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Abstract

The smallest (nontrivial) identity graph is known to have six points
and the smallest identity tree seven. It is now shown that the smallest cubic
identity graphs have 12 points and that exactly two of them are planar,
namely those constructed by Frucht in his proof that every finite group
is isomorphic to the automorphism group of some cubic graph. Both of
these graphs can be obtained from plane trees by joining consecutive
endpoints; it is shown that when applied to identity trees this construction
leads to identity graphs except in certain specified cases. In appendices all
connected cubic graphs with 10 points or fewer, and all cubic nonseparable
planar graphs with 12 points, are displayed.

Introduction

An identity graph has no automorphisms other than the identity.
(Graph-theoretic definitions not included here may be found in [5].) The
trivial graph (consisting of one point and no lines) is an identity graph; in
the rest of this paper only nontrivial graphs are considered.

One graph is smaller than another if it has fewer points. The smallest
identity tree [8] and the smallest identity graphs (see [6]) are shown in
Figure 1. The latter two graphs are complementary.

In his pioneering paper [2], Frucht proved that for any finite group F
there exists a graph G such that its (automorphism) group F(G) is isomorphic
to F. Subsequently, Frucht [3] demonstrated that there even exists a cubic
graph G with F(G) isomorphic to F. In view of recent efforts ([7], [11],
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and references cited therein) to find the smallest graph whose group is iso-
morphic to a given finite group, it seems natural to ask for the smallest cubic
graphs with given group. The specialization of this question to the identity
group is answered in Theorem 1.

Figure 1

Cubic identity graphs

Unfortunately the present answer has been obtained by exhaustion
rather than by theoretical means. It is to be hoped that in the relatively
near future a proof by enumeration may be found, perhaps by extending the
method in a forthcoming paper by R. W. Robinson on the enumeration of
cubic graphs.

THEOREM 1. The smallest nontrivial cubic identity graphs have 12 points.
Further, there are exactly two different planar cubic identity graphs with 12
Points, those shown in Figure 2.

Figure 2

PROOF. Every cubic graph shown in Appendices I and II can be seen
to have at least one non-identical automorphism, except for Gx and G2.

The graphs Gx and G2 were found by Frucht [3] when showing that
every finite group is isomorphic to F(G) for some cubic graph G. Subse-
quently Sabidussi [10] and others showed that this is rather a weak re-
striction and that there always exist graphs with given group and possessing
a variety of prescribed graph-theoretic properties.

Each of Gx and G2 can be constructed by the following method. Consider
any tree (see the Appendix of [8] for diagrams of the trees and identity
trees with at most 12 points) and draw it in the plane. The result is called
a plane tree: such trees were counted in [9]. Now draw a polygon joining
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consecutive endpoints of the plane tree. If the original tree has every point
either an endpoint or a point of degree 3, then the resulting planar graph
will be cubic. Clearly both Gx and G2 can be so constructed; the plane trees
from which they can be formed in this way are shown in Figure 3.

'2-

Figure 3

These are not identity trees. Clearly any identity tree has points of
degree 2, and therefore cannot lead to a cubic graph. The smallest (nontrivial)
identity tree, shown in Figure 1, yields the identity graph of Figure 4, in
which the outer polygon is drawn with dashed lines.

Figure 4

Construction of identity graphs from identity trees

Under the operation described above, not every plane identity tree
leads to an identity graph; the simplest contrary example is shown in
Figure 5. The mapping taking u into u', v into v', and w into w', and
leaving the other points fixed, is a non-identical automorphism of this
graph. The same phenomenon is exhibited by any plane tree that can be
regarded as made up of a path vov1 • • • vnvn+1 (n 2̂  2) together with n
disjoint branches vmwml • • • wmi (im 2: 1), m = 1, • • •, n, all extending
from the same side of the path (see Figure 6): such a plane tree we shall call
exceptional. (The reader acquainted with the proof in [2] will notice a close
similarity to Frucht's original construction; see also Chapter 14 of [5].)
It will be an identity tree unless either (i) ix = \orin= 1, or (ii) im = in_m+1
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w

w,

V'

Figure 5

for m = 1, • • •, n. We shall show below that all other plane identity trees
lead to identity graphs. We observe as a corollary that since every identity
tree with an exceptional plane embedding can also be given a non-excep-
tional one, by putting the branch v^w^ • • • wu on the other side of the path,
it can be used to construct an identity graph by the above method.

Figure 6

THEOREM 2. / / a plane identity tree T yields a non-identity graph G
when consecutive endpoints are joined then it is exceptional.

