ω) are F-representations of $f(X)$ then a morphism $(V, \theta) \rightarrow(W, \omega)$ is an F-homomorphism $\sigma: V \rightarrow W$ such that $\omega \circ \sigma=\sigma \circ \theta$.

Let (V, θ) be an F-representation of $f(X)$ and let N be a subgroup of V_{1}. Then $\bar{V}=V / N$ is also a non-degenerate F-group, the induced automorphism $\bar{\theta}$ of \bar{V} is in $\operatorname{Aut}_{0}(\bar{V} ; F)$ and $(\bar{V}, \bar{\theta})$ is also an F-representation of $f(X)$. We say that $(\bar{V}, \bar{\theta})$ is a quotient of (V, θ).

Proposition 8. If V is a non-degenerate F-group, and if $V_{1} \neq 0$, then the dimension of V_{0} is even.

Proof. Let ψ be any non-zero linear form from V_{1} to F. By Definition 1, $\phi_{V}{ }^{\prime}$ is non-degenerate. Therefore $\psi \circ \phi_{V}{ }^{\prime}$ is a non-degenerate alternating form from V_{0} to F, and this implies that the dimension of V_{0} is even.

It follows from Proposition 8 that if $f(X)$ is an irreducible polynomial of odd degree and (V, θ) is an F-representation of f, then $V_{1}=0$, and $V=V_{0}$.

We introduce some notation. Let

$$
f(X)=X^{m}+\alpha_{1} X^{m-1}+\ldots+\alpha_{m}
$$

If $\alpha_{m} \neq 0$ we define

$$
\tilde{f}(X)=\alpha_{m}{ }^{-1} X^{m} f\left(X^{-1}\right)
$$

noting that if $f(X)$ is irreducible and $\tilde{f}=f$, then $\alpha_{m}=1$ and m must be even, unless $m=1$.

We also define the $(m-1) \times(m-1)$ matrix $M(f)$ as

$$
M(f)=\left[\begin{array}{ccccc}
\alpha_{m} & & & \\
& & & 0 \\
\alpha_{m-1} & \alpha_{m} & & \\
\cdot & \cdot & & \\
\cdot & & \cdot & \\
\cdot & & & \cdot & \\
\alpha_{2} & \alpha_{3} & \cdot & \cdot & \alpha_{m}
\end{array}\right]-\left[\begin{array}{ccccc}
\alpha_{m-2} & \alpha_{m-3} & & \alpha_{0} \\
& & & & \\
\cdot & & . & \\
& \cdot & \cdot & & \\
\alpha_{1} & \alpha_{0} & & 0 \\
\alpha_{0} & & & &
\end{array}\right]
$$

where $\alpha_{0}=1$.
We denote by $r(f)$ the rank of $M(f)$. We shall prove later that when $f(X)$ is irreducible in $F[X]$ then

$$
r(f)= \begin{cases}m-1 & \text { if } \tilde{f} \neq f \\ m / 2-1 & \text { if } \tilde{f}=f \text { and } m>1\end{cases}
$$

Theorem 9. Given any monic irreducible polynomial $f(X) \in F[X]$ there exists an F-representation (V, θ) of $f(X)$ which is universal in the following sense: Every F-representation of $f(X)$ is isomorphic to a quotient of (V, θ). This universal F-representation (V, θ) is unique up to isomorphism. Also, $\operatorname{dim}\left(V_{0}\right)=m=$ $\operatorname{deg}(f)$, and $\operatorname{dim}\left(V_{1}\right)=m-1-r(f)$.

Proof. Recall that $F=G F(q), q=p^{n}$. Let V_{0} and U be F-vector spaces with bases $a_{0}, a_{1}, \ldots, a_{m-1}$ and b_{1}, \ldots, b_{m-1} respectively. Let \boldsymbol{b} be the column vector whose coordinates are the vectors b_{1}, \ldots, b_{m-1}. Then $M(f) \boldsymbol{b}$ is an ($m-1$)-tuple of vectors in U. Let N be the F-subspace spanned by the vectors $M(f) \boldsymbol{b}$ and let $V_{1}=U / N$. For $x \in V$ we let $\bar{x}=x+N$.

