AN EIGENVALUE PROBLEM FOR A NON-BOUNDED QUASILINEAR OPERATOR

JOSÉ CARMONA¹ AND ANTONIO SUÁREZ²

¹Departamento de Algebra y Análisis Matemático, Facultad de Ciencias, Cañada de San Urbano, Almería, Spain (jcarmona@ual.es) ²Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Sevilla, Spain (suarez@us.es)

(Received 29 April 2003)

Abstract In this paper we study the eigenvalues associated with a positive eigenfunction of a quasilinear elliptic problem with an operator that is not necessarily bounded. For that, we use the bifurcation theory and obtain the existence of positive solutions for a range of values of the bifurcation parameter.

Keywords: bifurcation; positive solutions; non-bounded quasilinear operator; eigenvalue problems

2000 Mathematics subject classification: Primary 35J60; 35J25 Secondary 35D05

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^N with sufficiently smooth boundary $\partial\Omega$ and let A(x,s) be a real symmetric matrix whose entries, $a_{ij}: \bar{\Omega} \times \mathbb{R}_0^+ \to \mathbb{R}$, are Carathéodory functions.

We assume that there exists a positive constant α satisfying, for every $(x, s, \xi) \in \Omega \times \mathbb{R}^+ \times \mathbb{R}^N$,

$$A(x,s)\xi \cdot \xi \geqslant \alpha |\xi|^2. \tag{A_1}$$

In this paper we analyse the nonlinear eigenvalue problem

$$-\operatorname{div}(A(x,u)\nabla u) = \lambda u, \quad x \in \Omega, u = 0, \quad x \in \partial\Omega,$$

$$(P_{\lambda})$$

where we say that λ is an eigenvalue for this problem if (P_{λ}) admits a positive and non-trivial solution, that is, if there exists $u \in H_0^1(\Omega)$, $u \ge 0$, $u \ne 0$, such that $A(x,u)\nabla u \in (L^2(\Omega))^N$ and

$$\int_{\varOmega} A(x,u) \nabla u \cdot \nabla v = \lambda \int_{\varOmega} uv, \quad \forall v \in H^1_0(\varOmega).$$

In addition to interest itself in the study of (P_{λ}) , this kind of equation has been used to model a species inhabiting Ω where its diffusion depends on the density of the species, which arises in more realistic models (see [3,4] and references therein).

Problem (P_{λ}) is well known when A does not depend on s, i.e. when A(x,s) = B(x) with $B = (b_{ij})$ and $b_{ij} \in L^{\infty}(\Omega)$, $b_{ij} \geq b_0 > 0$ in Ω . In this case, there exists the principal eigenvalue, denoted by $\lambda_1(B)$, for the problem

$$-\operatorname{div}(B(x)\nabla u) = \lambda u, \quad x \in \Omega, u = 0, \quad x \in \partial\Omega,$$
(1.1)

being the unique eigenvalue with a positive eigenfunction (see, for example, [6]).

In [2], assuming that A satisfies (A_1) and

$$|A(x,s)| \le \beta$$
 for each $(x,s) \in \Omega \times \mathbb{R}$, (A_2)

the author proved that for each r > 0, there exists $\lambda_r > 0$ and a positive solution $u_r \in H_0^1(\Omega)$, of (P_{λ_r}) such that $||u_r||_2 = r$. Moreover, defining

$$\lambda_0 := \lambda_1(A(x,0)),$$

he showed that if $r \to 0$, then $\lambda_r \to \lambda_0$ and u_r/r converges to a positive eigenfunction associated with λ_0 in $H_0^1(\Omega)$. Finally, if A also verifies

$$\lim_{s \to \infty} A(x, s) = A_{\infty}(x) \quad \text{uniformly in } x \in \Omega, \tag{A_3}$$

then $\lambda_r \to \lambda_\infty$ and u_r/r goes to a positive eigenfunction associated with λ_∞ in $H_0^1(\Omega)$ as $r \to \infty$, where

$$\lambda_{\infty} := \lambda_1(A_{\infty}(x)).$$

In [5], a slight modification of (P_{λ}) is analysed. Under conditions (A_1) – (A_3) , $\lambda u + h(x)$ for some $0 \leq h \in L^2(\Omega)$ is considered instead of λu . But the arguments used to prove the existence of a solution leads to the trivial one in the case $h \equiv 0$.

