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Collective wind farm flow control, where wind turbines are operated in an individually
suboptimal strategy to benefit the aggregate farm, has demonstrated potential to reduce
wake interactions and increase farm energy production. However, existing wake models
used for flow control often estimate the thrust and power of yaw-misaligned turbines
using simplified empirical expressions that require expensive calibration data and do
not extrapolate accurately between turbine models. The thrust, wake velocity deficit,
wake deflection and power of a yawed wind turbine depend on its induced velocity.
Here, we extend classical one-dimensional momentum theory to model the induction of
a yaw-misaligned actuator disk. Analytical expressions for the induction, thrust, initial
wake velocities and power are developed as a function of the yaw angle (γ ) and thrust
coefficient. The analytical model is validated against large eddy simulations of a yawed
actuator disk. Because the induction depends on the yaw and thrust coefficient, the
power generated by a yawed actuator disk will always be greater than a cos3(γ ) model
suggests. The power lost due to yaw misalignment depends on the thrust coefficient. An
analytical expression for the thrust coefficient that maximizes power, depending on the
yaw, is developed and validated. Finally, using the developed induction model as an initial
condition for a turbulent far-wake model, we demonstrate how combining wake steering
and thrust (induction) control can increase array power, compared to either independent
steering or induction control, due to the joint dependence of the induction on the thrust
coefficient and yaw angle.

Key words: wakes, control theory

1. Introduction

Wake interactions between individual horizontal axis wind turbines can reduce wind
farm energy production by 10–20 % (Barthelmie et al. 2009). Utility-scale wind turbines

† Email address for correspondence: mhowland@mit.edu

© The Author(s), 2023. Published by Cambridge University Press 959 A9-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:mhowland@mit.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.129&domain=pdf
https://doi.org/10.1017/jfm.2023.129


K.S. Heck, H.M. Johlas and M.F. Howland

are controlled to maximize individual power production, rather than collective wind
farm production (Boersma et al. 2017). Individual operation entails aligning each wind
turbine in the farm with the incoming wind direction. In contrast, wake steering, where
individual wind turbines are intentionally yaw-misaligned with respect to the incident
wind direction, has emerged as a promising strategy to reduce wake interactions and
increase collective wind farm power production (e.g. Gebraad et al. 2016; Bastankhah &
Porté-Agel 2019; Kheirabadi & Nagamune 2019; Zong & Porté-Agel 2021; Howland et al.
2022a). Maximizing collective wind farm power production through wake steering control
generally involves a trade-off between the power lost by the yaw-misaligned turbines
and the power gained by the downwind-waked turbines, compared to standard individual
control (e.g. Fleming et al. 2015). Since the power-maximizing yaw misalignment angles
for wake steering control are estimated primarily using simplified analytical flow models
(Gebraad et al. 2016; Fleming et al. 2019; Howland et al. 2022), it is important to
accurately model the dependence of wind turbine power production and wake velocities
on the yaw misalignment angle.

Wind turbine power production generally decreases as a function of an increasing
yaw misalignment (γ ) magnitude since the component of the wind velocity that is
perpendicular to the rotor decreases. Textbooks instruct that the power production of a
yawed wind turbine will decrease following cos3(γ ) (Burton et al. 2011). This estimate is
based on the application of classical one-dimensional momentum theory with an incoming
axial freestream wind speed u∞ cos(γ ) perpendicular to the rotor. However, wind turbines
extract power from the winds at the rotor. The wind at the rotor is affected by the velocity
induced by the wind turbine. Since the induction depends on the wind turbine thrust force,
and the thrust force will decrease in yaw misalignment, the induction will depend on the
yaw misalignment. The cos3(γ ) model neglects the dependence of the induction on the
yaw misalignment (Micallef & Sant 2016). Given the error incurred by the cos3(γ ) model,
most analytical wind farm power models assume that the power of a yaw-misaligned
wind turbine follows Pr(γ ) = P(γ )/P(γ = 0) = cosPp(γ ), where Pp is an empirical,
turbine-specific factor that needs to be tuned using experimental data (Dahlberg &
Montgomerie 2005; Gebraad et al. 2016). However, such experiments are costly, since they
require sustained operation of utility-scale wind turbines in suboptimal yaw misalignment
angles (Howland et al. 2020c). Further, the wide spread in Pp values reported in the
literature, typically 1 < Pp < 3, suggests that the cosine model is not universal to different
turbine models (Dahlberg & Montgomerie 2005; Schreiber et al. 2017; Liew, Urbán
& Andersen 2020; Howland et al. 2020c). Accurate analytical predictions of Pr(γ )

remain an outstanding challenge (Hur et al. 2019) – as a starting point, in this study, we
focus on analytical predictions of the induction and power production of yawed actuator
disks.

Through analysis of an autogyro aircraft, Glauert (1926) developed an equation for the
area-averaged induction and the coefficient of power as a function of the yaw misalignment
γ . Glauert (1926) also identified that the induction of a yawed actuator disk varies over
the rotor area about its mean value – this finding has been replicated in other actuator
disk simulations and models (see review by Hur et al. 2019). Glauert’s yawed actuator
disk momentum theory is commonly used in blade-element momentum (BEM) models of
rotational wind turbine aerodynamics (see e.g. review by Micallef & Sant 2016). Using
the Bernoulli equation, Shapiro, Gayme & Meneveau (2018) proposed an equation for
the dependence of the axial induction factor on the yaw misalignment of an actuator disk.
Speakman et al. (2021) used the axial induction equation proposed by Shapiro et al. (2018)
to model Pr(γ ) for a simulation with thrust coefficient 0.75, which yielded improved
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power predictions compared to the cos3(γ ) model, but higher predictive error than a tuned
cosPp(γ ) with Pp set to 1.88.

Beyond modelling the power–yaw relationship (i.e. Pr(γ )), modelling the inviscid
near-rotor wake region of a yawed actuator disk is important since inviscid models are
often used as an initial condition for turbulent wake models that are used to predict wind
farm power production (Frandsen et al. 2006; Bastankhah & Porté-Agel 2016; Shapiro
et al. 2018). Therefore, it is equally important to accurately model the induction and the
streamwise and spanwise velocity deficits at the outlet of the inviscid near-wake region for
a yawed actuator disk.

Finally, a line of research parallel to wake steering has investigated methods for axial
induction flow control, where individual wind turbines reduce the magnitude of their wind
speed wake deficits by decreasing the thrust force (Annoni et al. 2016). A promising flow
control methodology combines wake steering and induction control (Munters & Meyers
2018) – for such combined control, it is important to model the joint effect of the yaw
misalignment and the wind turbine thrust coefficient on the power and wake deficit.

In this study, classical, inviscid momentum theory is extended to the yaw-misaligned
actuator disk. Analytical expressions are developed for the rotor-normal induction, the
streamwise velocity deficit, the spanwise velocity deficit, the thrust, and the power
production of an actuator disk as a function of yaw misalignment. In § 2, a model is
proposed based on a combination of momentum conservation, mass conservation and
the Bernoulli equation. The model is validated against large eddy simulations (LES) of
a yawed actuator disk. The numerical set-up of the LES is given in § 3, and results are
provided in § 4. The model is validated against the LES in § 4.1. The dependence of
the induction, velocity deficits and the power on the wind turbine thrust coefficient is
presented in § 4.2. Further, in § 4.2 the model is optimized to find the thrust coefficient
that maximizes power for each value of the yaw misalignment angle. In § 4.3, the induction
model is used as an initial condition for a turbulent far-wake model. The implications of
the developed induction–yaw model on quasi-steady wake steering and induction control
are presented and discussed. Conclusions are provided in § 5.

2. Yawed actuator disk momentum theory

Our goal is to model the induction, thrust, wake deficit and deflection, and the power
production of a yaw-misaligned actuator disk. For the following analysis, we assume that
the flow is inviscid and frictionless. We assume that the velocity is continuous across
the actuator disk, including both the streamwise and spanwise velocities, and that the
pressure recovers to the incident freestream pressure away from the actuator disk. We
note that the pressure recovery assumption is relevant to only the Bernoulli equation and
streamwise momentum analysis. We do not apply this pressure recovery assumption to a
lateral momentum balance, since it is well-known to introduce predictive error (Shapiro
et al. 2018) due to counter-rotating vortices in the wake of yawed turbines (Howland et al.
2016). We consider uniform inflow (in y and z), as in standard momentum theory, and an
actuator disk model (ADM) representation of the wind turbine forcing (Calaf, Meneveau
& Meyers 2010; Burton et al. 2011). The ADM is introduced in § 2.1. The lateral velocity
is modelled following lifting line theory (Shapiro et al. 2018) (§ 2.2). The induction is
modelled by combining the Bernoulli equation, conservation of mass and momentum
conservation to a control volume containing the yaw-misaligned actuator disk (§ 2.3). A
schematic of the yaw-misaligned actuator disk and the control volume is shown in figure 1.
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u1 = u∞ γ
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Figure 1. Control volume for the yawed actuator disk analysis. The streamwise and spanwise directions are
x and y, respectively. The actuator-disk-modelled wind turbine is yaw-misaligned at angle γ , where positive
yaw misalignment is a counter-clockwise rotation viewed from above. As in classical momentum theory, we
consider four stations for the analysis, and the flow variables are labelled with the corresponding station
numbers as subscripts. The cross-sectional areas, streamwise velocities, spanwise velocities, pressures and
mass flow rates are denoted A, u, v, p and ṁ, respectively. The unit vector normal to the yawed actuator disk is
shown as n̂.