Let ϕ be the bilinear map from $V_{0} \times V_{0}$ to V_{1} defined by

$$
\phi\left(a_{i}, a_{j}\right)= \begin{cases}0 & \text { if } i<j \\ b_{j-i} & \text { if } i \geqq j\end{cases}
$$

where $b_{0}=0$ if $p \neq 2$, and, if $p=2$,

$$
b_{0}=f(1)^{-2}\left(\sum_{i=1}^{m-1} b_{i}\left(\alpha_{1} \alpha_{i+1}+\alpha_{2} \alpha_{i+2}+\ldots+\alpha_{m-i} \alpha_{m}\right)\right) .
$$

We construct an F-group $V=V_{0} \times V_{1}$ using this ϕ.

Let an F-automorphism θ_{0} of V_{0} be defined by

$$
\begin{aligned}
& \theta_{0}\left(a_{i}\right)=a_{i+1} \quad \text { for } 0 \leqq i \leqq m-2 \\
& \qquad \theta_{0}\left(a_{m-1}\right)=-\alpha_{m} a_{0}-\alpha_{m-1} a_{1}-\ldots-\alpha_{1} a_{m-1} \quad\left(=a_{m}, \text { say }\right)
\end{aligned}
$$

Note that the characteristic polynomial of θ_{0} is $f(X)$ and hence θ_{0} is irreducible as an F-linear automorphism of V_{0}.

We claim that $\phi\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)-\phi\left(x, x^{\prime}\right)$ is symmetric. This is equivalent to the statement that $\phi^{\prime}\left(x, x^{\prime}\right)$ is θ_{0}-invariant. Since ϕ^{\prime} is alternating, it suffices to check that $\phi^{\prime}\left(\theta_{0}\left(a_{i}\right), \theta_{0}\left(a_{j}\right)\right)=\phi^{\prime}\left(a_{i}, a_{j}\right)$ for $0 \leqq i<j \leqq m-1$. Thus we have to show that $\phi^{\prime}\left(a_{i+1}, a_{j+1}\right)=\phi^{\prime}\left(a_{i}, a_{j}\right), 0 \leqq i<j \leqq m-1$. This is clear if $j \neq m-1$. If $j=m-1$, this equation becomes

$$
\phi^{\prime}\left(a_{i+1},-\alpha_{m} a_{0}-\alpha_{m-1} a_{1}-\ldots-\alpha_{1} a_{m-1}\right)=\bar{b}_{m-1-i}
$$

or

$$
\alpha_{m} \bar{b}_{i+1}+\alpha_{m-1} \bar{b}_{i}+\ldots+\alpha_{m-i} \bar{b}_{1}-\alpha_{m-i-2} \bar{b}_{1}-\ldots-\alpha_{1} \bar{b}_{m-i-2}=\bar{b}_{m-1-i} .
$$

This follows from the definition of V_{1} as a quotient.
In case $p=2$ we must check further that the form $\phi\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)-$ $\phi\left(x, x^{\prime}\right)$ is alternating. It is enough to check that

$$
\phi\left(\theta_{0}\left(a_{i}\right), \theta_{0}\left(a_{i}\right)\right)=\phi\left(a_{i}, a_{i}\right) \quad \text { for } 0 \leqq i \leqq m-1 .
$$

This is clear unless $i=m-1$. In that case we need to show that $\phi\left(a_{m}, a_{m}\right)=$ \bar{b}_{0}, i.e.,

$$
\phi\left(\sum_{i=0}^{m-1} \alpha_{m-i} a_{i}, \sum_{j=0}^{m-1} \alpha_{m-j} a_{j}\right)=\bar{b}_{0}, \quad \text { i.e., } \quad \sum_{0 \leqq i<j \leqq m-1} \alpha_{m-i} \alpha_{m-j} \bar{b}_{j-i}=f(1)^{2} \bar{b}_{0}
$$

which follows from our definition of b_{0}.
Since this bilinear map is symmetric and, if $p=2$, alternating, there exists a quadratic map $\theta_{01}: V_{0} \rightarrow V_{1}$ such that

$$
\theta_{01}\left(x+x^{\prime}\right)-\theta_{01}(x)-\theta_{01}\left(x^{\prime}\right)=\phi\left(\theta_{0}(x), \theta_{0}\left(x^{\prime}\right)\right)-\phi\left(x, x^{\prime}\right) ;
$$

see [3, Proposition 2, p. 55] for the case of quadratic forms. Now we define θ by

