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Harmonicity of Holomorphic Maps
Between Almost Hermitian Manifolds

Domingo Chinea

Abstract. In this paper we study holomorphic maps between almost Hermitian manifolds. We obtain

a new criterion for the harmonicity of such holomorphic maps, and we deduce some applications to

horizontally conformal holomorphic submersions.

1 Introduction

A map f : M → N between Riemannian manifolds is harmonic if it is a critical point

of the energy density of f . In [3], J. Eells and J. H. Sampson proved that a holo-

morphic map between Kähler manifolds is a harmonic map. This result was gener-

alized by A. Lichnerowicz for a holomorphic map between almost Kähler manifolds

and also for a holomorphic map between a semi-Kähler manifold and a quasi-Kähler

manifold (see [8]). Harmonic morphisms are harmonic maps which satisfy the addi-

tional condition of horizontal conformality. In [6], S. Gudmundsson and J. C. Wood

obtained conditions for a holomorphic map between almost Hermitian manifolds to

be a harmonic or a morphism harmonic, and they generalized a result of B. Watson

on the harmonicity of certain almost Hermitian submersions (see [10, 11]).

In this paper we study holomorphic maps between almost Hermitian manifolds;

we obtain a new criterion for the harmonicity of such holomorphic maps, and we

deduce some applications to horizontally conformal holomorphic submersions.

In Section 2 we recall the definitions and some properties of harmonicity, al-

most Hermitian manifolds, and holomorphic and horizontally conformal maps. In

Section 3 we give an expression for the tension field τ( f ) of a holomorphic map

f : M → N between almost Hermitian manifolds (see Proposition 3.1) which gen-

eralizes the one obtained by S. Gudmundsson and J. C. Wood in [6] when N is

quasi-Kähler. Also we obtain the criterion for the harmonicity of holomorphic maps

(Theorem 3.3). In section 4 we introduce, for a horizontally conformal holomor-

phic submersion f : (M, J, g) → (N, J ′, g ′), the tensor B defined by B. Watson and

L. Vanhecke in [11] for almost Hermitian submersions, and we obtain relations be-

tween the divergences of the almost complex structures J and J ′ and the tensors B

and τ( f ) (Propositions 4.5 to 4.8). These results are applied in Section 5 in order to

study the harmonicity, the minimality of the fibres, and the transference of structures

on horizontally conformal holomorphic submersions, which generalize some results

of S. Gudmundsson and J. C. Wood, and of B. Watson and L. Vanhecke for almost

Hermitian submersions ([10] and [11]).
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2 Preliminaries

Let (M, g) and (N, g ′) be two Riemannian manifolds and f : M → N a smooth map.

We denote by ∇ and ∇ ′ the Riemannian connections on M and N, respectively and

by ∇ f the pull-back of the Riemannian connection ∇ ′ on N to the pull-back bundle

f −1TN → M, which is given by ∇
f
XV = ∇ ′

f∗XV for X ∈ X(M) and V a C∞-section

on the induced bundle f −1TN. The tension field τ( f ) is the trace of the second

fundamental form of f , i.e,

τ( f ) =

m
∑

k=1

(∇ f
ek

f∗(ek) − f∗(∇ek
ek)),

where {e1, . . . , em} is a local orthonormal basis for X(M).

We recall that f is harmonic if it is a critical point of the energy density function

of f . This condition is equivalent to τ( f ) = 0.

The map f : M → N is said to be a harmonic morphism if for each open subset

U of N with f −1(U ) 6= ∅ and each harmonic function h : U → R the composition

h ◦ f : f −1(U ) → R is harmonic.

We recall that a map f : M → N between Riemannian manifolds of equal di-

mension is conformal if, for each point x ∈ M, the induced linear map (i.e., the

differential) f∗x : TxM → T f (x)N is conformal with respect to the Riemannian met-

rics. Horizontal conformality is a generalization of this concept to the case when

the target manifold is of lower dimension than the domain. If f : M → N is a map

between two Riemannian manifolds, and x ∈ M is a non-degenerate point, we de-

compose the space TxM into its vertical space Vx = Ker f∗x and its horizontal space

Hx = (Ker f∗x)⊥, i.e., the orthogonal complement of Vx, so that TxM = Vx ⊕ Hx.

The map is said to be horizontally conformal if for each point x ∈ M either the rank of

f∗x is 0 (i.e., x is a critical point), or the restriction of f∗x to the horizontal space Hx

is surjective and conformal (here x is regular point). This second property is equiva-

lent to that g ′( f∗X, f∗Y ) = λ2g(X,Y ) for all horizontal vector fields X and Y . If we

put λ = 0 at the critical points, λ : M → [0,∞) is a continuous function which is

smooth at regular points, but whose square λ2 is smooth on the whole of M.