In § 2.3, we develop the equations to predict the induction, thrust, wake deficit and
deflection, and the power production of a yaw-misaligned actuator disk. In § 2.4, we
consider a limiting case of the developed induction model where the outlet spanwise
velocity v4 is negligible compared to the outlet streamwise velocity u4, i.e. |v4| � u4.

2.1. Actuator disk model
The thrust force from an actuator disk on the surrounding flow depends on the freestream
rotor-normal wind speed, u∞ · n̂:

F T,ideal = −1
2ρCTAd(u∞ · n̂)2n̂, (2.1)

where ρ is the density of the incident air, CT is the coefficient of thrust, Ad = πD2/4 is
the area of the rotor disk, with D the wind turbine rotor diameter, n̂ is the unit normal
vector perpendicular to the disk, and u∞ is the freestream wind velocity vector (Sørensen
2011). Wind turbines produce thrust and power based on the wind velocity at the rotor,
which has been modified by induction. Thus the empirical thrust coefficient CT depends
on the induction. Additionally, for wind farms in the atmospheric boundary layer, it may be
challenging to estimate the value of the freestream reference wind speed u∞ due to wakes
of upstream turbines or heterogeneity in the background flow field. Instead, an ADM is
used to model wind turbine forcing, where the thrust force scales with the rotor-normal
wind speed at the disk, ud · n̂, rather than the freestream u∞ · n̂ (Calaf et al. 2010). The
ADM thrust force then depends on a modified thrust coefficient C′

T and the disk velocity
(Calaf et al. 2010):

F T = −1
2ρC′

TAd(ud · n̂)2n̂. (2.2)

Equation (2.2) is used in the ADM implementation in LES used for validation as well as
the derivation of the analytical model.

Assuming that the freestream wind is uniform and aligned with the x-direction, the
freestream wind vector is u∞ = u∞ı̂ + 0ĵ . In this study, we focus on uniform inflow,
where the inflow wind u∞ does not depend on y or z. This follows standard momentum
theory (Burton et al. 2011), which avoids additional complexities in modelling turbine
performance due to wind shear (Choukulkar et al. 2016; Howland et al. 2020c). However,
the disk velocity may include a component in the y-direction for yaw-misaligned turbines,
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and so is generally ud = ud ı̂ + vd ĵ . The rotor-normal, rotor-averaged induction factor an
for a rotor with yaw misalignment angle γ is defined as

an = 1 − ud · n̂
u∞ cos(γ )

. (2.3)

In the yaw-aligned case where n̂ = ı̂ , the rotor-normal induction factor an reduces to the
standard (streamwise) axial induction factor a = 1 − ud/u∞. The thrust force written in
terms of the rotor-normal induction factor is then

F T = −1
2ρC′

TAd(1 − an)
2 cos2(γ ) u2

∞
[
cos (γ ) ı̂ + sin (γ ) ĵ

]
. (2.4)

The power for the actuator disk is computed as P = −F T · ud.
Rotational utility-scale wind turbines produce a thrust force that depends on the velocity

at the turbine (e.g. Burton et al. 2011; Sørensen 2011; Howland et al. 2020c) – the velocity
at the turbine is lower than u∞ due to induction. Similarly, the ADM produces a thrust
force that is proportional to the disk velocity, which has been modified by induction.
The thrust force depends on the yaw misalignment for both utility-scale rotational wind
turbines and the ADM. In the ADM, C′

T is an input. If we prescribe a value of C′
T that

does not depend on the yaw angle, then the thrust force of the ADM depends on the
yaw misalignment following FT(γ ) ∝ (1 − an)

2 cos2(γ ). However, since the rotor-normal
induction depends on the imposed thrust force FT , and the thrust force decreases with an
increasing magnitude of yaw misalignment, we hypothesize that the induction factor will
depend on γ such that an = an(γ ).

The derivation in §§ 2.2 and 2.3 will prescribe an ADM-type forcing where C′
T is an

input quantity. We emphasize that the proposed analytical model can be applied for a wind
turbine model for which C′

T varies as a function of the yaw misalignment. This will be
demonstrated in § 4.2.

In the model validation against LES in § 4.1, we compare the proposed model to an
ADM forcing in LES where C′

T is a fixed quantity that does not depend on the yaw
misalignment (see (2.2)). For different wind turbine models, a different form of the thrust
force FT may be appropriate (i.e. a form different to (2.2)). Specifically, C′

T may not
be a fixed quantity, and would be a required, known input to the final model form. In
general for rotational turbines, the potential dependence of C′

T on the yaw misalignment
will depend on the turbine control strategy (i.e. the blade pitch and torque control) and the
wind conditions (Howland et al. 2020c). For a different form of FT , the quantitative model
predictions would differ but the qualitative trends of the influence of yaw misalignment on
the induction are expected to apply. Further discussion is included in Appendix E using
wind tunnel data from Krogstad & Adaramola (2012), and the need for future work is
highlighted in § 5.

2.2. Lifting line spanwise velocity model with rotor-normal induction depending on yaw
Yaw-misaligned wind turbines generate a counter-rotating vortex pair that deflects
and deforms the wake region into a curled wake shape (Bastankhah & Porté-Agel
2016; Howland et al. 2016; Fleming et al. 2018; Martínez-Tossas et al. 2021). The
counter-rotating vortex pair rotates about a low-pressure centre. Momentum balance
approaches to predict the lateral velocity in the wake of a yaw-misaligned actuator
disk that neglect the influence of the lateral pressure gradient often exhibit predictive
errors (Jiménez, Crespo & Migoya 2010; Shapiro et al. 2018). Shapiro et al. (2018)
developed a model for the spanwise velocity downwind of a yaw-misaligned actuator disk.
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The approach uses Prandtl lifting line theory (Milne-Thomson 1973) to predict the
spanwise velocity in the inviscid near-wake region downwind of the actuator disk. The
downwash produced by the lifting line theory was presumed to be the spanwise velocity
in the outlet of the streamtube enclosing the yawed actuator disk. The resulting model
predicts the spanwise velocity disturbance δv0 = v∞ − v4 = 1

4 CTu∞ cos2(γ ) sin(γ ). The
model exhibited excellent predictions of the circulation at the disk hub-height (z = 0),
defined as Γ0 (Shapiro et al. 2018), over a range of yaw and thrust values. The spanwise
velocity disturbance δv0 was also compared to LES. The predictions exhibited improved
accuracy compared to previous models, but had a slight underprediction of δv0 at high
yaw misalignment angles, |γ | > 20◦ (Shapiro et al. 2018).

Following § 2.1, we consider the Prandtl lifting line approach developed by Shapiro et al.
(2018) applied to the ADM with a prescribed C′

T , instead of a prescribed CT . The spanwise
velocity disturbance is

δv0 = v∞ − v4 = −Γ0

4R
= −F T · ĵ

2ρu∞Ad
= 1

4
C′

Tu∞ sin(γ ) cos2(γ ) (1 − an(γ ))2 . (2.5)

Comparing (2.5) to the model proposed by Shapiro et al. (2018), C′
T is the input quantity

and there is an additional nonlinear dependence on an(γ ). We note that Shapiro et al.
(2018) identified the influence of the yaw misalignment on the induction, and accounted
for it by plotting δv0 against CT , where the thrust coefficient was estimated empirically
as CT = C′

T ũ2
d/(u

2∞ cos2(γ )), with ũd the disk velocity measured from the LES validation
case. In the following subsections, we will develop a predictive model for an(γ ) that uses
(2.5).