$$
\theta(x, y)=\left(\theta_{0}(x), \theta_{01}(x)+y\right)
$$

It is a straightforward check that $\theta \in \operatorname{Aut}_{0}(V ; F)$. Since $f(X)$ is irreducible, the order k of θ_{0} is a p^{\prime}-number. Hence the order of θ is of the form $p^{\tau} k$. Then if $\theta^{\prime}=\theta^{p^{s}}$, where s is chosen so that $s \geqq r$ and $p^{s} \equiv 1 \bmod k, \theta^{\prime}$ will have order k. Thus, by replacing θ by θ^{\prime}, if necessary, we may assume that θ is a p^{\prime}-element. Therefore, (V, θ) is an F-representation of $f(X)$. Also $\operatorname{dim}\left(V_{0}\right)=m, \operatorname{dim}\left(V_{1}\right)$ $=m-1-r(f)$.

We claim that (V, θ) is universal. Let (W, ω) be any F-representation of $f(X)$. We can assume that $W_{0}=V_{0}$, and $\omega_{0}=\theta_{0}$. Define a linear map $\tau: U \rightarrow$ W_{1} by

$$
\tau\left(b_{i}\right)=\phi_{W^{\prime}}\left(a_{0}, a_{i}\right) \quad \text { for } 1 \leqq i \leqq m-1
$$

We claim that $N \subset \operatorname{Ker}(\tau)$. For all integers k we write $a_{k}=\theta_{0}{ }^{k}\left(a_{0}\right)$, consistent with the notation for a_{i} used above. We compute

$$
\begin{aligned}
c_{i} & =\tau\left(\alpha_{m-i+1} b_{1}+\ldots+\alpha_{m} b_{i}-\alpha_{m-i-1} b_{1}-\ldots-\alpha_{0} b_{m-i}\right) \\
& =\phi_{W}^{\prime}\left(a_{0}, \alpha_{m-i+1} a_{1}+\ldots+\alpha_{m} a_{i}-\alpha_{m-i-1} a_{1}-\ldots-\alpha_{0} a_{m-i}\right) \\
& =\phi_{W}^{\prime}\left(a_{0}, \alpha_{m-i+1} a_{1}+\ldots+\alpha_{m} a_{i}\right)-\phi_{W}^{\prime}\left(a_{0}, \alpha_{m-i-1} a_{1}+\ldots+\alpha_{0} a_{m-i}\right) .
\end{aligned}
$$

Now by equation (2) of Lemma $6, \phi_{W}{ }^{\prime}$ is θ_{0}-invariant, and so

$$
\begin{aligned}
\phi_{W^{\prime}} & \left(a_{0}, \alpha_{m-i+1} a_{1}+\ldots+\alpha_{m} a_{i}\right) \\
& =-\phi_{W^{\prime}}^{\prime}\left(a_{1}, \alpha_{m-i+1} a_{0}\right)-\phi_{W^{\prime}}\left(a_{2}, \alpha_{m-i+2} a_{0}\right)-\ldots-\phi_{W^{\prime}}\left(a_{i}, \alpha_{m} a_{0}\right) \\
& =-\phi_{W^{\prime}}^{\prime}\left(a_{0}, \alpha_{m-i+1} a_{-1}+\alpha_{m-i+2} a_{-2}+\ldots+\alpha_{m} a_{-i}\right) \\
& =-\phi_{W^{\prime}}\left(a_{0}, \alpha_{m} a_{-i}+\ldots+\alpha_{m-i+1} a_{-1}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
c_{i} & =-\phi_{W^{\prime}}\left(a_{0}, \alpha_{m} a_{-i}+\ldots+\alpha_{0} a_{m-i}\right) \\
& =-\phi_{W^{\prime}}\left(a_{0}, \theta_{0}{ }^{-i}\left(\alpha_{m} a_{0}+\alpha_{m-1} a_{1}+\ldots+\alpha_{0} a_{m}\right)\right) \\
& =-\phi_{W^{\prime}}\left(a_{0}, \theta_{0}-i(0)\right)=0 .
\end{aligned}
$$

Since this is true for all $i, 1 \leqq i \leqq m-1$, we conclude that $N \subset \operatorname{Ker}(\tau)$. Let σ_{1} be the τ-induced map from $V_{1}=U / N \rightarrow W_{1}$.