When dim M < dim N, the only horizontally conformal maps are the constant

mappings. If λ2 ≡ 1 the map is called a Riemannian submersion and if grad λ2 ∈ V,

f is called horizontally homothetic.

The following result is a characterization for harmonic morphisms (see [2] and

[7]).

Theorem 2.1 A smooth map f : (M, g) → (N, g ′) is a harmonic morphism if and

only if it is a horizontally conformal harmonic map.

The above theorem expresses in analytical and geometric terms an essentially an-

alytical object and provides a handle on harmonic morphisms.

Also, in [1], P. Baird and J. Eells proved the following.

Theorem 2.2 Let f : (M, g) → (N, g ′) be a non-constant horizontal conformal map.

Then
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(i) If N is a surface then f is a harmonic morphism if and only if its fibres at regular

points are minimal.

(ii) If dim N ≥ 3, then any two of the following conditions imply the third:

(a) f is harmonic,

(b) the fibres of f are minimal at regular points,

(c) f is horizontally homothetic, i.e., f∗(grad(λ2)) = 0.

Now let (M, J, g) be an almost Hermitian manifold of dimension 2m. Then we

have J2
= −I and g( JX, JY ) = g(X,Y ) for X,Y ∈ X(M), I being the identity trans-

formation. In such a case, every point x of M has a neighborhood Ux and local vector

fields X1, . . . , Xm on Ux such that {X1, . . . , Xm, JX1, . . . , JXm} is a local orthonormal

basis for X(M), which is called a local Hermitian basis. The fundamental 2-form Φ

of M is defined by Φ(X,Y ) = g(X, JY ), for X,Y ∈ X(M).

In [4], A. Gray and L. Hervella obtained a complete classification of the almost

Hermitian manifolds, where the different classes correspond to U (n)-invariant sub-

spaces of the representation space W1⊕W2⊕W3⊕W4. Let us recall some well-known

definitions of some classes of almost Hermitian manifolds involved here. An almost

Hermitian manifold (M, J, g) is said to be:
• Kähler (≡ {0}) if ∇ J = 0.
• nearly Kähler (≡ W1) if (∇X J)X = 0
• almost Kähler (≡ W2) if dΦ = 0.
• quasi-Kähler (≡ W1 ⊕W2) if (∇X J)Y + ∇ JX J) JY = 0.
• semi-Kähler (≡ W1 ⊕W2 ⊕W3) if δ J = 0, where δ denotes the codifferential in

(M, g).

The relations among these classes are represented in the following diagram (where

−→ denotes strict inclusion).

Relations between almost Hermitian structures.

Kähler

almost Kähler

nearly Kähler

quasi-Kähler semi-Kähler
�

��*

H
HHj

�
��*

H
HHj

-

We recall that a map f : M → N, between two almost Hermitian manifolds

(M, J, g) and (N, J ′, g ′), is holomorphic if J ′ ◦ f∗ = f∗ ◦ J.

The result obtained by Lichnerowicz on the harmonicity of holomorphic maps

between a semi-Kähler manifold and a quasi-Kähler manifold was also induced by

Gudmundsson and Wood in [6]. Indeed, they proved that if f : M → N is a holo-

morphic map and if N is quasi Kähler then,

τ( f ) = − f∗( Jδ J).

A smooth surjective map f : M → N is called a Riemannian submersion if f has

maximal rank and f∗|H is a linear isometry, where H is of Horizontal distribution
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associated to f . We say that f is an almost Hermitian submersion if f is a Rieman-

nian submersion which additionally is holomorphic. For a detailed study on almost

Hermitian submersions we refer the reader to [10].

Riemannian submersions are special cases of horizontally conformal maps. If

f : M → N is a horizontally conformal submersion and holomorphic then we say

that f is a horizontally conformal holomorphic submersion, with dilation λ.

The fibres of a horizontally conformal holomorphic submersion are almost Her-

mitian manifolds, of dimension 2(m − n), with the induced structure by the total

space (M, J, g), and which also is denoted by ( J, g). In general, the horizontal distri-

bution H(M) is not completely integrable.

If f : (M, g) → N is a submersion, we can introduce the fundamental tensors of f

which are given by (see [9]):

TEF = h∇vEvF + v∇vEhF,

AEF = h∇hEvF + v∇hEhF,

for all vector fields E and F on M, where h and v denote the horizontal and vertical

projections, respectively.