2.3. Model for the induction of a yaw-misaligned actuator disk
To model the induction, we first apply the Bernoulli equation from stations 1 to 2 and from
stations 3 to 4 within the streamtube, shown in figure 1:

p1 + 1
2ρ‖u1‖2 = p2 + 1

2ρ‖u2‖2,

p3 + 1
2ρ‖u3‖2 = p4 + 1

2ρ‖u4‖2,

}
(2.6)

where ‖u4‖ =
√

u2
4 + v2

4. We note that the outlet flow has non-zero components in the x
(ı̂) and y (ĵ ) directions, denoted as u4 and v4, respectively (see figure 1). Assuming that
the pressure recovers to the freestream at station 4 (p1 = p4 = p∞) and that the velocity
across the rotor disk is continuous (u2 = u3 = ud), (2.6) can be combined and simplified
to

p2 − p3 = 1
2ρ
(
‖u1‖2 − ‖u4‖2

)
. (2.7)

Substituting in u1 = u∞, u4 = u4ı̂ + v4ĵ and ( p2 − p3)Ad = ‖F T‖, with F T given by
(2.4), this becomes

u2
∞ − u2

4 − v2
4 = C′

T(1 − an)
2 cos2(γ ) u2

∞. (2.8)

Next, we apply mass conservation to the streamtube between stations 2 and 4, where A2 =
Ad:

u4 · (A4ı̂) = u2 · (A2n̂). (2.9)
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Substituting in u2 = ud and the definition of an in (2.3), ud · n̂ = (1 − an)u∞ cos(γ ), this
simplifies to

u4A4 = (1 − an)u∞ cos(γ ) Ad. (2.10)

We then apply mass conservation to the two-dimensional control volume, assuming that
the flow outside the disk streamtube is unperturbed at u∞:

ṁ1 + ṁ2 = ρu∞ACV − ρu∞(ACV − A4) − ρu4A4

= ρA4(u∞ − u4), (2.11)

where CV denotes the control volume (figure 1). Finally, we apply conservation of
momentum to the control volume in the streamwise direction (ı̂), using the Reynolds
transport theorem assuming steady-state flow:

ρ
Du
Dt

=
∫

CS
ρu (urel · dA) = F T · ı̂ + p1ACV − p4ACV , (2.12)

where CS is the control surface. By expanding the surface integral and combining terms,
this momentum balance simplifies to

F T · ı̂ = ρu2
4A4 − ρu2

∞A4 + (ṁ1 + ṁ2)u∞. (2.13)

Substituting (2.4), (2.10) and (2.11) into (2.13) and simplifying gives

− 1
2 C′

Tu∞(1 − an) cos2(γ ) = u4 − u∞. (2.14)

Finally, we solve for an in (2.8) from Bernoulli, u4/u∞ in (2.14) from conservation
of mass and the streamwise momentum balance, and v4/u∞ in (2.5) from the lifting line
spanwise velocity deficit model, resulting in a coupled nonlinear system of three equations
to solve for an(γ ), u4(γ ) and v4(γ ):

an(γ ) = 1 −
√

u2∞ − u4(γ )2 − v4(γ )2√
C′

T u∞ cos(γ )

,

u4(γ )

u∞
= 1 − 1

2 C′
T (1 − an(γ )) cos2(γ ),

v4(γ )

u∞
= −1

4 C′
T (1 − an(γ ))2 sin(γ ) cos2(γ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

The system in (2.15) can be solved iteratively from an initial condition from standard,
yaw-aligned momentum theory a0

n = a = 1
2 (1 − √

1 − CT) = C′
T/(C′

T + 4) and typically
converges in less than five iterations. While the system of equations in (2.15) converges
quickly, it does not permit a straightforward solution. In § 2.4, we examine a limiting case
of the model where the outlet spanwise velocity is neglected in the Bernoulli equation,
|v4| � u4.

With a solution for the normal induction factor an(γ ) from (2.15), the power for a
yaw-misaligned actuator disk is modelled as

P(γ ) = −F T · ud = 1
2ρC′

TAd (1 − an(γ ))3 u3
∞ cos3(γ ). (2.16)

As discussed in the Introduction, the dependence of wind turbine power production on the
yaw misalignment is often described by the power ratio Pr(γ ) (e.g. Howland et al. 2020c).
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The resulting model for the power ratio is

Pr(γ ) = P(γ )

P(γ = 0)
=
[(

1 + 1
4

C′
T

)
(1 − an(γ )) cos(γ )

]3

, (2.17)

and the thrust ratio is

Tr(γ ) = FT(γ )

FT(γ = 0)
=
[(

1 + 1
4

C′
T

)
(1 − an(γ )) cos(γ )

]2

. (2.18)

Given the ADM turbine representation, the thrust force scales with the rotor-averaged
disk velocity (e.g. Calaf et al. 2010). Therefore, the rotor-normal induction factor model in
(2.15) is the prediction for the rotor-averaged induction factor, defined in (2.3) as an. Due to
the yaw misalignment, the induction will also vary as a function of the azimuthal position
about its rotor-averaged value (Glauert 1926). Glauert (1926) modelled this ân(r, θ) =
〈an(r, θ)〉A + a′

n(r, θ), where ân(r, θ) is the rotor-normal induction depending on the
radial r and azimuthal θ position, 〈an(r, θ)〉A is the rotor-averaged induction (referred to as
an elsewhere in the paper), and a′

n(r, θ) is the zero-mean, azimuthally dependent deviation
from the rotor-averaged induction (Hur et al. 2019). The azimuthally dependent portion of
the induction has been modelled empirically as a′

n(r, θ) = Kx(r/R) sin(θ), where R is the
rotor radius, and Kx is an empirical factor (Glauert 1926; Hur et al. 2019). We note that
a′

n(r, θ) averages to zero over the rotor
(〈

a′
n(r, θ)

〉
A = 0

)
. Since the ADM thrust (FT ) and

power (P) depend on the rotor-averaged velocity, a′
n(r, θ) will not affect an(γ ), FT(γ )

or P(γ ). For turbine models that apply thrust force unequally across the rotor, such as a
blade-element (Howland et al. 2020c) or actuator line (Martínez-Tossas, Churchfield &
Leonardi 2015) representation, a′

n(r, θ) can affect FT(γ ) and P(γ ), and therefore must
be modelled. We suggest future research on the radial and azimuthal variations of the
rotor-normal induction factor for turbines beyond the ADM.

2.4. Limiting case of CV analysis with |v4| � u4

In this subsection, we consider the limiting case where the outlet spanwise velocity
from the streamtube is significantly less than the outlet streamwise velocity, |v4| �
u4. Therefore, the outlet velocity is ‖u4‖ = u4. Starting from (2.15), the rotor-normal
induction is simplified as

an(γ ) = C′
T cos2(γ )

4 + C′
T cos2(γ )

, (2.19)

which is also the induction factor reported by Shapiro et al. (2018), who assumed that the
spanwise velocity disturbance appeared infinitesimally downwind of the yawed actuator
disk and that it was constant in the streamtube downwind. The streamwise and spanwise
velocities are

u4(γ )

u∞
= 4 − C′

T cos2(γ )

4 + C′
T cos2(γ )

,
v4(γ )

u∞
= −4C′

T sin(γ ) cos2(γ )

(4 + C′
T cos2(γ ))2 . (2.20a,b)

The streamwise outlet velocity u4(γ ) can also be written in terms of the induction
factor an(γ ) such that u4(γ ) = u∞(1 − 2an(γ )), where an(γ ) is given by (2.19). This is
analogous to the outlet velocity from one-dimensional momentum u4(γ = 0) = u∞(1 −
2a), where a = an(γ = 0) is again the standard axial induction factor.
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The power of the yawed actuator disk in this limiting case is

P(γ ) = 32ρAdC′
T cos3(γ ) u3∞

(4 + C′
T cos2(γ ))3 . (2.21)

The power and thrust ratios in this limiting case are

Pr(γ ) =
[
(4 + C′

T) cos(γ )

4 + C′
T cos2(γ )

]3

, Tr(γ ) =
[
(4 + C′

T) cos(γ )

4 + C′
T cos2(γ )

]2

. (2.22a,b)

The power ratio model given by (2.22a) was also reported by Speakman et al. (2021), who
leveraged the streamwise induction model developed by Shapiro et al. (2018) (same as
(2.19)).

3. Large eddy simulation numerical set-up

Large eddy simulations are performed using an incompressible flow code PadéOps (https://
github.com/FPAL-Stanford-University/PadeOps; Ghate & Lele 2017; Howland, Ghate &
Lele 2020a). Fourier collocation is used in the horizontal directions and a sixth-order
staggered compact finite difference scheme is used in the vertical direction (Nagarajan,
Lele & Ferziger 2003). Time advancement uses a fourth-order strong stability preserving
variant of the Runge–Kutta scheme (Gottlieb, Ketcheson & Shu 2011), and the subgrid
scale closure uses the sigma subfilter scale model (Nicoud et al. 2011).