In [1], assuming in addition the existence of an Osgood function $\omega: \mathbb{R}_0^+ \to \mathbb{R}$ such that

$$|A(x,s_1) - A(x,s_2)| \le \omega(|s_1 - s_2|),$$
 (A₄)

for every $(x, s_1), (x, s_2) \in \Omega \times \mathbb{R}$, using a bifurcation analysis, the authors study a more general problem

$$-\operatorname{div}(A(x,u)\nabla u) = f(\lambda, x, s), \quad x \in \Omega,$$

$$u = 0, \qquad x \in \partial\Omega.$$

for $f: \mathbb{R} \times \bar{\Omega} \times \mathbb{R} \to \mathbb{R}$ and A satisfying (A_1) – (A_4) . In the particular case $f(\lambda, x, s) = \lambda s$, from their results can be deduced the existence of an unbounded continuum (closed and connected subset) of positive solutions bifurcating from the trivial solution at $\lambda = \lambda_0$ and meeting with infinity at the value $\lambda = \lambda_{\infty}$. Thus, as a consequence, there exists a positive

solution of (P_{λ}) for $\lambda \in (\lambda_0, \lambda_{\infty})$ or $(\lambda_{\infty}, \lambda_0)$. In the following section we complete this study for A satisfying (A_1) – (A_4) by giving sufficient conditions for the uniqueness of a positive solution.

The main goal of this work (see § 3) is to analyse (P_{λ}) when A is not necessarily bounded and/or does not satisfy (A_3) . In this case, we show that there exists an unbounded continuum of positive solutions bifurcating from the trivial one at $\lambda = \lambda_0$. If, in addition, there exists a continuous function $g: \mathbb{R}_0^+ \to \mathbb{R}$, with $\lim_{s \to +\infty} g(s) = +\infty$, satisfying, for every $(x, s, \xi) \in \Omega \times \mathbb{R}^+ \times \mathbb{R}^N$,

$$A(x,s)\xi \cdot \xi \geqslant g(s)|\xi|^2 \geqslant \alpha|\xi|^2,$$
 (A_{∞})

then the bifurcation from infinity at $\lambda = \lambda_{\infty}$ (which exists in the bounded case) 'disappears'. Specifically, there exists at least one positive solution u_{λ} for $\lambda \in (\lambda_0, \infty)$ and $||u_{\lambda}|| \to \infty$ as $\lambda \to \infty$. However, if A is bounded in a subset of Ω , then again a bifurcation to infinity exists.

Throughout the paper we will use the following notation.

- (i) $H_0^1(\Omega)$ and $E = C_0(\bar{\Omega})$ are the usual Sobolev space and the space of the continuous functions in $\bar{\Omega}$ vanishing on $\partial\Omega$ endowed with the norms $||u|| = ||\nabla u||_2$ and $||u||_0 = \sup_{\Omega} |u|$, respectively.
- (ii) cl(D) denotes the closure of the set D.
- (iii) S denotes the set

$$S = \text{cl}\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a solution for } (P_{\lambda}), \ u \geqslant 0, \ u \not\equiv 0\}.$$

Any continuum subset of S will be called a continuum of positive solutions of (P_{λ}) , although it may contain the trivial solution $(\lambda, 0)$ for some value of $\lambda > 0$.

- (iv) I will denote both the identity matrix and the identity operator.
- (v) Given square matrices B_1 , B_2 we say that $B_1 > 0$ (respectively, $B_1 \ge 0$) if the quadratic form induced by B_1 is definite positive (respectively, semidefinite positive). We say that $B_1 < B_2$ (respectively, $B_1 \le B_2$) if $B_2 B_1 > 0$ (respectively, $B_2 B_1 \ge 0$).
- (vi) The map $\operatorname{Proj}_{\mathbb{R}} : \mathbb{R} \times E \to \mathbb{R}$ stands for the projection of the product space $\mathbb{R} \times E$ onto \mathbb{R} .