If f is a horizontally conformal submersion we have

Proposition 2.3 ([5]) Let f : (M, g) → (N, g ′) be a horizontally conformal submer-

sion with dilation λ then,

AXY =
1

2
{v[X,Y ] − λ2g(X,Y ) gradv(λ−2)}

for all X,Y horizontal vector fields.

3 Holomorphic Maps and Harmonicity

In this section we will obtain an expression for the tension field for any holomorphic

map between almost Hermitian manifolds that we will use to deduce a characteriza-

tion of its harmonicity.

If f : (M, g) → (N, g ′) is a smooth map, we denote by tracg f ∗(∇ ′ J ′) the trace of

the tensor field f ∗(∇ ′ J ′) by g, which is given by

tracg f ∗(∇ ′ J ′) =

2m
∑

i=1

(∇ ′
f∗ei

J ′) f∗ei

where {e1, . . . , e2m} is a local orthonormal basis on (M, g). Then we have,

Proposition 3.1 Let f : (M, J, g) → (N, J ′, g ′) be a holomorphic map. Then the

tension field τ( f ) of f is given by

τ( f ) = J ′(tracg f ∗(∇ ′ J ′) − f∗(δ J)),
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Proof Let {X1, . . . , Xm, JX1, . . . , JXm} be a local Hermitian basis in M. Then

τ( f ) =

m
∑

k=1

[

∇
f
Xk

f∗(Xk) − f∗(∇Xk
Xk) + ∇

f
JXk

f∗( JXk) − f∗(∇ JXk
JXk)

]

.

Now,

δ J =

m
∑

k=1

[

(∇Xk
J)Xk + (∇ JXk

J) JXk)
]

=

m
∑

k=1

(∇Xk
JXk −∇ JXk

Xk) −
m

∑

k=1

J(∇Xk
Xk + ∇ JXk

JXk),

and then we have,

m
∑

k=1

(∇Xk
Xk + ∇ JXk

JXk) = Jδ J − J(

m
∑

k=1

(∇Xk
JXk −∇ JXk

Xk).

On the other hand, since that f∗([X,Y ]) = ∇
f
X f∗Y −∇

f
Y f∗X for all X,Y ∈ X(M),

we have

f∗(∇Xk
JXk −∇ JXk

Xk) = f∗([Xk, JXk]) = ∇
f
Xk

f∗( JXk) −∇
f
JXk

f∗(Xk).

Thus, we deduce

τ( f ) =

m
∑

k=1

(∇
f
Xk

f∗(Xk) + ∇
f
JXk

f∗( JXk)) − f∗( Jδ J) + f∗( J(

m
∑

k=1

(∇Xk
JXk −∇ JXk

Xk))

=

m
∑

k=1

[∇
f
Xk

f∗(Xk) + ∇
f
JXk

f∗( JXk) + J ′(∇
f
Xk

f∗( JXk) −∇
f
JXk

f∗(Xk))] − f∗( Jδ J).

Furthermore, from definition of ∇ f and as f is holomorphic it follows that:

m
∑

k=1

[∇
f
Xk

f∗(Xk) + ∇
f
JXk

f∗( JXk) + J ′(∇
f
Xk

f∗( JXk) −∇
f
JXk

f∗(Xk))]

= J ′(

m
∑

k=1

[∇ ′
f∗Xk

J ′ f∗Xk − J ′∇ ′
f∗Xk

f∗Xk −∇ ′
J ′ f∗Xk

f∗Xk − J ′∇ ′
J ′ f∗Xk

J ′ f∗Xk])

= J ′(

m
∑

k=1

[(∇ ′
f∗Xk

J ′) f∗Xk + (∇ ′
J ′ f∗Xk

J ′) J ′ f∗Xk])

= J ′(tracg f ∗(∇ ′ J ′)).

This completes the proof.
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If (N, J ′, g ′) is quasi-Kähler (or nearly Kähler or almost Kähler), then

tracg f ∗(∇ ′ J ′) = 0, hence from the above proposition we deduce the following.

Corollary 3.2 [6] Let f : (M, J, g) → (N, J ′, g ′) be a holomorphic map. If N is

quasi-Kähler then the tension field τ( f ) of f is given by

τ( f ) = − J ′( f∗(δ J)).

From Proposition 3.1 we obtain a criterion for the harmonicity of holomorphic

maps between almost Hermitian manifolds.

Theorem 3.3 Let f : (M, J, g) → (N, J ′, g ′) be a holomorphic map. Then f is har-

monic if and only if tracg f ∗(∇ ′ J ′) = f∗(δ J).

From this theorem we deduce the following result of Lichnerowicz, [8].