The ADM is implemented with the regularization methodology introduced by Calaf
et al. (2010) and further developed by Shapiro, Gayme & Meneveau (2019a). The ADM
forcing depends on the prescribed input of C′

T (see (2.2)), which is varied independently
of the yaw misalignment angle. The discretized turbine thrust force f (x) is distributed in
the computational domain (x) through an indicator function R(x) as

f (x) = F T R(x). (3.1)

The thrust force F T is computed with (2.2), depending on the disk velocity ud. The
indicator function R(x) is constructed from a decomposition R(x) = R1(x)R2( y, z)
given by

R1(x) = 1
2s

[
erf

(√
6

Δ

(
x + s

2

))
− erf

(√
6

Δ

(
x − s

2

))]
, (3.2)

R2( y, z) = 4
πD2

6
πΔ2

∫∫
H
(

D
2

−
√

y′2 + z′2
)

exp
(

−6
( y − y′)2 + (z − z′)2

Δ2

)
dy′ dz′,

(3.3)

where H(x) is the Heaviside function, erf(x) is the error function, s is the ADM disk
thickness, and Δ is the ADM filter width. The disk velocity ud, used in the thrust force
calculation (2.2), is calculated using the indicator function such that

ud = M
∫∫∫

R(x) u(x) d3x, (3.4)

where u(x) is the filtered velocity in the LES domain, and M is an ADM filter
width-dependent correction factor (Shapiro et al. 2019a). Depending on the numerical
implementation of the indicator function, particularly the selection of ADM filter width

959 A9-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/FPAL-Stanford-University/PadeOps
https://github.com/FPAL-Stanford-University/PadeOps
https://doi.org/10.1017/jfm.2023.129


K.S. Heck, H.M. Johlas and M.F. Howland

Δ, the ADM can underestimate the induction and therefore overestimate power production
(Munters & Meyers 2017; Shapiro et al. 2019a). To alleviate this power overestimation for
larger ADM filter widths, the disk velocity calculation in (3.4) uses a correction factor M
derived by Shapiro et al. (2019a), which depends on C′

T and the ADM filter width. To
compute the correction factor M, the Taylor series approximation for the ADM correction
factor is used (Shapiro et al. 2019a) such that

M =
(

1 + C′
T

4
1√
3π

2Δ

D

)−1

. (3.5)

The correction factor given by (3.5) was derived by Shapiro et al. (2019a) for
yaw-aligned actuator disks. For low values of Δ/D, the correction factor M has a limited
impact on the LES results, and the induction and power follow momentum theory (Shapiro
et al. 2019a), but low ADM filter widths can also result in numerical oscillations in the flow
field due to the ADM forcing discontinuity. For higher values of Δ/D with the correction
factor implemented for a yaw-aligned ADM, the thrust force and power predicted by
momentum theory are well reproduced, but the induced velocity in the LES domain does
not conform to momentum theory due to the wide force smearing fundamental to the larger
values of Δ/D (see Appendix A, figure 10). In the results presented in § 4 where analysis of
the wake flow field is required, to reduce numerical oscillations in the wake, a larger ADM
filter width Δ/D = 3h/(2D) is used with the correction factor M given by (3.5), where
h = (Δx2 + Δy2 + Δz2)1/2. In the results presented in § 4 for which only the quantities
at the actuator disk are analysed, a smaller ADM filter width of Δ/D = 0.29h/D = 0.032
is used such that the correction factor is not required to reproduce the power predicted by
momentum theory for the yaw-aligned ADM (see also the discussion by Shapiro et al.
2019a). In all cases, the ADM thickness is s = 3Δx/2. More discussion of the ADM
numerical set-up and the interactions between the LES results and the ADM filter width
and the correction factor is provided in Appendix A.

Consistent with the model derivation (see § 2), simulations are performed with uniform
inflow with zero freestream turbulence. Periodic boundary conditions are used in the
lateral y-direction. A fringe region (Nordström, Nordin & Henningson 1999) is used in
the x-direction to force the inflow to the desired profile with a prescribed yaw angle. All
simulations are performed with a domain Lx = 25D in length, and cross-sectional size
Ly = 20D, Lz = 10D, with 256 × 512 × 256 grid points. A large cross-section is used to
minimize the influence of blockage on the ADM, which changes as a function of turbine
yaw. A single turbine is placed inside the domain at the centre of the y–z plane at a distance
5D from the domain inlet in the x-direction. Simulations are run for two flow-through
times Lx/u∞ to allow the turbine power output to converge, which is sufficient in these
zero freestream turbulence inflow cases (Howland et al. 2016).

4. Results

In this section, the model predictions are compared to results from LES, and the model
output is explored to reveal implications for wind farm flow control. In § 4.1, the predictive
model developed in § 2 is validated against LES. The dependence of the induction on
the coefficient of thrust is demonstrated in the model and in LES (§ 4.1). In § 4.2, the
model is optimized to find the thrust coefficients that maximize the coefficient of power
as a function of the yaw misalignment angle, and the predictions are compared to LES.
Finally, in § 4.3, the model is used as an initial condition for a turbulent far-wake model.
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Figure 2. (a) Normalized power production for the yawed ADM wind turbine with C′
T = 1.33, normalized

by the power production for a yaw-aligned ADM wind turbine (P(γ )/P(γ = 0)). The LES results are shown
with green dots. The model predictions are given by the ‘Yawed CV’ curve, and the limiting case |v4| � u4

for the model is shown. For reference, cos3(γ ) and cos(γ ) curves are shown in addition to the Glauert model
(Appendix B). (b) Zoomed-in version of (a) to highlight the performance of different models. (c) Same as
(a) with cos(γ ) on the x-axis.

The influence of the induction–yaw relationship developed in § 2 on a wake steering test
case is explored.

4.1. Comparison between the model and LES
The model for Pr(γ ) (2.17) is compared to LES in figure 2 for C′

T = 1.33 for yaw
misalignments 0◦ � γ � 50◦. The model developed by Glauert (1926), with the functional
form provided in Appendix B, and the developed model in the limit |v4| � u4 (§ 2.4) are
also shown. Finally, cos(γ ) and cos3(γ ) are shown for reference. The model developed in
§ 2.3 exhibits the lowest predictive error compared to the LES data. Neglecting the lateral
velocity in the Bernoulli equation, |v4| � u4 (§ 2.4), results in a consistent overprediction
of the power production at all yaw misalignment angles because the portion of momentum
redistributed to the spanwise velocity, which does not contribute to power, is neglected.
Neglecting the lateral velocity in the Bernoulli equation (2.7) increases the predicted
pressure drop, and therefore the thrust force and the power, because the energy in the
spanwise velocity is not accounted for in the outlet flow.

The Glauert model results in a larger power overprediction. This overprediction is
expected, as discussed in Burton et al. (2011), since the lift contributions to the thrust
in the Glauert model should not contribute to power because it does not contribute
to net flow through the disk. The cos(γ ) and cos3(γ ) curves provide upper and lower
bounds, respectively, for the LES data and the model predictions. The commonly assumed
cos3(γ ) model (Burton et al. 2011) underpredicts the power production because the yaw
misalignment reduces the thrust force, which in turn reduces the rotor-normal induction
and increases the disk velocity and the power production.

The model predictions and LES results for the rotor-normal induction an(γ ) are shown
in figure 3. As with the power production, the most accurate predictions result from
the yawed CV model in § 2.3. Assuming negligible lateral velocity (§ 2.4) results in
an underprediction of the induction, which therefore results in an overprediction of the
disk velocity and the power production (figure 2). The Glauert model overpredicts the
induction, but also overpredicts the power, likely because of the lift contributions to thrust,
as mentioned previously. We note that this is the Glauert model for the rotor-averaged
induction. Therefore, the model for radial and azimuthal induction variations proposed by
Glauert (1926) averages to zero (see § 2). The yawed CV model has increasing predictive
error for the induction as a function of the yaw misalignment angle. This increasing
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Figure 3. Normalized rotor-normal, rotor-averaged induction for the yawed ADM wind turbine with C′
T =

1.33. The model predictions are given by the ‘Yawed CV’ curve, and the limiting case |v4| � u4 for the model
is shown. The Glauert model (Glauert 1926) for the rotor-averaged induction is provided in Appendix B.

error could be due to the assumption that the pressure recovers to freestream pressure
downwind (see § 2), which was applied in the Bernoulli equation and in the streamwise
momentum balance. The wake of a yaw-misaligned turbine curls due to the formation
of a counter-rotating vortex pair (Howland et al. 2016). The counter-rotating vortex pair
produces a low-pressure region in the yawed turbine wake that increases in magnitude,
relative to the pressure drop at the rotor, with increasing turbine yaw (Shapiro et al.
2018), which is not modelled in the present framework. Future work should consider
incorporating a pressure model in this framework.