The bilinear map $\sigma_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)-\phi_{W}\left(x, x^{\prime}\right)$ is symmetric because $\sigma_{1} \circ \phi_{V^{\prime}}=$ $\phi_{W}{ }^{\prime}$ by definition of τ and σ_{1}. If $p=2$ we claim that this map is alternating. Thus we have to verify that

$$
\sigma_{1}\left(\phi_{V}\left(a_{i}, a_{i}\right)\right)=\phi_{W}\left(a_{i}, a_{i}\right) \quad \text { for } 0 \leqq i \leqq m-1
$$

But $\sigma_{1}\left(\phi_{V}\left(a_{i}, a_{i}\right)\right)=\sigma_{1}\left(\bar{b}_{0}\right)=\tau\left(b_{0}\right)$ and since

$$
\begin{aligned}
& \left(a_{i}, 0\right)^{2}=\left(0, \phi_{W}\left(a_{i}, a_{i}\right)\right) \\
& \quad\left(\omega\left(a_{i}, 0\right)\right)^{2}=\left(\left(\theta_{0}\left(a_{i}\right), \omega_{01}\left(a_{i}\right)\right)^{2}=\left(0, \phi_{W}\left(a_{i+1}, a_{i+1}\right)\right)\right.
\end{aligned}
$$

it follows that $\phi_{W}\left(a_{i}, a_{i}\right)$ is independent of i. Thus we just have to justify the single equality $\tau\left(b_{0}\right)=\phi_{W}\left(a_{0}, a_{0}\right)$. Since

$$
\sum_{i=0}^{m} \alpha_{m-i} a_{i}=0
$$

we have

$$
\begin{aligned}
0 & =\phi_{W}\left(\sum_{i=0}^{m} \alpha_{m-i} a_{i}, \sum_{j=0}^{m} \alpha_{m-j} a_{j}\right) \\
& =\sum_{i, j=0}^{m} \alpha_{m-i} \alpha_{m-j} \phi_{W}\left(a_{i}, a_{j}\right) \\
& =\sum_{0 \leqq i<j \leqq m} \alpha_{m-i} \alpha_{m-j} \phi_{W^{\prime}}\left(a_{i}, a_{j}\right)+f(1)^{2} \phi_{W}\left(a_{0}, a_{0}\right) .
\end{aligned}
$$

Using the identity

$$
\sum_{0 \leqq i \leq m-1} \alpha_{m-i} \alpha_{0} \phi_{W}{ }^{\prime}\left(a_{i}, a_{m}\right)=\phi_{W}{ }^{\prime}\left(\sum_{i=0}^{m} \alpha_{m-i} a_{i}, a_{m}\right)=0
$$

the preceding equality gives

$$
f(1)^{-2} \sum_{0 \leqq i<j \leqq m-1} \alpha_{m-i} \alpha_{m-j} \phi_{W}^{\prime}\left(a_{i}, a_{j}\right)=\phi_{W}\left(a_{0}, a_{0}\right) .
$$

The left hand side of this equality is $\tau\left(b_{0}\right)$, since

$$
b_{0}=f(1)^{-2} \sum_{0 \leq i<j \leqq m-1} \alpha_{m-i} \alpha_{m-j} b_{j-i} .
$$

Hence we have $\tau\left(b_{0}\right)=\phi_{W}\left(a_{0}, a_{0}\right)$ and the map $\sigma_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)-\phi_{W}\left(x, x^{\prime}\right)$ is shown to be alternating when $p=2$.

It follows that there exists a quadratic map $\sigma_{01}: V_{0} \rightarrow W_{1}$ such that

$$
\sigma_{01}\left(x+x^{\prime}\right)-\sigma_{01}(x)-\sigma_{01}\left(x^{\prime}\right)=\sigma_{1}\left(\phi_{V}\left(x, x^{\prime}\right)\right)-\phi_{W}\left(x, x^{\prime}\right) .
$$

Now we define $\sigma: V \rightarrow W$ by $\sigma(x, y)=\left(x, \sigma_{1}(y)+\sigma_{01}(x)\right)$. It is easy to check that σ is an F-homomorphism and consequently $\sigma:(V, \theta) \rightarrow(W, \omega)$ is a morphism. Since σ is onto and $\operatorname{Ker}(\sigma) \subset V_{1}$ the F-representation (W, ω) is a quotient of (V, θ). Thus (V, θ) is a universal representation.

By a dimension argument it is clear that the universal F-representation is unique up to isomorphism.

The theorem is proved.
4. Universal representations. In this section we compute $r(f)$. In the course of this we prove a theorem about maximal non-singular subspaces of the space of alternating matrices over a finite field.