PROOF. Let / be a non-identical automorphism of G, and let U denote
the outer polygon of G. The image U' = f(U) is a cycle in G which does
not coincide with U, because otherwise / would induce a non-identical
automorphism of T. Any point of G can be joined to any other by a path
in T, of which at most the endpoints can lie on U. The image of this path
under / will have a similar property relative to U'. It follows that G lies
either wholly inside and on U' or wholly outside and on U'; and the
former case is impossible because points of U—U' are certainly outside V.
Thus G has no points inside U'. Further we note that every point of U' is of
degree 3 in G (since this is true of U).

Since T contains no cycle, being a tree, U' contains at least one edge
of U. Let A = vov1- • • vnvn+1 be a path in U- of which just the endpoints
belong to U. It will divide U into two parts, say U1 and U2- Any point of G
can be joined to any other by a path in T, and such a path cannot cross
from one side of A to the other, since otherwise it would pass inside U'.
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It follows that G lies wholly inside and on one of the cycles A u Ux or
4 u P 2 , say the latter. Therefore U1 consists of a single edge vovn+1, and
U' is simply the cycle v^v^ • • • vn+1v0 (see Figure 7).

^ - ^ U 2 . _ _ _ „ . - ' '

Figure 7

Removal of the edges vm_lvm and vmvm+1 would disconnect T, and
one of the components of the remainder would contain vm; denote it by
Tm (1 ^ m ^ n). Since T contains no cycle, the subtrees Tm are mutually
disjoint. Each of them contains one or more endpoints of T, all different
from v0 and vn+1. Since U' has the same number of points as U, each Tm

contains only one endpoint of T, and therefore is a path. Thus we are in the
situation of Figure 6, that is, T is exceptional.

Hamiltonian cubic graphs

It is often of interest to determine the number of hamiltonian graphs
of a given type. For planar and nonplanar connected cubic graphs with up
to 12 points this information is displayed in Table I, which is based on data
in a report by Lederberg2 and in another by Balaban [1].

TABLE I

Number of points

4

6

8

10

12

Hamiltonian

planar

1

1

3

8

29

nonplanar

0

1

2

9

51

Non-hamiltonian

planar

0

0

0

1

3

nonplanar

0

0

0

1

?

8 J. Lederberg, NASA Report CR 68898, STAR N-66 14074 (DENDRAL 64, a system
for computer construction, enumeration and notation of organic molecules as tree structures
and cyclic graphs, Part II, Topology of cyclic graphs).
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Unsolved problems

1. We show in Table II the symmetry numbers of all connected cubic
graphs with at most 8 points, that is, the order of the group of each such
graph.

Cubic Graph

Symmetry Number

4.

24

1 6.

12

1

TABLE

6.2

72

11

8.

16

1 8.

16

2 8

4

.3 8.4

8

8

12

.5

This suggests a problem which sounds opposite to that of this paper.
Determine the maximum symmetry number among all cubic graphs with In
points.

2. It has been established that as the number of points becomes very
large, almost all graphs are identity graphs. It is now conjectured that in
particular, almost all cubic graphs are identity graphs.

Appendix I

All connected cubic graphs with 10 points or fewer.
These diagrams are given in Balaban [1]. The cubic graph /C4 with 4

points is called graph 4.1 in this appendix; the two cubic graphs with 6
points are designated 6.1 and 6.2, and so forth. Some of these graphs have
special names. For example, 4.1 is the tetrahedron, 6.1 the triangular prism,
6.2. the complete bipartite graph K33, 8.1 the cube Q3, 8.2 and 10.13 Mobius
ladders [4], 10.14 the pentagonal prism, and 10.19 the well known Petersen
graph. All of the planar graphs among these are drawn without intersecting
lines.

4.1

6.2
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8.1 8.2 8.3 8.4 8.5

10.1

10.6

10.11

\

10.

>

2

. /

/ \

10.7

10.12

10.16 10.17

10.3

10.8

10.13

10.18

10.4

10.9

10.14

10.19

10.5

10.10

10.15

Appendix II

All nonseparable cubic planar graphs with 12 points. These diagrams
are given by Grace <*.

12.1 12.2 12.3 12.4

3 D. W. Grace, Computer search for non-isomorphic convex polyhedra. Stanford Compu-
tation Center Technical Report CS 15 (1956).
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12.5 12.6 12.7 12.8

12.9 12.10 12.11 12.12

12.13 12.14 12.15 12.16

12.17 12.18 12.19 12.20

12.21 12.22 12.23 12.24

12.25

KB
12.26 12.27 12.28

12.29
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