The lateral velocity disturbance, δv0(γ ) = v∞ − v4 = −v4, is estimated from LES by
averaging the lateral velocity in cross-sections of the actuator disk streamtube (Shapiro
et al. 2018). The lateral velocity disturbance δv0(γ ), estimated as the maximum of the
cross-sectional averages over x, is shown in figure 4(a) along with model predictions. The
maximum value of the lateral velocity disturbance δv0(γ ) generally occurs approximately
D/2 downwind of the actuator disk wind turbine. The original CT -based model of Shapiro
et al. (2018) (δv0(γ ) = 1

4 CTu∞ cos2(γ ) sin(γ )) underpredicts the initial lateral velocity
disturbance at higher yaw angles. The model developed here yields improved predictions
compared to the original model by including the effect of the yaw misalignment on the
induction, which the original expression based on CT does not include. Since the induction
decreases with increasing magnitude of the yaw angle, the disk velocity will increase. The
increase in disk velocity increases the actuator disk thrust force, partially counteracting the
reduction in thrust force from yaw misalignment. The lateral velocity disturbance based
on C′

T and an(γ ) will therefore be larger than a prediction from a model that assumes a
fixed CT as a function of yaw γ .

Finally, the streamwise velocity disturbance is shown in figure 4(b). The LES streamwise
velocity disturbance is estimated similarly to δv0, although the maximum value of δu0
generally occurs approximately 2D downwind of the actuator disk. The streamwise
velocity disturbance associated with the yaw-aligned wind turbine, δu0/u∞ = 2a(γ = 0),
is shown as a reference. The streamwise velocity disturbance depends strongly on the
yaw misalignment, therefore assuming δu0(γ /= 0)/u∞ = δu0(γ = 0)/u∞ = 2a(γ = 0)

would yield significant predictive errors in a wake model. The full model (§ 2.3) has
slightly improved predictions compared to the limit of negligible lateral velocity (§ 2.4),
but both model estimates overpredict the streamwise velocity disturbance at larger yaw
angles.
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Figure 4. (a) Normalized lateral velocity deficit with C′
T = 1.33. The model predictions for the lateral velocity

depending on CT are shown by δv0(CT ), where CT = 0.75. The model predictions for the lateral velocity
depending on the induction model given by (2.15) and C′

T are shown by δv0(C′
T , an). (b) Normalized streamwise

velocity deficit for the yawed ADM wind turbine with C′
T = 1.33. The model predictions are given by the

‘Yawed CV’ curve, and the limiting case |v4| � u4 for the model is shown.

The model developed in § 2 reveals that the induction an, the power P and the power
ratio Pr all depend on both the yaw misalignment and the thrust coefficient C′

T . The ADM
is simulated in LES over a range of yaw misalignment and C′

T values, where each pair
(γ, C′

T) represents a unique LES case. The influence of C′
T on the power ratio Pr for the

LES data and the model (2.17) is shown in figure 5(a). The coefficient of power CP is
shown in figure 5(b). The model predictions exhibit low error, compared to the LES data,
over a wide range of yaw and thrust values. We observe that the power reduction by yaw
misalignment depends inherently on the value of C′

T (figure 5a), due to the influence of
the thrust coefficient C′

T and yaw misalignment on the induction factor an (figure 5c).
This result suggests that the power lost due to yaw misalignment in a practical field
setting will be turbine-specific, since existing turbine designs operate at a wide range of
thrust coefficients (see e.g. Hansen 2015). Further, since the thrust coefficient depends on
the operating condition and turbine controller (e.g. Ainslie 1988), the power lost due to
yaw misalignment will also vary in time for a given turbine design. Therefore, while an
empirically tuned cosine model (cosPp(γ )) may yield a sufficiently small error for a single
turbine model and operating condition (e.g. region II operation; Pao & Johnson 2009), it
cannot be expected to extrapolate to other wind turbine designs or control regimes. Instead,
the physics-based model developed in § 2 can provide a prediction of Pr(γ ), provided that
the thrust force characteristics (i.e. F T or C′

T ) are known for the turbine model of interest
as a function of yaw misalignment. Future work may integrate the induction–yaw model
developed in § 2 into BEM codes (e.g. FAST; Jonkman & Buhl 2005).

4.2. Optimizing model power and wake deflection in yaw misalignment with C′
T

The induction and power models developed in § 2 and the results in § 4.1 indicate
that the power production of a yaw-misaligned actuator disk depends on both the yaw
misalignment and the local thrust coefficient C′

T . In yaw alignment, the well-known Betz
limit result estimates that the axial induction factor that maximizes the coefficient of power
CP = 2P/(ρAdu3∞) is a = 1/3 (e.g. Burton et al. 2011), with a corresponding value of
C′

T = 2. Here, we estimate the value of C′
T that maximizes CP as a function of yaw

misalignment value. The power produced by the actuator disk is given by (2.16). The
maximum power occurs at C′∗

T such that ∂P/∂C′
T = 0. Taking the derivative of (2.16) with
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Figure 5. (a) Power production for the yawed ADM wind turbine, normalized by the power production for a
yaw-aligned ADM wind turbine for various values of C′

T . (b) Coefficient of power CP(γ ). (c) Rotor-normal,
rotor-averaged induction factor an(γ ).

respect to C′
T yields

∂P
∂C′

T
= 1

2
ρAd(1 − an)

3 cos3(γ ) u3
∞ − 3

2
ρC′

TAd(1 − an)
2 cos3(γ ) u3

∞
∂an

∂C′
T
. (4.1)

For the full model ((2.15), § 2.3), ∂an/∂C′
T does not permit a straightforward analytical

solution. To result in an analytical solution, we assume the limit |v4| � u4 (see § 2.4),
giving

∂P
∂C′

T
= 128ρAd cos3(γ ) u3∞

(4 + C′
T cos2(γ ))4

[
1 − 1

2
C′

T cos2(γ )

]
, (4.2)

and power is maximized (∂P/∂C′
T = 0) at

C′∗
T (γ ) = 2

cos2(γ )
. (4.3)

For yaw alignment (γ = 0), the standard Betz limit result is recovered with C′∗
T (γ =

0) = 2. For yaw misalignment (γ /= 0), the power-maximizing thrust C′∗
T (γ ) increases

monotonically as a function of increasing yaw misalignment magnitude. To maximize the
power production of a yaw-misaligned wind turbine, the turbine should operate at a thrust
coefficient different to the standard, optimal Betz value (CT = 8/9, a = 1/3, C′

T = 2).
The maximum power production as a function of the yaw misalignment is

P∗(γ ) = 8
27ρAdu3

∞ cos(γ ), (4.4)

and the maximum CP as a function of the yaw misalignment is

C∗
P(γ ) = 16

27 cos(γ ), (4.5)

which is equivalent to the Betz limit with an additional factor cos(γ ). Therefore, subject to
the assumptions discussed in § 2, the minimum power production lost by a yaw-misaligned
wind turbine is equal to cos(γ ). As such, cos(γ ) represents an upper bound for Pr(γ )

(figure 2) if C′
T is permitted to change.

The model predictions (2.15) for the coefficient of power CP depending on the yaw
misalignment and the thrust coefficient C′

T are shown in figure 6(a). Additionally, the
optimal thrust coefficient C′∗

T (γ ), assuming |v4| � u4, is shown. The LES coefficient of
power CP, for the simulations with the disk velocity ud correction M developed by Shapiro
et al. (2019a) (3.5), is shown in figure 6(b). Figure 6(c) shows the same domain of input
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Figure 6. (a) Coefficient of power CP = 2P(γ )/(ρAdu3∞) as a function of the yaw misalignment γ and thrust
coefficient C′

T estimated by the model given in (2.15) and (2.16). The values of C′
T that maximize power for

each yaw misalignment angle are shown by the red line, given as C′∗
T (γ ) = 2/ cos2(γ ). (b) Same as (a) for LES

CP results, with the disk velocity correction factor M given by (3.5), and Δ/D = 3h/(2D). (c) Same as (b) for
LES CP results, with the disk velocity correction factor M = 1, and Δ/D = 0.29h/D = 0.032.

yaw misalignment and C′
T for a low value of Δ/D with M = 1. Note that as numerical

oscillations in the velocity field worsen with larger shear gradients at the boundary of
the wake, the low Δ/D LES contours in figure 6(c) become less smooth (and accurate)
as C′

T , and therefore δu0, increases. There are similar qualitative trends in the LES CP
compared to the model predictions in figure 6(a), especially for C′

T � 2. As demonstrated
in figure 5, the model predicts the LES output quantitatively well. The differences between
the model predictions and LES values of CP generally increase with increasing C′

T . One
cause of discrepancy, in addition to potential modelling simplifications in § 2, is that the
ADM implementation in LES is known to underestimate wind turbine induction (Munters
& Meyers 2017; Shapiro et al. 2019a). Consequently, the maximum coefficient of power
in LES is CP = 0.60, even with the correction factor used, which is higher than the
Betz limit (0.593). Additionally, standard yaw-aligned momentum theory has increased
error for heavily loaded turbines with high induction (Wilson & Lissaman 1974; Burton
et al. 2011). The transition point to a heavily loaded rotor was approximated empirically
by Wilson & Lissaman (1974) as a ≈ 0.37 (corresponding to C′

T ≈ 2.32). Therefore,
increased error from momentum theory predictions for C′

T � 2.32 are anticipated. This
is discussed further in Appendix D.