As before, $q=p^{n}$. $S_{p}(2 m, q)$ is the symplectic group, consisting of $2 m \times 2 m$ matrices X with elements from the field $F=G F(q)$ satisfying ${ }^{t} X J X=J$ where

$$
J=\left(\begin{array}{cc}
0 & I_{m} \\
-I_{m} & 0
\end{array}\right)
$$

We shall consider these matrices X as operators on the space of column vectors $F^{2 m}=V_{0}$. We shall use $M_{s}(F)=M_{s}(q)$ to denote the set of all $s \times s$ matrices over F, and by $K_{s}(F)=K_{s}(q)$ the set of all alternating matrices over F.

Theorem 10. If $A \in M_{2 m}(q)$ has irreducible characteristic polynomial $f(X)$ then the space $K(A ; q)=\left\{X \in K_{2 m}(q) ;{ }^{t} A X A=X\right\}$ has dimension m if $f=\tilde{f}$ and 0 if $f \neq \tilde{f}$. As well, if $0 \neq X \in K(A, q)$ then X is non-singular.

Proof. Let $X \in K(A ; q), X \neq 0$. Note that $\operatorname{Ker}(X)$ is A-invariant because $v \in V_{0}$ and $X v=0$ imply that $0=X v=\left({ }^{t} A X A\right) v={ }^{t} A X(A v)$ and $X(A v)=$ 0 . By the irreducibility of A and $X \neq 0$ we must have $\operatorname{Ker}(X)=0$, i.e., X is non-singular. Now ${ }^{t} A X A=X$ and so ${ }^{t} A=X A^{-1} X^{-1},{ }^{t} A$ and A^{-1} are
similar, and the characteristic polynomial f of A satisfies $f=\tilde{f}$. Therefore if $f \neq \tilde{f}$ we have $K(A ; q)=0$.

Assume then that $f=\tilde{f}$. Let $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 m}$ be the distinct roots of $f(X)$. They are all in $F(\alpha)=G F\left(q^{2 m}\right)$. Then A is similar in $M_{2 m}\left(q^{2 m}\right)$ to the diagonal matrix D with diagonal entries $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 m}$. The dimension of $K\left(D ; q^{2 m}\right)$ over $F(\alpha)$ is the same as the dimension of $K(A ; q)$ over $F[4,(29,5)$, p. 200]. A matrix $X \in K_{2 m}\left(q^{2 m}\right)$ belongs to $K\left(D ; q^{2 m}\right)$ if and only if $D X D=X$, i.e., $\alpha_{i} \alpha_{j} \xi_{i j}=\xi_{i j}$ where $X=\left(\xi_{i j}\right)$. We may assume, since $f=\tilde{f}$, that $\alpha_{m+i}=\alpha_{i}{ }^{-1}$ for $1 \leqq i \leqq m$. The above equations imply that $\xi_{i j}=0$ unless $j-i= \pm m$. Now it is clear that

$$
\operatorname{dim}_{F(\alpha)} K\left(D ; q^{2 m}\right)=\operatorname{dim}_{F}(K(A, q))=m
$$

Lemma 11. For each finite field $F=G F(q)$, and each positive integer $2 m$ there exists an irreducible polynomial $f(X)$ in $F[X]$ of degree $2 m$ such that $f=\tilde{f}$.

Proof. Let $L=G F\left(q^{2 m}\right)$. The multiplicative group of L has order $q^{2 m}-1$. Let α be an element of L of order $q^{m}+1$. Let $f(X)$ be the minimal polynomial of α over F. Then $L=F(\alpha)$, since if $F(\alpha)$ has order q^{r} then we must have $q^{m}+1 \mid q^{r}-1$ and since $r \mid 2 m$ it follows that $r=2 m$. Also $\alpha^{-1}=\alpha^{q^{m}}$ is also a root of $f(X)$. Therefore $f=\tilde{f}$ and the lemma is proven.

Definition 5. A subspace L of $M_{s}(F)$ is called non-singular if every non-zero matrix in L is non-singular.

Theorem 12. In $K_{2 m}(q)$ the dimension of a non-singular subspace is $\leqq m$. This upper bound is always achieved.