Corollary 3.4 Let f : (M, J, g) → (N, J ′, g ′) be a holomorphic map from a semi-

Kähler manifold to a quasi-Kähler one. Then f is harmonic.

4 Horizontally Conformal Holomorphic Submersions

Next, we will find the expressions between the divergences or codifferentials of the

almost Hermitian structures of the total and base spaces and on the fibres of one hor-

izontally conformal holomorphic submersion, and we will relate them to the tension

field.

Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomorphic submer-

sion. We define a tensor field B by

B(E, F) = v∇hE JhF − v∇ JhEhF + h∇hE JvF − h∇ JhEvF,

for all E, F ∈ X(M). The tensor B was defined by B. Watson and L. Vanhecke for

almost Hermitian submersions (see, [11]).

From this definition we have the following.

Proposition 4.1 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. Then for all horizontal vector fields X,Y on M,

(i) B(X,Y ) = AX JY − A JXY ,

(ii) B(X,Y ) − B(Y, X) = 2g( JX,Y )λ2 gradV (λ−2),

(iii) B(X,Y ) = B( JX, JY ).

Now, if M is quasi-Kähler we have the following.

Proposition 4.2 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. If M is quasi-Kähler then, for all horizontal vector fields X,Y on M,

(i) AX JX = − λ2

2
g(X, X) J(gradV (λ−2)),

(ii) B(X,Y ) = λ2(−g(X,Y ) J(gradv(λ−2)) + g( JX,Y ) gradv(λ−2)).
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Proof If M is quasi-Kähler, then

∇X JX −∇ JXX = J(∇XX + ∇ JX JX)

If X is horizontal, from vertical part of this equation we have

AX JX − A JXX = J(AXX + A JX JX).

Now, from definition of A we have that AX JX = −A JXX and AXX = A JX JX. Thus

2AX JX = 2 JAXX = −g(X, X)λ2 J(gradV (λ−2)),

and

B(X, X) = −g(X, X)λ2 J(gradV (λ−2)),

and hence we deduce that

B(X,Y ) + B(Y, X) = −2g(X,Y )λ2 J(gradV (λ−2)).

Now the result follows from the above proposition.

Also, we have the following.

Proposition 4.3 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. If M is quasi-Kähler then B vanishes on horizontal vector fields if and

only if gradv(λ−2) = 0.

From this proposition one can easily deduce the following result of B. Watson and

L. Vanhecke ([11]).

Proposition 4.4 Let f : (M, J, g) → (N, J ′, g ′) be an almost Hermitian submersion.

If M is quasi-Kähler then B vanishes on horizontal vector fields.

Next we obtain relations between the divergences of the almost complex structures

J and J ′. We denote the divergence of J on the fibres of f by δ̂ J.

Proposition 4.5 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. Then

v(δ J) = δ̂ J +
1

2
trac B + nλ2 J(gradV (λ−2)).

Proof Let {E1, . . . , Em−n, JE1, . . . , JEm−n, F1, . . . , Fn, JF1, . . . , JFn} be a local Her-

mitian basis, being Ek vertical vector fields and Fk horizontal vector fields. Then

v(δ J) = v(

m−n
∑

i=1

[(∇Ei
J)Ei + (∇ JEi

J) JEi]) + v(

n
∑

j=1

[(∇F j
J)F j + (∇ JF j

J) JF j)])

= v(

m−n
∑

i=1

[(∇Ei
J)Ei + (∇ JEi

J) JEi]) + v(

n
∑

j=1

[(∇F j
JF j −∇ JF j

F j)

− J(∇F j
F j + ∇ JF j

JF j)]).
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Now

v
(

m−n
∑

i=1

[(∇Ei
J)Ei + (∇ JEi

J) JEi]
)

= δ̂ J,

v(∇F j
JF j −∇ JF j

F j) = B(F j , F j),

and

v(∇F j
F j + ∇ JF j

JF j) = AF j
F j + A JF j

JF j = −λ−2 gradv(λ−2).

Thus, using these relations in the expression of v(δ J) we obtain the result.

Proposition 4.6 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. Then

tracg f ∗(∇ ′ J ′) = λ2δ ′ J ′.

Proof Let {E1, . . . , Em−n, JE1, . . . , JEm−n, F1, . . . , Fn, JF1, . . . , JFn} be a local Her-

mitian basis, being Ek vertical vector fields and Fk horizontal vector fields obtained as

follows: if {F ′
1, . . . , F ′

n, J ′F ′
1 . . . , J ′F ′

n} is a Hermitian basis on N we consider F∗
j the

horizontal lifts of F ′
j , j = 1, . . . , n and normalize by setting F j = λF∗

j , where λ is the

dilation of f . Then

tracg f ∗(∇ ′ J ′) =

n
∑

j=1

[(∇ ′
f∗F j

J ′) f∗F j + (∇ ′
f∗ JF j

J ′) f∗ JF j] = λ2δ ′ J ′.