2. The case of bounded matrices A

In order to study problem (P_{λ}) , let us recall that, for matrices A satisfying (A_1) , (A_2) , if $u \in H_0^1(\Omega)$ is a solution of (P_{λ}) , then using the De Giorgi–Stampacchia Theorem (see [9, Théorème 7.3] and [7, Theorem I] or [8, Theorem 8.29]), $u \in C^{0,\gamma}(\bar{\Omega})$ for some $0 < \gamma < 1$. Moreover, if the coefficients of the matrix A satisfy

$$a_{ij} \in C^{1,\gamma'}(\bar{\Omega} \times \mathbb{R}) \quad \text{for some } 0 < \gamma' < 1,$$
 (2.1)

then by Theorem 15.17 in [8] we have that $u \in C_0^{2,\gamma\gamma'}(\bar{\Omega})$.

We also recall that for every $(\lambda, u) \in \mathcal{S}$ with $u \in \mathcal{C}^1(\bar{\Omega})$ and $u \not\equiv 0$, using the Hopf maximum principle, we have that u > 0 in Ω and the normal exterior derivative $\partial u/\partial n_e$ is negative in $\partial \Omega$.

The following lemma gives us necessary conditions in $\lambda \in \mathbb{R}$ for which (P_{λ}) admits a solution in some special cases.

Lemma 2.1. Assume (A_1) , (A_3) and that (P_{λ}) admits a positive solution. Then

- (1) $\lambda_0 \leqslant \lambda$ (respectively, $\langle , \rangle , \rangle$) if for every $s \in \mathbb{R}^+$, $A(x,0) \leqslant A(x,s)$ (respectively, $\langle , \rangle , \rangle$); and
- (2) $\lambda_{\infty} \geqslant \lambda$ (respectively, >, \leqslant , <) if for every $s \in \mathbb{R}^+$, $A_{\infty}(x) \geqslant A(x,s)$ (respectively, >, \leqslant , <).

Proof. The result follows from the fact that for given symmetric matrices $B_1(x)$, $B_2(x)$ for which there exist $\lambda_1(B_1)$ and $\lambda_1(B_2)$, with $0 < B_1 \le B_2$, then

$$\lambda_1(B_1) = \inf \left\{ \int_{\Omega} B_1(x) \nabla u \cdot \nabla u, \ u \in H_0^1(\Omega), \ \|u\|_2 = 1 \right\} \leqslant \lambda_1(B_2).$$

Thus, if $u \in H_0^1(\Omega)$ is a solution of (P_{λ}) , we conclude by taking into account that $\lambda = \lambda_1(A(x,u))$.

The main result of this section is the following.

Theorem 2.2. Assume (A_1) – (A_4) . We have that λ_0 and λ_∞ are the only bifurcation points from the trivial solution and from infinity, respectively, and there exists a continuum $\Sigma \subset \mathcal{S}$ of positive solutions meeting $(\lambda_0, 0)$ and (λ_∞, ∞) ; in particular, (P_λ) possesses a positive solution for every $\lambda \in (\lambda_0, \lambda_\infty)$ or $\lambda \in (\lambda_\infty, \lambda_0)$. Moreover,

(i) the bifurcation from λ_0 is subcritical (respectively, supercritical) if there exists $s_0 > 0$ such that

$$A(x,s) < A(x,0)$$
 (respectively, $A(x,s) > A(x,0)$), $\forall s \in (0,s_0)$,

(ii) the bifurcation from λ_{∞} is subcritical (respectively, supercritical) if

$$A(x,s) < A_{\infty}(x)$$
 (respectively, $A(x,s) > A_{\infty}(x)$), $\forall s \in \mathbb{R}^+$.

Furthermore, we have the following.

- (i) If $A(x,0) < A(x,s) < A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, then there exists a non-trivial solution for (P_{λ}) if, and only if, $\lambda \in (\lambda_0, \lambda_{\infty})$; in particular, $Proj_{\mathbb{R}}\Sigma = [\lambda_0, \lambda_{\infty})$. If, in addition, A(x,s) is increasing in s and it satisfies (2.1), the solution is unique.
- (ii) If $A(x,0) > A(x,s) > A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, then there exists a non-trivial solution for (P_{λ}) if, and only if, $\lambda \in (\lambda_{\infty}, \lambda_0)$; in particular, $Proj_{\mathbb{R}}\Sigma = (\lambda_{\infty}, \lambda_0]$.