Following a similar procedure, the thrust coefficient value that maximizes the magnitude
initial lateral velocity |v4|, and therefore the wake deflection, is C′

T(γ ) = 4/ cos2(γ ).
However, these values of C′

T(γ ) produce inductions that are greater than 1, which is
inconsistent with the momentum-theory-based model in (2.15). Therefore, for realizable
values of C′

T , the lateral velocity magnitude |v4| is a monotonically increasing function of
C′

T . Conversely, u4, the streamwise wake velocity, is a monotonically decreasing function
of C′

T .
The model-predicted normalized streamwise and spanwise outlet velocities are shown in

figures 7(a) and 7(b), respectively. While the power production reveals a non-monotonic
trend and permits an optimal set of thrust coefficients (C′∗

T (γ )), both u4 and |v4| show
monotonic behaviour for realizable values of C′

T . For wake steering, the power production
of a waked turbine will depend on both the streamwise wake velocity (u4), and the wake
deflection (integrated form of v4). Notably, the wake deflection is an increasing function
of C′

T (figure 7a), but the velocity deficit is also an increasing function of C′
T (figure 7b).

Therefore, the value of C′
T that maximizes the power production of a waked downwind

turbine will depend on the wind farm and flow configuration. In § 4.3, we explore this
dependency in an analytical, turbulent wake model that uses the inviscid model developed
in § 2 as an initial condition.
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Figure 7. (a) Magnitude of the initial lateral velocity |v4|/u∞ as a function of the yaw misalignment γ and
thrust coefficient C′

T estimated by the model given in (2.15). (b) Initial streamwise velocity u4/u∞ as a function
of the yaw misalignment γ and thrust coefficient C′

T estimated by the model given in (2.15).

4.3. Implications for wake steering and induction control
The impact of the yaw misalignment γ on the rotor-normal induction an will impact the
power production, wake deflection and wake velocity deficit of a yaw-misaligned turbine.
All three of these effects will modify the performance of wake steering control (intentional
yaw misalignment). Similarly, as demonstrated in §§ 4.1 and 4.2, changing the local thrust
coefficient C′

T (often called induction control) will also influence the power and wake
properties of a yaw-misaligned turbine. In this subsection, we assess the role of yaw and
thrust modifications on combined wake steering and induction flow control.

To assess the role of the developed induction model on wake steering and
induction-based wind farm flow control, the model (see § 2, (2.15)) is used as an initial
condition for a turbulent far-wake model. Inviscid near-wake models are commonly used as
initial conditions for far-wake models (e.g. Frandsen et al. 2006; Bastankhah & Porté-Agel
2016; Shapiro et al. 2018). A Gaussian far-wake model is used, and the full model form
is provided in Appendix C. The case study will seek to identify the pair of values for the
thrust coefficient C′

T and the yaw misalignment γ that maximizes collective farm power
production.

We consider a simplified wind turbine array with two wind turbines spaced with
streamwise and spanwise separations Sx = 8D and Sy = 0.5D, respectively. Given the
spanwise spacing Sy = 0.5D, positive yaw misalignments (counter-clockwise rotation
viewed from above) will be preferable to negative yaw (e.g. Howland et al. 2022). For
illustrative purposes, the wake model parameters, which are the wake spreading rate and
the proportionality constant of the presumed Gaussian wake, are set to representative
values from the literature: kw = 0.07 (Stevens, Gayme & Meneveau 2015; Howland
et al. 2020b) and σ0 = 0.25 (Shapiro et al. 2019b), respectively. We vary the yaw
misalignment γ1 and the thrust coefficient C′

T,1 of the leading freestream turbine. The
yaw misalignment and thrust coefficient for the downwind turbine are held constant at the
individual power-maximization levels γ2 = 0◦ and C′

T,2 = 2, respectively. The set-up of
the two-turbine collective control case study is shown in figure 8.

We consider the wind farm efficiency as a function of the yaw misalignment and the
thrust coefficient of the leading turbine. The wind turbine efficiency ηi for turbine i is
given by

ηi(γ1, C′
T,1) = Pi(γ1, C′

T,1)

1
2ρAdu3∞

. (4.6)
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Figure 8. Collective wind farm control two-turbine case study. The turbines are spaced at Sx/D = 8 and
Sy/D = 0.5 in the streamwise and spanwise directions, respectively. (a) Standard, individual turbine control
with C′

T,1 = 2 and γ1 = 0◦. (b) Model-optimal collective control with C′
T,1 = 2.11 and γ1 = 24◦.

Equation (4.6), which is a non-dimensional representation of the power production, differs
from CP because it is based on the freestream wind speed u∞ for both freestream and
waked turbines.

The coefficient of power for a yawed actuator disk is CP = 2P/(ρAdu3∞) = C′
T(1 −

an(γ ))3 cos3(γ ). The power production of each turbine is estimated as

Pi(γ ) = 1
2ρC′

T,iAd
[
(1 − an,i(γi, C′

T,i)) cos(γi) ue,i
]3

, (4.7)

where ue is the rotor-averaged velocity accounting for wake interactions (more details are
provided in Appendix C). The wind farm efficiency is η = ∑Nt

i=1 ηi/Nt, where Nt is the
number of wind turbines.

The total wind turbine array efficiency η is shown as a function of γ1 and C′
T,1 in

figure 9(a), with the array efficiency-maximizing point denoted with the star symbol. We
can make a few observations. First, we note that the maximum array efficiency does not
occur at γ1 = 0◦ and C′

T,1 = 2, the optimal settings for an individual turbine, meaning
that the array efficiency can be increased through flow control. The array efficiency
maximizing value of C′

T,1 at each yaw misalignment value is shown by a dashed line
in figure 9(a).

Second, the maximum array efficiency is also not located directly on the individual
turbine CP maximizing curve (see § 4.2) of C′∗

T,1(γ1) = 2/ cos2(γ1). In particular,
the array efficiency-maximizing values of C′

T,1 are always below the turbine 1
efficiency-maximizing values given by C′∗

T,1(γ1) = 2/ cos2(γ1). At low yaw misalignment
values, the array and individual turbine maximizing values of C′

T,1 differ the most, and
this difference decreases with increasing yaw misalignment angles. The efficiency of
turbine 1 is shown in figure 9(b). As is shown, the array efficiency is maximized at a
turbine 1 yaw and thrust that is neither the standard Betz maximum nor the maximum as
a function of γ1 (4.3). While operating turbine 1 at C′∗

T,1(γ1) would maximize the turbine
1 power, given the applied yaw misalignment, this operation also results in larger wake
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Figure 9. Wake model predictions for (a) total wind farm efficiency η, (b) freestream individual turbine 1
efficiency, and (c) waked individual turbine 2 efficiency. The efficiency is calculated using (4.6). The location
of maximum array efficiency (highest total array power output) is indicated with a star symbol. The values of
C′

T that maximize the total array power (turbines 1 and 2) for each yaw misalignment angle are shown by the
dashed purple line, as predicted empirically from the wake model output. The values of C′

T that maximize the
freestream turbine power (turbine 1) for each yaw misalignment angle are shown by the red line, and given as
C′∗

T (γ ) = 2/ cos2(γ ). In (b), the individual freestream yaw-aligned wind turbine efficiency-maximizing thrust
coefficient C′∗

T (γ = 0) = 2 is shown with a horizontal line.

velocity deficits. The efficiency of turbine 2 depending on γ1 and C′
T,1 is shown in

figure 9(c). The efficiency of turbine 2 increases with increasing turbine 1 yaw or a
decreasing turbine 1 thrust coefficient.

In summary, the array efficiency-maximizing operation has a lower value of C′
T,1 than

the value that maximizes the power of turbine 1, in order to increase the power of turbine
2. The operating point of optimal efficiency is a combination of yaw and induction control.
At lower yaw values, induction control (reduction in C′

T,1) is more active. At higher yaw
values, the array efficiency is maximized at values of C′

T,1 that are close to the operation
that maximizes the upstream turbine efficiency (C′∗

T,1(γ1) = 2/ cos2(γ1)).
The proximity of the optimal operating point to the turbine 1 power-maximizing curve

(C′∗
T,1(γ1) = 2/ cos2(γ1)) reaffirms that wake steering control is strongly dependent on the

power–yaw relationship of the freestream turbine, since the freestream turbines contribute
a larger fraction of the total array power (Howland et al. 2020c, 2022). However, the
departure from the curve (i.e. the misalignment of the solid red line and the dashed purple
line in figure 9a) reaffirms that it is also important to accurately model the wakes and
the power of each turbine in the array to locate the array power-maximizing operation.
The power-maximizing operation will depend on the wind conditions and the wind farm
geometry, necessitating an accurate parametric model that can capture these trends. The
model developed in § 2 and used here enables the prediction of the induction, thrust
and power of a yaw-misaligned actuator disk, in addition to the velocity deficit initial
conditions for far-wake models.

