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Abstract

Some characterizations of nil radical and nil semisimple power series rings are given. The upper nil
radical of a power series ring in an uncountable set of non-commutative indeterminates is completely
described.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 05, 16 A 21, 16 A 22.

1. Introduction

In this paper we investigate nil ideals of an associative power series ring R{X} in
a set X of non-commutative indeterminates commuting with coefficients from R.
We begin in Section 2 with a characterization of nil one-sided ideals of R{X) for
X of cardinality 3s 2, showing that such ideals are contained in N(R){X}, where
N(R) is the sum of all nilpotent ideals of R. It implies immediately that
semiprime power series rings in non-commutative indeterminates are nil semisim-
ple. This result and some of its applications have been obtained by the author
(1980) for infinite X. A stronger result is proved in Section 3 for uncountable X. It
asserts that a series s belongs to a nil ideal of R{X) if and only if the ideal of R
generated by the coefficients of s is nilpotent. In the final section we present a
result characterizing nil power series rings of one indeterminate.

All results of the paper are stated and proved for right ideals. By analogous
arguments or using the fact that if L is a nil left ideal of A and a G L then the
right ideal of A generated by a is nil, one can transfer all obtained results to left
ideals.
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The following simple observation will be very useful in our investigations.

LEMMA 1. The ideal (A) of R generated by a subset A is nilpotent if and only if
for any denumerable subset B of R the set AB is nilpotent.

PROOF. If the ideal (^4) is not nilpotent then for any n = 1,2,... there exist
elements an],...,ann & A , bn^...,bnn G R such that anlbnX • • • annbnn¥=0. Of
course B = {b^} is such a denumerable subset of R that the set AB is not
nilpotent. This proves the part "only i f . The part " i f is clear.

Throughout Sections 2 and 3, P(X) will be the free (non-abelian) semigroup
with unity generated by the set X of cardinality 3s 2. If p G P( X) and x G X then
l(p) and lx(p) will denote the degree and x-degree ofp respectively. The elements
of R{X} are the formal series a = 2app, where ap G R, p G P(X). For any
a G R{X) we denote supp a = {p G P(X) | ap ¥= 0}.

2. Semisimplicity of power series rings

We begin with an auxiliary lemma concerning the semigroup P(X).

LEMMA 2. Let x, y E X, x =£ y and Y — {xyx, xy2x,...} C P( X). Then
a) ifp, q G P{X), r, t G Yandprq = t thenp = q = 1;
b) if for 1 < i < n, Pi, qt G P(X), rt, /,. G Y, /(/>,.) > l(qt) and Plrt • • • pnrn =

Q\t\ • • • QnK
 t h e n Pi = In ri = 'if°r ! < ' < « •

PROOF. The part a) follows immediately from the definition of Y. To prove b)
we proceed by induction on n. If n = 1 then pxrx = qxtv But /(/?,) > K<i\), so
px = qxs for some s G P(X). Thus srx — tx and by a) s = 1. Hence r, = tx and

P\ =4\-
Let us assume now that b) is valid for n < k and /?,/-, • • • pk+\rk+x = qxtx

• • • qk+\h+\- L e t / ' I = PiriPi a n d 9i = 9i'i^2- W e w i l 1 s h o w t h a t ' ( ^ l ) > lW\)-
Since /(/»]) > l{qx) then/>, = ^, for some s G P(X). Thus

(1) Wî 2 •••'•*+1 = ' i?2-"9t+i ' t+i-

By the assumption /(^r2) < /(/?2), so if /(^',) < l(q[) then /(jr,) < /(/,). Now (1)
implies that srxw = tx for some w G P(X). Hence by a) s — w = 1 and, in
consequence, r, = /,. This contradiction shows that l(p\) > l(q{)- Thus, using the
induction argument, we obtain r, = /, for 2 < i < k + 1, pl• = qt iox 3 < / < k + 1
a n d p i r i p 2 — q\txq2- T h e las t e q u a l i t y a n d l(px)^ l(qx), l(p2) > l(qi) give
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p x = qxs a n d p 2 = wq2 for some s, w G P(X). Therefore srxw — tx a n d b y a)

s = w = 1. This proves the l emma .

THEOREM 1. Let I be a nil right ideal ofR{X}.Ifa = 1app G / then the ideal of
R generated by A = {ap\p G supp a has the minimal degree in supp a) is nilpotent.