Proof. The existence of the continuum Σ of positive solutions follows by Theorem 5.1 in [1]; in particular, we have the existence of positive solutions for every λ in $(\lambda_0, \lambda_\infty)$ or in $(\lambda_\infty, \lambda_0)$.

The description $\operatorname{Proj}_{\mathbb{R}}\Sigma$, in the cases $A(x,0) < A(x,s) < A_{\infty}(x)$ or $A(x,0) < A(x,s) < A_{\infty}(x)$ for every $s \in \mathbb{R}^+$, follows directly from Lemma 2.1. Moreover, arguing as in that lemma we get the laterality of the bifurcations.

Now, assume that A(x,s) is increasing in s and (2.1) is satisfied. In order to prove the uniqueness of the solution for (P_{λ}) , let us suppose that there exists $\lambda \in (\lambda_0, \lambda_{\infty})$ for which (P_{λ}) admits two solutions, $u_1, u_2 \in E$, with $u_1 \not\equiv u_2$. We claim that u_1, u_2 can be chosen such that $u_1 \leqslant u_2$. Indeed, this is a consequence of the existence of a sequence (λ_n, u_n) with $\lambda_n \to \lambda_0$ and $u_n \to 0$ in E. In fact, by regularity results, $u_n \to 0$ in $C^1(\bar{\Omega})$. Thus, for $\lambda_n < \lambda$, u_n is a subsolution for (P_{λ}) and for large n, $u_n \leqslant \min\{u_1, u_2\}$. Then, by the subsolution and supersolution method, there exists $w \in E$, a solution of (P_{λ}) with

$$u_n \leqslant w \leqslant u_1, \qquad u_n \leqslant w \leqslant u_2.$$

This implies that $w \not\equiv u_1$ or $w \not\equiv u_2$, and the claim is proved by taking $u_1 = w$ and $u_2 = u_i$ for some i = 1, 2.

Now we take $v = u_2^2/u_1$ as a test function in the equation satisfied by u_1 , and $v = u_2$ in that satisfied by u_2 . Thus, subtracting both equalities we have

$$0 = \int_{\Omega} A(x, u_1) \nabla u_1 \cdot \nabla \left(\frac{u_2^2}{u_1}\right) - \int_{\Omega} A(x, u_2) \nabla u_2 \cdot \nabla u_2$$

$$= -\int_{\Omega} A(x, u_1) \left(\frac{u_2}{u_1} \nabla u_1 - \nabla u_2\right) \cdot \left(\frac{u_2}{u_1} \nabla u_1 - \nabla u_2\right)$$

$$- \int_{\Omega} (A(x, u_2) - A(x, u_1)) \nabla u_2 \cdot \nabla u_2 < 0.$$

This contradiction gives the uniqueness.

3. The case of unbounded matrices A

In this section, we study (P_{λ}) when A is not necessarily bounded and does not satisfy (A_3) . We prove firstly that every solution of (P_{λ}) is bounded. More precisely we have the following lemma.

Lemma 3.1. Let A(x,s) satisfy (A_1) and let $u \in H_0^1(\Omega)$ be a solution of (P_{λ}) , then $u \in E$. Moreover, there exist positive constants $c_1, c_2, \gamma_1, \gamma_2$ such that

$$||u||_0^{\gamma_1} \leqslant c_1 + c_2 ||u||^{\gamma_2}. \tag{3.1}$$

Proof. Once we know that $u \in L^{\infty}(\Omega)$, and $||u||_{\infty}^{\gamma_1} \leq c_1 + c_2 ||u||^{\gamma_2}$ for some positive constants c_1 , c_2 , γ_1 , γ_2 , then the result follows directly from the De Giorgi–Stampacchia Theorem. Let us prove the $L^{\infty}(\Omega)$ -estimate. We consider for every $k \in \mathbb{R}^+$ the function $G_k : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ given by

$$G_k(s) = \begin{cases} 0, & 0 \leqslant s \leqslant k, \\ s - k, & s > k. \end{cases}$$