5. Conclusions

The velocity induced by an actuator disk depends jointly on the yaw misalignment angle
and the thrust coefficient. This dependence affects the thrust, wake velocity deficit,
wake deflection and power production of a yaw-misaligned actuator disk. Therefore,
the characteristic reduction in power production associated with wind turbine yaw
misalignment depends on the thrust coefficient of the wind turbine. As such, a tuned,
empirical cosine model (Pr = cosPp(γ )) for the power–yaw relationship of a wind turbine
is inherently turbine model-specific. Specifically, the empirical power–yaw factor Pp can
be potentially reasonable only for turbines with the same thrust coefficient, although we
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note that the relative error of a cosine-based model increases with increasing yaw angles
since the true form of Pr is not exactly a cosine function.

An analytical model for the induction of a yaw-misaligned actuator disk is developed and
validated against large eddy simulations of an actuator disk model wind turbine. The model
yields improved quantitative predictions of the induction, velocities and power of a yawed
actuator disk, compared to existing models, by accounting for the effect of the induction on
the wind turbine thrust and the momentum associated with the lateral velocity at the outlet
of the streamtube encompassing the disk. We optimize the coefficient of power predicted
by the developed model to find the thrust coefficient that maximizes the power production
of a yawed actuator disk for each value of the yaw misalignment angle. The optimization
results, which are the yawed actuator disk analogue to the classical Betz limit, demonstrate
that the thrust coefficient should increase monotonically with an increasing magnitude of
yaw misalignment to track the optimal power production (C′∗

T (γ ) = 2/ cos2(γ )), and that
the maximum power produced by an individual yaw-misaligned actuator disk is C∗

P(γ ) =
16
27 cos(γ ).

Finally, the developed induction model is used as an initial condition for a turbulent
far-wake model to explore an example, two-turbine wind farm control scenario. The
model-predicted combined power production for the two-turbine array is maximized
through a combination of yaw (wake steering) and thrust coefficient (induction) control
modifications which deviate from the individual turbine power-maximizing operation
(C′

T = 2, γ = 0◦). The yaw and thrust coefficient of the leading turbine affect its own
power production (power–yaw relationship Pr(γ )) but also affect the wake velocity deficit
and wake deflection, which influences the power production of the downwind turbine. The
modelling results demonstrate the physical mechanisms for synergistic wake steering and
induction, a strategy that has been shown to be effective in previous simulation studies of
farm flow control (e.g. Munters & Meyers 2018).

For rotational, utility-scale wind turbines, the realized power–yaw relationship (i.e.
Pr(γ )) will depend on the realized local thrust coefficient C′

T and any potential dependence
of C′

T on the yaw misalignment angle. Such a dependence can be integrated into the present
modelling framework through the functional form of the thrust force (2.2).

In addition to the effects of the yaw and thrust coefficient on the rotor-averaged
induction, yaw misalignment also generates an induced velocity that exhibits spatial
variation over the rotor area (Glauert 1926; Hur et al. 2019). Since the focus of this
study was to predict the rotor-averaged induction and thrust for yaw-misaligned actuator
disks, and since the ADM thrust and power depend on the rotor-averaged disk velocity,
the azimuthal variations in the induction, which have zero mean (Hur et al. 2019), do not
affect the proposed model (see § 2). For rotational wind turbine models that distribute
thrust unequally in the rotor area, the azimuthal thrust variation is important to model.
Future work that focuses on extending the present analysis to rotational wind turbines
should consider the effects of spatially variable induction.

Often, numerical implementations of blade-element momentum (BEM) theory predict
that the power ratio of a yaw-misaligned wind turbine follows Pr = cos3(γ ) (e.g.
Liew et al. 2020). Yawed wind turbines, operating with a fixed C′

T in uniform flow,
will not have a power ratio Pr = cos3(γ ) since the rotor-normal induction factor is
reduced by the yaw misalignment. The power produced by a yaw-misaligned turbine is
therefore greater than Pr = cos3(γ ) (i.e. Pp < 3), although the particular value of power
lost by yaw will depend on C′

T . Future work should incorporate the induction model
developed here into BEM solvers. Finally, this study focused on spatially uniform inflow.
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Wind speed and direction shear (Howland et al. 2020c) and wake interactions (Liew et al.
2020) affect the power production of yaw-misaligned wind turbines. Future work should
consider the effects of wind speed and direction shear on the induced velocity of a yawed
actuator disk.
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Appendix A. Sensitivity of LES ADM induction to numerical set-up

The rotor-normal induction factor an for C′
T = 1.33 is shown as a function of the yaw

misalignment angle γ in figure 10(a) for LES cases with (M given by (3.5)) and without
(M = 1) the disk velocity correction factor M. For the yaw-aligned ADM, the uncorrected
disk velocity simulation with a small ADM filter width Δ/D = 0.29h/D = 0.032
approaches the momentum theory estimate an = 0.25 (ân(γ = 0) = 0.245). On the other
hand, the larger ADM filter width case, Δ/D = 3h/(2D), results in an underprediction
of the momentum theory induction (ân(γ = 0) = 0.220), even with the disk velocity
correction activated. While the smaller ADM filter width reproduces more accurately
yaw-aligned momentum theory at the disk, it also introduces numerical oscillations in the
wake flow field which can introduce errors in wake analysis. However, the rotor-normal
induction, when normalized by the yaw-aligned induction (an(γ )/an(γ = 0)), shown in
figure 10(b), demonstrates that the normalized quantities are less sensitive to the numerical
set-up. Therefore, in the results in § 4, where analysis of the wake velocity is required (for
δu0 and δv0) and normalized quantities are presented, we use the disk correction with M
given by (3.5) and a larger ADM filter width Δ/D = 3h/(2D). In § 4, where unnormalized
quantities are presented and the wake flow is not analysed, we use a smaller ADM filter
width Δ/D = 0.29h/D = 0.032, which reproduces well-accepted momentum theory for
the yaw-aligned turbine (see Appendix D) and does not require the disk velocity correction
(Shapiro et al. 2019a).

Appendix B. Glauert induction and power–yaw model

Glauert (1926) developed a model for the relationship between the thrust coefficient
CT and the rotor-averaged induction normal to the rotor ag

n (see derivation in
Burton et al. 2011):

CT = 4ag
n

√
1 − ag

n(2 cos(γ ) − ag
n). (B1)

Equation (B1) can be solved iteratively for ag
n given a known CT from the initial condition

of the yaw-aligned induction. The Glauert model for CP is

Cg
P = 4ag

n

√
1 − ag

n(2 cos(γ ) − ag
n) (cos(γ ) − ag

n), (B2)
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Figure 10. (a) Rotor-normal induction for the yawed ADM wind turbine with C′
T = 1.33. The LES results

are shown with (M given by (3.5), Δ/D = 3h/(2D)) and without (M = 1, Δ/D = 0.29h/D = 0.032) the disk
velocity ud correction factor. The cases with and without the correction factor use a larger and smaller ADM
filter width Δ, respectively. The model predictions are given by the ‘Yawed CV’ curve, and the limiting case
|v4| � u4 is shown. (b) Same as (a) except the rotor-normal induction values are normalized by the yaw-aligned
ADM rotor-normal induction, an(γ )/an(γ = 0).

and the Glauert power ratio model is Pg
r (γ ) = Cg

P(γ )/Cg
P(γ = 0), where Cg

P is estimated
using (B2).