PROOF. Let bx, b2,... G R and x, y G X, x =£ y. Using Lemma 2 we obtain that
if pt for 1 *£ i < n have the minimal degree in supp a then the coefficient at
pxxyklx • • • pnxyk"x in the series (a(bxxyx + b2xy2x H ))" is equal to apbki

• • • apbttn. So if (a(bxxyx + b2xy2x + •••))" = 0 then (A • {b,• | / = 1,2,...})" = 0
and Lemma 1 ends the proof.

For any ring R let N(R) denote the sum of all nilpotent ideals of R. Similarly
as for infinite X (Puczytowski (1980), Corollary 3) we obtain

COROLLARY I. If I is a nil right ideal of R{X) and a G / then for any integer
k> 0 the ideal of R generated by Ak = {ap \p G supp a, l(p) = k) is nilpotent. In
particular I QN(R){X}.

Let K be the nil radical class and S the lower strong radical determined by K. It
is well known (Divinsky, Krempa and Sulinski (1971)) that a ring R is S-semisim-
ple if and only if R contains no non-zero nil right ideals. Thus by Theorem 1 we
obtain immediately

COROLLARY 2. For any ring R the following conditions are equivalent:
(i) R is semiprime;

(ii) R{X) is semiprime;
(iii) *(/?{*}) = 0;
(iv) S(R{X}) = 0.

3. Special cases

In this section we investigate nil ideals of R{X] in some special cases. We start
from a result on nil right ideals of bounded index.

L E M M A 3 . If x, y G X, x ¥= y, / > , , . . . ,/>„, qx,. . . ,qn G P{X),

max( /(/?,) , . . . ,/(/>„)) = k and

(2) pxyxn<k+i> • • -pnyx^k+^ = qxyx"<k+V • • • qny

thenpx =qx,...,pn = qn.
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PROOF. The equality (2) implies that for some m £ P(X\ qx = pxm or px =
qxm. If/>, = qxm then wyx"(*+1> • • •pnyx"<-k+i) = yx

n(k+l) • • • qnyxn(k+l\ But if
m ^ 1-then m— yxn(k+X)r for some r E P(X). This is impossible as then
/ ( / ? , ) > n(k + 1 ) > k. If qx=pxm then yxn(k+i) • • • pnyxn(k+1) = myx"^k+^
• • • qnyxn<k+l\ If m =̂ 1 then m = yx"(k+i)r for some r £ P(X). This implies
that lx(qx)>n(k + 1) and, in consequence, lx(qxyx"<-k+i) •• • qnyxn(k+1)) >
n(n + l)(fc + 1). On the other hand lx(pxyxn(k+l) •• •pnyxn(k+i)) </ ( />, )
+ • • • + '(/>„) + n\k + 1) < kn + n\k + 1) < «(n + 1)(& + 1), a contradic-
tion.

THEOREM 2. / / / « a nil right ideal of R{X) satisfying the identity a" = 0 and
(A) is the ideal of R generated by A = {ap \p £ supp a, a £ / } then (A)2" = 0
and, when 1 £ R, (A)" = 0.

PROOF. Let x, y e X, x ¥= y, a,... ,an £ 4̂ and bx,.. .,bn £ /?. The definition
of A implies that there exist sx,...,sn £ / and qx £ supp sx,...,qnG supp sn such
that a, is the coefficient at qt in j , for / = 1,...,«. Since for / ¥=j, 1 < /, y < n,
supp5,7>,xy'x fl supp jyfy.xy-'jc = 0 then a,6, is the coefficient at pt = q}xy'x in
5 = sxbxxyx + • • • +5rtfenxynjc. Now if /c = max(/ (p , ) , . . .,/(/»„)) then by Lemma
3 a,Z>2 • • • anbn is the coefficient a.tpiyxn(k+l) • • -pnyxn(k+l) in (syxn(k+]))n. But
jyx"(A:+1> £ / , so (jyx"(*+ 1 ))" = 0. This shows that for any ax,...,anGA,
bx,...,bnG R, axbx • • • anbn = 0. Hence if K is the right ideal of R generated by
AR then K" = 0. But if J is the right ideal of R generated by A then J = K
whenever 1 £ R and J2 Q K otherwise. This and the fact that indexes of
nilpotency of / and (A) are equal end the proof.

In particular Theorem 2 gives immediately

COROLLARY 3. An ideal I of R{X} is nilpotent if and only if the ideal of R
generated by coefficients of all elements of I is nilpotent.

Now we will describe nil right ideals of R{X) for uncountable X.

LEMMA 4. Let a = 2 app £ R{X}. If px,... ,pm are such elements o / supp a that

for some x £ X, (ax)m = 0 andpx,. ..,pm& P(X\ {x}), then api • • • apm — 0.