Thus, we can take $v = G_k(u)$ as a test function in the weak equation satisfied by u and using (A_1) we have

$$\alpha \|\nabla G_k(u)\|_2^2 \leqslant \int_{\Omega} A(x, u) \nabla u \nabla G_k(u) \leqslant \lambda \int_{\Omega_k} u G_k(u), \tag{3.2}$$

where $\Omega_k \equiv \{x \in \Omega : u(x) > k\}.$

Using the Sobolev and Hölder inequalities, in the case N > 2, by (3.2) we have, for $u \in L^r(\Omega)$ with $r > 2^*/(2^* - 1)$ and for some positive constant c,

$$||G_k(u)||_{2^*}^2 \le c||u||_r ||G_k(u)||_{2^*} (\text{meas } \Omega_k)^{(1-1/r-1/2^*)}.$$
 (3.3)

Taking into account that, for every h > k, $G_k(u) \ge h - k$ in Ω_h , (3.3) implies that

$$(h-k)(\text{meas }\Omega_h)^{1/2^*} \leqslant c \|u\|_r (\text{meas }\Omega_k)^{(1-1/r-1/2^*)},$$

or, equivalently,

meas
$$\Omega_h \leqslant \frac{c||u||_r^{2^*} (\text{meas }\Omega_k)^{2^*-1-2^*/r}}{(h-k)^{2^*}}.$$
 (3.4)

We can now apply the Stampacchia Lemma [9, Lemma 4.1] to deduce that

- (i) if $u \in L^r(\Omega)$ with r > N/2, then $u \in L^{\infty}(\Omega)$ and $||u||_{\infty} \leq c||u||_r$;
- (ii) if $u \in L^r(\Omega)$ with r = N/2, then $u \in L^t(\Omega)$ for $t \in [1, \infty)$ and $||u||_t^t \leqslant c + c' ||u||_r^t$; and
- (iii) if $u \in L^r(\Omega)$ with r < N/2, then $u \in L^t(\Omega)$ for

$$t = \frac{2^*r}{(2-2^*)r + 2^*} - \delta$$

and $\delta > 0$ arbitrarily small—moreover, $||u||_t^t \leqslant c + c' ||u||_r^{t+\delta}$.

Since $u \in L^{2^*}(\Omega)$ and $2^* > 2^*/(2^*-1)$, we can argue as before for $r_0 = 2^*$. Thus, if $2^* > N/2$, we obtain the $L^{\infty}(\Omega)$ estimate by using item (i) above. In the case $2^* = N/2$ we use item (ii) in order to take $r_1 > N/2$ and again the $L^{\infty}(\Omega)$ estimate follows from item (i) above. Finally, in the case $2^* < N/2$ we can take

$$r_1 = \frac{2^* r_0}{(2 - 2^*) r_0 + 2^*} - \delta_1 > r_0.$$

As before, if $r_1 \ge N/2$, we easily conclude. In the other case we take

$$r_2 = \frac{2^* r_1}{(2 - 2^*)r_1 + 2^*} - \delta_2.$$

By an iterative argument we conclude after a finite number of steps. Indeed, in the other case, we have that r_n is bounded, where r_n is defined recurrently by

$$r_0 = 2^*,$$

$$r_{n+1} = \frac{2^* r_n}{(2 - 2^*) r_n + 2^*} - \delta_{n+1},$$

where $\lim_{n\to\infty} \delta_n = 0$. Moreover, r_n is non-decreasing and so it converges to $r \in (2^*, N/2]$, which satisfies

$$r = \frac{2^*r}{(2-2^*)r + 2^*};$$

that is, $2^* = (2 - 2^*)r + 2^*$, which implies that r = 0, and this is a contradiction.

Observe that the estimate (3.1) follows, after this finite number of steps, from estimates in items (i)–(iii) and the Sobolev embedding.

Finally, in the case N=2 we can choose r>q/(q-2) for any q>2 and argue as before with 2^* replaced by q. In this case we obtain the $L^{\infty}(\Omega)$ estimate directly by using item (i) above.

In this section we assume, instead of (A_2) , that for each $s_0 \in \mathbb{R}^+$ there exists $\beta(s_0)$ such that

$$|A(x,s)| \le \beta(s_0),\tag{\tilde{A}_2}$$

for $(x,s) \in \bar{\Omega} \times [0,s_0]$.