Appendix C. Far-wake model

The inviscid near-wake model developed in § 2 can provide the initial conditions for
self-similar far-wake models. The streamwise and spanwise velocity initial conditions
are u4 and v4, respectively (see § 2). We use a far-wake model based on the analytical
integration of the lifting line model (Shapiro et al. 2018) shown in Howland, Lele & Dabiri
(2019). The wind turbine wakes are modelled as Gaussian velocity deficits (Bastankhah &
Porté-Agel 2014; Shapiro et al. 2018; Howland et al. 2019). The model is steady-state
and neglects wake curling (Howland et al. 2016; Martínez-Tossas et al. 2021), wind speed
shear, wind direction shear and ground effects. We define the upwind turbine with the
index i and the downwind turbine with the index j. The velocity deficit at hub-height
associated with an upwind turbine i is

dui(x, y) = δui(x)
D2

8σ 2
0,i

exp

(
−( y − yc,i(x))2

2σ 2
0,id

2
i (x)

)
, (C1)

where D is the turbine diameter, and the streamwise and spanwise directions are x and y,
respectively. The coordinate system is defined with respect to the position of the upwind
turbine i, such that the centroid of turbine i is at x = 0 and y = 0. The normalized
far-wake diameter as a function of the streamwise location x is di(x) = 1 + kw,i log(1 +
exp[2(x/D − 1)]). The wake spreading coefficient is kw, and the proportionality constant
of the presumed Gaussian wake is σ0. The lateral centroid of the wake of turbine i is yc,i.
With freestream wind u∞ in the x-direction and zero freestream wind in the spanwise
direction, the streamwise velocity deficit δui(x) is modelled as (Shapiro et al. 2018)

δui(x) = u∞ − u4,i

d2
i (x)

1
2

[
1 + erf

(
x√

2 D/2

)]
, (C2)
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and the wake centreline lateral velocity as a function of the x-position for the upwind
turbine is

δvi(x) = −v4,i

d2
i (x)

1
2

[
1 + erf

(
x√

2 D/2

)]
. (C3)

The initial conditions for the far-wake model in (C2) and (C3) are provided by the inviscid
model developed in § 2 (u4 and v4). The lateral centroid of the wake, produced by upwind
turbine i, is given by

yc,i(x) =
∫ x

x0,i

−δvi(x′)
u∞

dx′. (C4)

To compute power for an ADM turbine (§ 2.1), we use an estimate of the rotor-averaged
velocity in the far-wake model. To result in an analytical expression in a two-dimensional
model, we can approximate the surface integral of the Gaussian velocity deficit over the
waked rotor as an integral over the diameter in the y-direction at hub-height (C1). The
analytical, averaged velocity deficit is (Howland et al. 2019)

�ui,j(x) =
√

2π δui(x) di(x) D
16σ0,i

[
erf

(
yT + D/2 − yc,i(x)√

2 σ0,i di(x)

)
− erf

(
yT − D/2 − yc,i(x)√

2 σ0,i di(x)

)]
,

(C5)
where the lateral turbine centroid of downwind turbine j is yT . More generally, the
rotor-averaged velocity deficit can be calculated through numerical integration over y and
z using (C1), which affects output power (P2) and optimal control results by a few per cent
(4 % and <0.1 % for γ ∗

1 and C∗
T,1, respectively, in § 4.3). The rotor-averaged velocity at

the downwind turbine j without induction effects is given by

ue,j = u∞ − �ui,j, (C6)

and the power production of turbine j, following (2.16), is

Pj = 1
2ρC′

T,jAd
[
(1 − an,j) cos(γj) ue,j

]3
. (C7)

The power of turbine i is modelled similarly.

Appendix D. Validation of the LES ADM

In this appendix, we validate the LES ADM through comparisons to standard, yaw-aligned
(γ = 0) momentum theory. Yaw-aligned momentum theory results in the following
equations for the rotor-normal induction factor, streamwise wake velocity and spanwise
wake velocity (e.g. Burton et al. 2011):

an(γ = 0) = a = C′
T

C′
T + 4

= 1
2

(1 −
√

1 − CT),

u4(γ = 0)

u∞
= 4 − C′

T
4 + C′

T
= 1 − 2a,

v4(γ = 0)

u∞
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D1)

The corresponding thrust and power coefficients are CT = 4a(1 − a) and CP = 4a(1 −
a)2, respectively. The predictions from yaw-aligned momentum theory are shown in
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Figure 11. Comparison between yaw-aligned (γ = 0) momentum theory and LES results for the ADM without
the disk velocity ud correction factor (M = 1, Δ/D = 0.29h/D = 0.032). For a yaw-aligned turbine, the
rotor-normal induction is an = a, where a is the standard axial induction factor predicted by momentum theory.
Coefficient of thrust CT is shown as a function of (a) induction factor a, and (b) C′

T . Coefficient of power CP
is shown as a function of (c) induction factor a, and (d) C′

T . The vertical lines report the induction a and
thrust coefficient C′

T corresponding to the Betz limit (a = 1/3, C′
T = 2) and the heavy loading limit (a = 0.37,

C′
T = 2.3) (Wilson & Lissaman 1974; Burton et al. 2011).

figure 11, in addition to the LES results (γ = 0). Induction (C′
T ) values beyond a = 0.5

(C′
T = 4) are not shown, as momentum theory predicts negative or zero wake velocity

(Burton et al. 2011). We additionally show the Betz prediction, which maximizes CP for
γ = 0 as a = 1/3 and C′

T = 2. Standard yaw-aligned momentum theory is well-known to
have reduced accuracy for increasing values of induction (heavily loaded turbines), due to
the flow separation, large pressure drop, and the correspondingly high thrust (Burton et al.
2011). Wilson & Lissaman (1974) approximated empirically this heavy loading transition
to occur at at = 1 − 1

2

√
CT,t ≈ 0.37, where CT,t = 1.6 (Wilson & Lissaman 1974; Burton

et al. 2011). Vertical lines show at and C′
T,t in figure 11. The heavy loading transition

provides a reasonable approximation for when standard yaw-aligned momentum theory
begins to diverge (a > at), compared to the LES ADM results.

Appendix E. Evaluation of the local thrust coefficient for rotational turbines

The induction model for yawed actuator disks proposed in § 2 treats the local thrust
coefficient C′

T and the yaw misalignment angle γ as independent input variables. For
yaw-aligned rotational turbines, the thrust is determined primarily by the aerodynamics of
the turbine blades and the rotor angular velocity Ω (Burton et al. 2011). The dependence
of the turbine thrust on yaw misalignment for a rotational turbine depends on the control
strategy, namely the pitch and torque control (Howland et al. 2020c). Therefore, the power
loss due to yaw misalignment is both turbine-specific and specific to the control method.
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Figure 12. Coefficient of thrust CT and local coefficient of thrust C′
T for the NREL 5 MW reference turbine

(Jonkman et al. 2009). Approximate control regions (I, II and III) are identified.

Turbines in standard, yaw-aligned operation aim to maximize power generation in
region II. For yaw-aligned (standard) conditions within region II, a rotational turbine keeps
the blade pitch angle constant and maintains a constant tip-speed ratio (TSR) λ ≡ ΩR/u∞.
The TSR controls the thrust force for rotational turbines. Therefore, within standard control
in region II, the local thrust coefficient C′

T is constant as a function of the wind speed. The
dependence of C′

T and the coefficient of thrust CT ≡ 2|F T |/(ρAdu2∞) is shown in figure 12
for the NREL 5 MW reference turbine (Jonkman et al. 2009).

Here, we assess the influence of the control strategy on the relationship between C′
T

and the yaw misalignment angle in region II operation. Using experimental data from
Krogstad & Adaramola (2012), we show that the qualitative relationship between C′

T and γ

changes with different turbine control strategies. Krogstad & Adaramola (2012) measured
the coefficient of thrust CT for a 0.9 m wind turbine model in a wind tunnel, varying yaw
misalignment angle and TSR. For a turbine in yaw misalignment, the relationship between
the coefficient of thrust CT and the local thrust coefficient C′

T is given by

CT = C′
T(1 − an(γ ))2 cos2(γ ), (E1)

which can be appended to the proposed model (2.15) and solved iteratively given CT and γ .
We use the proposed model (2.15) to compute C′

T from the CT measurements of Krogstad
& Adaramola (2012).

The local thrust coefficient depends on both the yaw misalignment angle γ and the TSR
λ, as shown in figure 13(a). We explore two hypothetical control strategies for the angular
velocity Ω as a function of yaw γ for a rotational turbine in region II operation. One
control strategy maintains a constant TSR such that λ = ΩR/u∞ is constant regardless
of yaw misalignment angle. With this control strategy, increasing the yaw misalignment
generally decreases the local thrust coefficient C′

T . This is shown by following the vertical
lines in figure 13(a) through changing yaw misalignment angle, which is also presented
in figure 13(b). We then consider a second control strategy in which we hold a modified
TSR λ′ = (Ω cos(γ ) R)/u∞ constant. This modifies the relationship between local thrust
coefficient C′

T and yaw alignment angle γ . For the model turbine used by Krogstad &
Adaramola (2012), the effect of the second control strategy (targeting constant λ′) is an
increase in the local thrust coefficient C′

T relative to the first control strategy targeting
constant λ at each yaw value. The optimal operating point that maximizes CP(γ = 0)

is λ = 6 (Krogstad & Adaramola 2012). For λ′ = 6, C′
T is approximately constant as a

function of yaw γ (figure 13b).
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Figure 13. (a) Thrust coefficient C′
T as a function of TSR at various yaw misalignment angles, using CT data

from Krogstad & Adaramola (2012). The thrust coefficient C′
T is solved for iteratively using the proposed

model (2.15) with (E1). (b) Dependence of the thrust coefficient C′
T on yaw for two different control strategies:

constant λ = ΩR/u∞, and constant λ′ = (Ω cos(γ ) R)/u∞.
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