P R O O F . Let us observe first that if qx,.. .,qm £ P{X) the equality pxx • • • pmx

= a\x • • • a m x i m p l i e s / > , =qx,... , p m = qm. I n d e e d , s i n c e lx{px) = ••• = lx(Pm)
= 0 t h e n lx(qx) + ••• +lx(qm) + m = lx(qxx • • • qmx) = lx(pxx • • • p m x ) = m.
H e n c e lx(qx) = • • • = lx(qm) = 0 . N o w t h e e q u a l i t y p x x • • • p m x = qxx • •• qmx
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implies that for some r G P, p x = qxr o r qx = pxr. But then rxp2x • • • pmx —
xq2x • • • qmx or xp2x • • • pmx = rxq2x • • • qmx. In b o t h cases the condi t ion lx(r)
= 0 implies that r - 1, so px — qv Now p2x • • • pmx = q2x • • • qmx and, analo-
gously, we obtain that p2 = q2,... ,p2 = q2,... ,pm = qm. We conclude from the
foregoing that the coefficient at pxx • • • pmx in the series (ax)m is equal to

THEOREM 3. / / the set X is uncountable and I is a nil right ideal of R{X) then the
ideal of R generated by coefficients of an element of I is nilpotent.

PROOF. Let x, y G X, x ¥= y and £>,, b2,... G R. It can be easily seen that if
a = 2 a p G / and/? G supp a then the coefficient atpxykx in a{bxxyx + p2xy2x
+ • • •) is equal to apbk. The fact that / is a nil right ideal of R{X} implies that
U Xn = X, where J f ,= { z e X\ (a(bxxyz + b2xy2x + .. .)z)n = 0}. Thus for
some m the set Xm is uncountable. In particular for any />,,... ,pm G supp a and
any natural numbers kx,. . . ,km there exists z G Xm such that
pxxyk'x,... ,pmxykmx G P(X\ {z}). Hence from Lemma 4, apbk^ • • • apj>km ~ 0-
Now Lemma 1 ends the proof.

COROLLARY 4. / / the set X is uncountable then S{R{X}) = K(R{X}) -
N(R{X}).

PROOF. Of course S(R{X}) D K(R{X}) D N(R{X}). By Theorem 3 the sum
W of all nil right ideals of R{X) is equal to N(R{X}) so W= N(R{X}) =
K(R{X}). Now if I/K(R{X}) is a nil right ideal of R{X}/K(R{X}) then / is a
nil right ideal of R{X}, so / C W = K(R{X}). Thus R{X}/K(R{X}) is 5-semi-
simple. In consequence £(£{*}) = K(R{X}).

4. The case of one indeterminate

It is known (Puczylowski (1980), Corollary 2) that if X is a set of cardinality > 2
then R{X} is nil if and only if R is nilpotent or, equivalently, R{X} is nilpotent.
This is not true for power series rings R{x} of one indeterminate x. Namely, let P
be the polynomial ring of commutative indeterminates xx, x2,... over a finite
field of p elements and let / be the ideal of P generated by xf, xP, Since P is a
commutative algebra over a field of characteristic p then for any 2 a , . . . ,*,
•••xikGP, aah...ixii---xik)" = laP...ixP---xftBl. Now if 2 a , x ? G
(P/I){x) then (2aix

iy = lafx" = 0. Hence (P/I){x) is nil and P/I is not
nilpotent as for any n, xx • • • xn £ / .
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Gardner and Stewart (1976) have observed that the class K = {R\ R{x] is nil}
is not radical. Now we will describe the class K more exactly.

THEOREM 4. Any ring of the class K is nil of bounded index.

PROOF. If a ring R is not nil of bounded index then for any n = 1,2,... there
exists an E R, a" ¥=0. Let {kn} be the sequence of integers defined by induction
as follows

k\ = ]> kn+\ =nkn+ 1.

Certainly if / > n then kt > kn+l = nkn + 1. Thus if kt + • • • +&, = nkn then
ir < n for 1 < r < «. But since &, < A:n and A:, = kn if and only if ir = n, then the
equality kt + • • • +kt = nkn implies /, = ••• = «„ = n. Using this fact we ob-
tain that the coefficient at x"k" in the series (2 a,x*')" is equal to a" ¥= 0. Thus the
series 2 a,x*' is not nilpotent.

REMARK. The Nagata-Higman Theorem (Jacobson (1964), page 274) and
Theorem 4 imply that members of K which are algebras over a field of character-
istic zero are nilpotent.
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