Proof. Let S be a non-singular subspace of $K_{2 m}(q)$. By choosing a basis X_{1}, \ldots, X_{k} we can express any X in S as

$$
X=\alpha_{1} X_{1}+\ldots+\alpha_{k} X_{k}
$$

Then $\operatorname{det}(X)=(\operatorname{Pf}(X))^{2}$ where $\operatorname{Pf}(X)$ is the pfaffian of $X . \operatorname{Pf}(X)$ is a homogeneous polynomial in the α_{i} of degree m. If $k>m$ then by Chevalley's theorem [9, p. 13] the polynomial $\operatorname{Pf}(X)$ has a non-trivial zero, contradicting the hypothesis that S is non-singular. Therefore $\operatorname{dim}(S) \leqq m$.

By the previous lemma, a polynomial $f(X)$ of the desired kind can always be found. Let $A \in M_{2 m}(q)$ have characteristic polynomial $f(X)$. Then dim $K(A, q)=m, K(A, q)$ is non-singular, and the upper bound is achieved, as claimed.

We remark that the problem of finding maximum dimension for real nonsingular subspaces of symmetric, skew-symmetric, etc. matrices has been considered for real, complex and quaternionic matrices $[\mathbf{1 ; 2]}$.

The set of all upper triangular matrices in $M_{s}(F)=M_{s}(q)$ wlll be denoted by $T_{s}(F)=T_{s}(q)$.

Theorem 13. If $A \in M_{2 m}(q), q=2^{n}$, has irreducible characteristic polynomial $f(X)$, then the space $T(A ; q)=\left\{X \in T_{2 m}(q),{ }^{t} A X A \equiv X \bmod K_{2 m}(q)\right\}$ has dimension m if $f=\tilde{f}, 0$ if $f \neq \tilde{f}$. As well, if $X \in T(A ; q)$ and $X \neq 0$ then $X+{ }^{t} X$ is non-singular.

Proof. Suppose $0 \neq X \in T(A ; q)$. Then ${ }^{t} A X A=X+B$ with B alternating and so ${ }^{t} A^{t} X A={ }^{t} X+B$. Adding,

$$
{ }^{t} A\left(X+{ }^{t} X\right) A=X+{ }^{t} X
$$

and so, as in the proof of Theorem $10, X+{ }^{t} X$ is either 0 or non-singular.
It remains to show that $X+{ }^{t} X \neq 0$ or, equivalently, that X is not diagonal. We can assume that A has the form

and that the diagonal matrix X has diagonal entries $\xi_{1}, \xi_{2}, \ldots, \xi_{2 m}$. By equating the diagonal entries of ${ }^{t} A X A$ and X we get that

$$
\xi_{1}=\xi_{2}=\ldots=\xi_{2 m}
$$

and

$$
\xi_{2 m}=\alpha_{2 m}{ }^{2} \xi_{1}+\alpha_{2 m-1}{ }^{2} \xi_{2}+\ldots+\alpha_{1}^{2} \xi_{2 m}
$$

so that $f(1)^{2} \xi_{1}=0$, and the ξ_{i} are 0 . This is a contradiction, and so $X+{ }^{t} X$ is non-singular.

Let α be a root of $f(X)$. Then $F(\alpha)=G F\left(q^{2 m}\right)$ and A is similar (in $M_{2 m}\left(q^{2 m}\right)$) to a diagonal matrix D with diagonal entries $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 m}$. If $f=\tilde{f}$ then these may be taken as $\alpha_{1}, \ldots, \alpha_{m}, \alpha_{1}{ }^{-1}, \ldots, \alpha_{m}{ }^{-1}$ while if $f \neq \tilde{f}$ then $\alpha_{i} \neq \alpha_{j}{ }^{-1}$ for all i and j. The dimension of $T\left(D, q^{2 m}\right)$ over $F(\alpha)$ is the same as the dimension of $T(A, q)$ over F. Matrices $X \in T\left(D, q^{2 m}\right)$ satisfy

$$
D X D \equiv X \bmod K_{2 m}\left(q^{2 m}\right)
$$

If $X=\left(\xi_{i j}\right)$, then $\alpha_{i} \alpha_{j} \xi_{i j}=\xi_{i j}$ where $\alpha_{k}=\alpha_{k-m}{ }^{-1}$ if $k>m$ and $f=\tilde{f}$, and $\alpha_{i} \alpha_{j} \neq 1$ for all i, j if $f \neq \tilde{f}$. If $f=\tilde{f}, \xi_{i j}=0$ unless $j-i=m$, and these may be chosen arbitrarily, while if $f \neq \tilde{f}, \xi_{i j}=0$ for all i, j. Hence

$$
\operatorname{dim}_{F(\alpha)} T\left(D ; q^{2 m}\right)=\operatorname{dim}_{F} T(A ; q)= \begin{cases}m & \text { if } f=\tilde{f} \\ 0 & \text { if } f \neq \tilde{f}\end{cases}
$$