We consider the truncated problems

$$-\operatorname{div}(A(x, T_n(u))\nabla u) = \lambda u, \quad x \in \Omega, u = 0, \quad x \in \partial\Omega,$$

$$(P_{\lambda, n})$$

 $T_n(s)$ being the map defined, for each $n \in \mathbb{N}$, by

$$T_n(s) = \begin{cases} s, & 0 \leqslant s \leqslant n, \\ n, & s > n. \end{cases}$$

By Theorem 2.2, there exist Σ_n unbounded maximal continua of positive solutions such that $(\lambda_0, 0) \in \Sigma_n$ for each $n \in \mathbb{N}$. Now, we can prove the following theorem.

Theorem 3.2. Suppose that A satisfies (A_1) , (A_4) and (\tilde{A}_2) . Then there exists an unbounded continuum $\Sigma \subset \mathcal{S}$ such that $(\lambda_0, 0) \in \Sigma$.

Proof. Firstly, we denote by Σ_k^n the connected component of $\Sigma_k \cap (\mathbb{R} \times \bar{B}_n(0))$ containing $(\lambda_0, 0)$. We claim that

$$\Sigma_k^n = \Sigma_n^n \quad \text{for } k \geqslant n.$$
 (3.5)

Indeed, if $k \ge n$ and $(\lambda, u) \in \Sigma_k^n$, then u is a solution of $(P_{\lambda,n})$. Thus, Σ_k^n is a closed and connected subset of

$$\operatorname{cl}\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a non-trivial solution of } (P_{\lambda,n})\}$$

containing $(\lambda_0, 0)$. So, $\Sigma_k^n \subset \Sigma_n$, from which we deduce that $\Sigma_k^n \subset \Sigma_n^n$. We can reason similarly and obtain that $\Sigma_n^n \subset \Sigma_k \cap (\mathbb{R} \times \bar{B}_n(0))$; thus Σ_n^n and Σ_k^n are connected components of $\Sigma_k \cap (\mathbb{R} \times \bar{B}_n(0))$ containing $(\lambda_0, 0)$, which implies (3.5). So, we get

$$\Sigma_n^n = \lim_k \Sigma_k^n.$$

Therefore, for each $n \in \mathbb{N}$ we have a continuum

$$\Sigma_n^n \subset \operatorname{cl}\{(\lambda, u) \in \mathbb{R} \times E : u \text{ is a non-trivial solution of } (P_\lambda)\}$$

containing $(\lambda_0, 0)$, and if $(\lambda, u) \in \Sigma_n^n$, then $||u||_0 \leq n$.

Now, we are going to prove that

$$\Sigma_n^n \subset \Sigma_{n+1}^{n+1}$$
 for each $n \in \mathbb{N}$. (3.6)

Indeed, observe that

$$\Sigma_n^n = \Sigma_{n+1}^n \subset \Sigma_{n+1} \cap (\mathbb{R} \times \bar{B}_n(0)) \subset \Sigma_{n+1} \cap (\mathbb{R} \times \bar{B}_{n+1}(0)),$$

so, since Σ_{n+1}^{n+1} is the connected component of $\Sigma_{n+1} \cap (\mathbb{R} \times \bar{B}_{n+1}(0))$ containing $(\lambda_0, 0)$ and Σ_n^n is a connected component of such a subset containing it, (3.6) follows.

Finally, we show that the set

$$\Sigma = \bigcup_{n=1}^{\infty} \Sigma_n^n$$

satisfies the theorem. Firstly, observe that since Σ_n is unbounded, Σ is also unbounded. Indeed, since $\operatorname{Proj}_{\mathbb{R}}\Sigma_n$ is bounded, so there exists a connected subset of $\Sigma_n \cap (\mathbb{R} \times \bar{B}_n(0))$ containing $(\lambda_0, 0)$ and intersecting with $\mathbb{R} \times \partial \bar{B}_n(0)$ for each $n \in \mathbb{N}$; i.e. for each $n \in \mathbb{N}$ there exists $(\lambda_n, u_n) \in \Sigma_n^n$, with $||u_n||_0 = n$.

On the other hand, since Σ_n^n is connected and $(\lambda_0, 0) \in \Sigma_n^n$ for each $n \in \mathbb{N}$, it follows that Σ is connected.