From Propositions 3.1 and 4.6 we obtain the following.

Proposition 4.7 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. Then the tension field τ( f ) of f is given by

τ( f ) = λ2 J ′δ ′ J ′ − J ′ f∗(δ J).

Finally, combining Propositions 4.5 and 4.6 we have the following.

Proposition 4.8 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion. Then

δ J = δ̂ J + 1
2

trac B + nλ2 J(gradV (λ−2)) + λ2(δ ′ J ′)∗ + ( J ′τ( f ))∗

where (δ ′ J ′)∗ and ( J ′τ( f ))∗ are the horizontal lifts of δ ′ J ′ and J ′τ( f ) on M respec-

tively.

5 Harmonicity, Minimality and Horizontally Conformal
Holomorphic Semi-Kähler Submersions

In this section we will apply the results obtained in Section 4 previous to horizontally

conformal holomorphic submersions with total or base space a semi-Kähler mani-

fold. For these submersions we will study the harmonicity of f , the minimality of the

fibres, and the transference of the almost Hermitian structures between the total and

base spaces and the fibres.

First, from Proposition 4.7 we have the following.
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Theorem 5.1 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion with dilation λ. Then f is harmonic (and so a harmonic morphism) if

and only if f∗(δ J) = λ2δ ′ J ′.

We can also deduce the following.

Proposition 5.2 [6] Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holo-

morphic submersion with dilation λ. Then, any two of the following conditions imply

the third:

(i) f is harmonic and so a harmonic morphism,

(ii) N is semi-Kähler.

(iii) f∗δ J = 0.

Corollary 5.3 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion with dilation λ, with semi-Kähler total space M. Then N is semi-

Kähler if and only if f is a harmonic morphism.

Now, from the definition of the tension field τ( f ) it is not hard to check that

τ( f ) = −2(m − n) f∗(H) + (n − 1)λ2 f∗(gradH(λ−2)),

where H is the mean curvature of the fibres. Then from Proposition 4.7 we have

J ′ f∗(δ J) = λ2 J ′δ ′ J ′ + 2(m − n) f∗(H) − (n − 1)λ2 f∗(gradH(λ−2)).

Thus, we obtain the following.

Proposition 5.4 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion with dilation λ , with semi-Kähler total space M. Then , if n 6= 1 and

m 6= n, any two of the following conditions imply the third:

(i) N is semi-Kähler.

(ii) The fibres of f are minimal.

(iii) f is horizontally homothetic, i.e., gradH(λ−2) = 0.

Also, by using Proposition 4.5 we have the following.

Proposition 5.5 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion with dilation λ , with semi-Kähler total space M. Then, any two of the

following conditions imply the third:

(i) The fibres are semi-Kähler.

(ii) trac B = 0.

(iii) gradV (λ−2) = 0.

In a similar way, from Proposition 4.8 we deduce the following.

Proposition 5.6 Let f : (M, J, g) → (N, J ′, g ′) be a horizontally conformal holomor-

phic submersion with dilation λ , with base space N and semi-Kähler fibres. Then, the

total space M is semi-Kähler if and only if f is harmonic and

1

2
trac B = −nλ2 J(gradV (λ−2)).

https://doi.org/10.4153/CMB-2009-003-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-003-4


Harmonicity of Holomorphic Maps Between Almost Hermitian Manifolds 27

Now, if f : (M, J, g) → (N, J ′, g ′) is an almost Hermitian submersion then

grad(λ−2) = 0, ( λ = 1). Thus, from above propositions we have,

Proposition 5.7 [10] Let f : (M, J, g) → (N, J ′, g ′) be an almost Hermitian sub-

mersion with semi-Kähler total space M. Then N is semi-Kähler if and only if the fibres

of f are minimal.

Proposition 5.8 [11] Let f : (M, J, g) → (N, J ′, g ′) be an almost Hermitian sub-

mersion with semi-Kähler total space M. Then the fibres are semi-Kähler if and only if

trac B = 0.

Proposition 5.9 [11] Let f : (M, J, g) → (N, J ′, g ′) be an almost Hermitian submer-

sion with base space N and semi-Kähler fibres. Then the total space M is semi-Kähler if

and only if f is harmonic and trac B = 0.

We note that on a Riemannian submersion, the harmonicity is equivalent to the

minimality of the fibres.
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