Theorem 14. Let (V, θ) be a universal F-representation for a monic irreducible polynomial $f(X)$ of degree k over the field $F=G F(q)$. If $f \neq \tilde{f}$ then $\operatorname{dim}\left(V_{1}\right)=0$ while if $f=\tilde{f}$ then k is even, $k=2 m$, and $\operatorname{dim}\left(V_{1}\right)=m$.

Proof. If k is odd then $f \neq \tilde{f}$ and $\operatorname{dim}\left(V_{1}\right)=0$ by Propositions 7 and 8 . Assume, then, that k is even. If $V_{1} \neq 0$, then let $\psi: V_{1} \rightarrow F$ be a non-zero linear form. Then $\psi \circ \phi_{V}{ }^{\prime}$ is an alternating bilinear form which is invariant under θ_{0}. Theorem 10 implies $f=\tilde{f}$, and $\operatorname{dim}\left(V_{1}\right) \leqq m$.

Take $V_{0}=F^{2 m}$, considered as column vectors. We choose a matrix $A \in$ $M_{2 m}(q), A=\theta_{0}$, having characteristic polynomial $f(X)$. We take $V_{1}=K(A, q)^{*}$ if q is odd, and $V_{1}=T(A, q)^{*}$ if $q=2^{n}$, where * denotes the dual. We define a bilinear map $\phi: V_{0} \times V_{0} \rightarrow V_{1}$ as follows: $\phi(x, y)$ is the linear function on V_{1} defined by

$$
\phi(x, y)(X)={ }^{t} x X y \in F .
$$

Using this ϕ we define the F-group $V=V_{0} \times V_{1}$.
If q is odd we define $\theta(x, g)=(A x, g)$. It is easy to check that $\theta \in \operatorname{Aut}_{0}(V ; F)$.
If $q=2^{n}$ we must check that the form $\phi(A(x), A(y))-\phi(x, y)$ is symmetric. This is equivalent to the claim that ϕ^{\prime} is A-invariant. This follows from

$$
\begin{aligned}
\phi^{\prime}(A x, A y)(X)={ }^{t} x^{t} A X A y-{ }^{t} y^{t} A X A x & ={ }^{t} x^{t} A\left(X+{ }^{t} X\right) A y \\
& ={ }^{t} x\left(X+{ }^{t} X\right) y=\phi^{\prime}(x, y)(X)
\end{aligned}
$$

We also claim that the form $\phi(A(x), A(y))-\phi(x, y)$ is alternating. This follows from

$$
(\phi(A x, A x)-\phi(x, x))(X)={ }^{t} x^{t} A X A x-x^{t} X x=0
$$

because ${ }^{t} A X A-X$ is alternating.
Thus there is a quadratic map $\theta_{01}: V_{0} \rightarrow V_{1}$ satisfying $\theta_{01}(x+y)-\theta_{01}(x)-$ $\theta_{01}(y)=\phi(A(x), A(y))-\phi(x, y)$ and we define $\theta: V \rightarrow V$ by

$$
\theta(x, g)=\left(A x, g+\theta_{01}(x)\right)
$$

By Lemma 6, $\theta \in \operatorname{Aut}_{0}(V ; F)$.
We claim that V is a special F-group. It is enough to show that

$$
\phi^{\prime}(x, y)(X)=0 \text { for all } x, y \in V_{0} \Rightarrow X=0
$$

But

$$
\phi^{\prime}(x, y)(X)={ }^{t} x^{t} A X A y-{ }^{t} y^{t} A X A x={ }^{t} x^{t} A\left(X-{ }^{t} X\right) A y=0
$$

for all x, y implies $X={ }^{t} X$. But if q is odd, X is skew-symmetric and we have $X=0$. If $q=2^{n}$, and $X={ }^{t} X$ then, since X is triangular, X must be diagonal. By Theorem 13, this cannot happen unless $X=0$.

We require as well that θ have p^{\prime} order. If it does not, then we replace θ with an appropriate power of θ, as in the proof of Theorem 9 .