Finally, we will prove that Σ is closed. Let $(\lambda, u) \in \bar{\Sigma}$. Since $\bar{\Sigma}$ is connected, there exists a connected and bounded set $\Sigma' \subset \bar{\Sigma}$ containing $(\lambda_0, 0)$ and (λ, u) . Thus, there exists $n \in \mathbb{N}$ such that

$$\Sigma' \subset \operatorname{cl}\{(\lambda, u) \in \mathbb{R} \times E : ||u||_0 \leqslant n, u \text{ is a non-trivial solution of } (P_{\lambda,n})\}.$$

In particular, $\Sigma' \subset \Sigma_n \cap (\mathbb{R} \times \bar{B}_n(0))$, from which $\Sigma' \subset \Sigma_n^n$ and so $(\lambda, u) \in \Sigma_n^n \subset \Sigma$.

Remark 3.3.

- (i) We point out that the above result is true even in the case in which the limit of A(x,s) does not exist as $s \to \infty$.
- (ii) In the case where A is bounded in some subset of Ω , we can conclude that $\operatorname{Proj}_{\mathbb{R}}\Sigma$ is bounded. Indeed, assume that $|A(x,s)| \leq \gamma$ if $x \in B$, where B is a ball such that $B \subset \Omega$, then using the monotonicity of the principal eigenvalue with respect to the domain, we obtain

$$\lambda = \lambda_1(A(x, u)) \leqslant \lambda_1^B(A(x, u)) \leqslant \lambda_1^B(\gamma I) = \gamma \lambda_1^B(I).$$

(iii) In this case we can obtain a similar result to the main one in [2]. Indeed, for each r > 0 there exists $\lambda_r > 0$ and $u_r \in H_0^1(\Omega)$, a solution of (P_λ) with $||u||_0 = r$.

In the next result we show that when A(x,s) tends to infinity as $s \to \infty$ in the sense of (A_{∞}) , then the bifurcation at infinity disappears, in some sense $\lambda_{\infty} \to +\infty$ when A(x,s) tends to infinity.

Theorem 3.4. Assume that A satisfies (A_4) , (\tilde{A}_2) and (A_{∞}) . Then there exists a continuum $\Sigma \subset \mathcal{S}$ such that $(\lambda_0, 0) \in \Sigma$. Moreover, the interval $(\lambda_0, +\infty) \subset \operatorname{Proj}_{\mathbb{R}} \Sigma$ and

$$\lim_{\substack{\lambda \to +\infty \\ (\lambda, u_{\lambda}) \in \Sigma}} \|u_{\lambda}\|_{0} = +\infty.$$

Proof. The existence of the continuum unbounded Σ bifurcating from $(\lambda_0, 0)$ follows by Theorem 3.2. Since $\lambda = \lambda_1(A(x, u)) \geqslant \lambda_1(\alpha I) = \alpha \lambda_1(I)$, there do not exist positive solutions for λ small. So, it suffices to prove that bifurcation from infinity is not possible. In order to do this, we observe that problem (P_{λ}) can be written as

$$-\operatorname{div}(B(x,u)g(u)\nabla u) = \lambda u, \quad x \in \Omega, u = 0, \quad x \in \partial\Omega,$$

$$(P_{\lambda})$$

where g is given by hypothesis (A_{∞}) and

$$B(x,u) := \frac{A(x,u)}{g(u)}.$$

Moreover, if we perform the change of variable

$$w = \tilde{g}(u) = \int_0^u g(t) \, \mathrm{d}t,$$

problem (P_{λ}) is equivalent to

$$-\operatorname{div}(C(x,w)\nabla w) = \lambda f(w), \quad x \in \Omega, w = 0, \qquad x \in \partial\Omega,$$

$$(Q_{\lambda})$$

where

$$C(x, w) := B(x, \tilde{q}^{-1}(w))$$
 and $f(w) := \tilde{q}^{-1}(w)$.

Now we argue by contradiction, and assume that there exists a sequence of solutions (λ_n, u_n) of (P_{λ_n}) such that $\lambda_n \to \bar{\lambda} > 0$ and $\|u_n\|_0 \to \infty$. Then, by (3.1), we have that $\|u_n\| \to \infty$ and taking $w_n = \tilde{g}(u_n)$, it is clear that $\|w_n\|_0 \to \infty$. In addition, since (A_{∞}) implies that $\alpha^2 \|u_n\|^2 \le \|w_n\|^2$, we also have that $\|w_n\| \to \infty$. For the normalized sequence $z_n := w_n/\|w_n\|$ we know the existence of $z \in H_0^1(\Omega)$, such that

$$z_n \to z$$
 strongly in $L^2(\Omega)$ and a.e. in Ω .

and so, taking $w_n/\|w_n\|^2$ as a test function in (Q_{λ_n}) , we obtain that

$$\alpha \leqslant \int_{\Omega} C(x, w_n) \nabla z_n \cdot \nabla z_n = \lambda_n \int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n.$$
 (3.7)

Now, taking into account that

$$\frac{f(s)}{s} \to 0$$
 as $s \to \infty$

and that $f(s) \leq (1/\alpha)s$ for each $s \in \mathbb{R}^+$, we can argue as in Theorem 5.5 in [1] and conclude that

 $\int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n \to 0 \quad \text{as } n \to \infty.$

Indeed, we can write for every $n \in \mathbb{N}$

$$\int_{\Omega} \frac{f(w_n)}{\|w_n\|} z_n = \int_{\Omega} \frac{f(w_n)}{\|w_n\|} (z_n - z) + \int_{\Omega} \frac{f(w_n)}{\|w_n\|} z$$

$$\leq \frac{1}{\alpha} \|z_n\|_2 \|z_n - z\|_2 + \int_{\Omega_0} \frac{f(w_n)}{\|w_n\|} z,$$

where $\Omega_0 = \{x \in \Omega : z(x) \neq 0\}$. Thus, we only have to prove that

$$\lim_{n \to \infty} \int_{\Omega_0} \frac{f(w_n)}{\|w_n\|} z = 0,$$

which is a direct consequence of the Lebesgue Theorem, since for a.e. $x \in \Omega_0$, $w_n(x) = z_n(x)||w_n|| \to +\infty$ and then

$$\frac{f(w_n(x))}{\|w_n\|}z(x)\to 0 \quad \text{a.e. } x\in \Omega_0.$$

Thus, taking limits in (3.7), we have that $\alpha \leq 0$, which is a contradiction.

Acknowledgements. This work was developed while J.C. was visiting the Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla. He gratefully acknowledges the whole department for the warm hospitality and the friendly atmosphere. J.C. was partly supported by DGES Ministerio de Educación y Ciencia (Spain) no. PB98-1283. A.S. was supported by the Spanish Ministry of Science and Technology under grant BFM2000-0797.

References

- D. ARCOYA, J. CARMONA AND B. PELLACCI, Bifurcation for some quasilinear operators, Proc. R. Soc. Edinb. A 131 (2001), 733–765.
- L. BOCCARDO, Positive eigenfunctions for a class of quasi-linear operator, Boll. UMI B 18 (1981), 951–959.
- R. S. CANTRELL AND C. COSNER, Diffusive logistic equations with indefinite weights: population models in disrupted environments, Part I, Proc. R. Soc. Edinb. A 112 (1989), 293–318.
- 4. R. S. CANTRELL AND C. COSNER, Diffusive logistic equations with indefinite weights: population models in disrupted environments, Part II, SIAM J. Math. Analysis 22 (1991), 1043–1064.

- 5. J. Chabrowski, Some existence theorems for the Dirichlet problem for quasilinear elliptic equations, *Annli Mat. Pura Appl.* **158** (1991), 391–398.
- 6. D. G. DE FIGUEIREDO, *Positive solutions of semilinear elliptic problems*, Lectures Notes in Mathematics, vol. 957 (Springer, 1982).
- 7. E. DE GIORGI, Sulla differenziabilità e l'analiticità degli estremali degli integrali multipli regolari, Memorie della Accademia delle Scienze di Torino, pp. 25–43 (1957).
- 8. D. GILBARG AND N. TRUDINGER, Elliptic partial differential equations of second order (Springer, 1983).
- 9. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, *Annls Inst. Fourier* **117** (1965), 138–152.