Clearly (V, θ) is the universal F-group for $f(X)$ which we require, since $\operatorname{dim}\left(V_{1}\right)=m$ and, by Theorem 12, $\operatorname{dim}\left(V_{1}\right) \leqq m$.

Theorem 15. If $f(X)$ and $g(X)$ are irreducible polynomials of degree $2 m$ over F, satisfying $f=\tilde{f}$ and $g=\tilde{g}$, and if (V, θ) and (W, ω) are the universal F representations of f and g respectively, then V and W are F-isomorphic.

Proof. Choose $A \in M_{2 m}(q)$ having characteristic polynomial $f(X)$. Since A is irreducible, its centralizer in $M_{2 m}(q)$ is $F[A]$. It is clear that $F[A]$ is a finite field with $q^{2 m}$ elements. We may assume without loss that $f(X)$ is such that A has order $q^{m}+1$. By the proof of Lemma 11, this can be done. There is an element B in $F[A]$ whose minimal polynomial over F is $g(X)$. It follows that B is irreducible.

Suppose now that q is odd. We claim that

$$
K(A ; q) \subset K(B ; q)
$$

By [7, Satz 9.23, p. 228] and the fact that the characteristic polynomial of B satisfies $g=\tilde{g}$ so that B is conjugate to an element of $\operatorname{Sp}(2 m, q), B^{q^{m}+1}=1$ and so $B=A^{s}$ for some s. It is now clear that

$$
K(A ; q) \subset K(B ; q)
$$

Similarly, if $q=2^{n}$.

$$
T(A ; q) \subset T(B ; q)
$$

By Theorems 10 and 13 these spaces have the same dimension and so $K(A ; q)=$ $K(B ; q)$ if q is odd, and $T(A ; q)=T(B ; q)$ if $q=2^{n}$.

It is clear from the construction of the universal F-representation in Theorem 14 that V and W are F-isomorphic.
5. An open question. Let $V=V(2 m, g)$ be the non-degenerate $F=$ $G F(q)$-group with $\operatorname{dim} V_{0}=2 m, \operatorname{dim} V_{1}=m$ such that there exists $\theta \in$ $\operatorname{Aut}_{0}(V ; F)$ which induces an F-irreducible linear automorphism θ_{0} in V_{0}. (We have seen in the previous section that such a group is unique up to F-isomorphism.) Recall that $V(2 m, q)$ is a non-degenerate F-group.

Question 1. If W is a non-degenerate $G F(q)$-group, q odd, $\operatorname{dim} W_{0}=2 m$ is it true that W is an F-quotient of $V(2 m, q)$?

This question is equivalent to the following question about matrices:
Question 2. Let L be a subspace of $K_{2 m}(q), q$ odd, such that if $X \neq 0, X \in L$ then X is non-singular. Is it true that there exists $A \in M_{2 m}(q)$ having irreducible characteristic polynomial and satisfying ${ }^{t} A X A=X$ for all $X \in L$?

We conjecture that the answers are affirmative.
It is interesting to remark that if $V=V(2 m, 2)$ then the quadratic forms $\psi \circ Q_{V}$, where $Q_{V}(x)=\phi_{V}(x, x)$ and $\psi: V_{1} \rightarrow G F(2)$ is any non-zero linear form, are all of (-1)-type (see [7, p. 248]).

References

1. J. F. Adams, Peter D. Lax and Ralph S. Phillips, On matrices whose real linear combinations are non-singular, Proc. Amer. Math. Soc. 16 (1965), 318-322, and a Correction to this in the same journal 17 (1966), 945-947.
2. Y.-H. Au-Yeung, On matrices whose non-trivial real linear combinations are non-singular Proc. Amer. Math. Soc. 29 (1971), 17-22.
3. N. Bourbaki, Algèbre, Chap. 9 (Hermann, Paris 1959).
4. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, New York 1966).
5. J. Dieudonné, La géometrie des groupes classiques (Springer-Verlag, Berlin 1963).
6. D. Gorenstein, Finite groups (Harper and Row, New York 1968).
7. B. Huppert, Endliche Gruppen I (Springer-Verlag, New York 1967).
8. L. A. Nazarova and A. V. Roiter, Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an abelian normal divisor of index p. Math. USSR-Izvestija 3 (1969), 65-86.
9. J-P. Serre, Cours d'arithmétique (Presses Universitaires de France, Paris 1970).

University of Waterloo, Waterloo, Ontario

