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Abstract

Some characterizations of nil radical and nil semisimple power series rings are given. The upper nil
radical of a power series ring in an uncountable set of non-commutative indeterminates is completely
described.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 05, 16 A 21, 16 A 22.

1. Introduction

In this paper we investigate nil ideals of an associative power series ring R{ X} in
a set X of non-commutative indeterminates commuting with coefficients from R.
We begin in Section 2 with a characterization of nil one-sided ideals of R{ X} for
X of cardinality = 2, showing that such ideals are contained in N(R){ X}, where
N(R) is the sum of all nilpotent ideals of R. It implies immediately that
semiprime power series rings in non-commutative indeterminates are nil semisim-
ple. This result and some of its applications have been obtained by the author
(1980) for infinite X. A stronger result is proved in Section 3 for uncountable X. It
asserts that a series s belongs to a nil ideal of R{ X} if and only if the ideal of R
generated by the coefficients of s is nilpotent. In the final section we present a
result characterizing nil power series rings of one indeterminate.

All results of the paper are stated and proved for right ideals. By analogous
arguments or using the fact that if L is a nil left ideal of 4 and a € L then the
right ideal of 4 generated by a is nil, one can transfer all obtained results to left
ideals.
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The following simple observation will be very useful in our investigations.

LEMMA 1. The ideal {A) of R generated by a subset A is nilpotent if and only if
for any denumerable subset B of R the set AB is nilpotent.

ProOOF. If the ideal (A4) is not nilpotent then for any n = 1,2,... there exist
elements a,,...,4,, €4, b,,...,b,, € R such that a,b, ---a,,b,, 0. Of

course B = {b;;} is such a denumerable subset of R that the set AB is not
nilpotent. This proves the part “only if”. The part “if”” is clear.

Throughout Sections 2 and 3, P(X) will be the free (non-abelian) semigroup
with unity generated by the set X of cardinality = 2. If p € P(X) and x € X then
I( p) and /. ( p) will denote the degree and x-degree of p respectively. The elements
of R{X} are the formal series a = 2 a,p, where a, € R, p € P(X). For any
a € R{X} we denote suppa = {p € P(X)|a, # 0).

2. Semisimplicity of power series rings

We begin with an auxiliary lemma concerning the semigroup P(X).

LEMMA 2. Let x, y € X, x # y and Y = {xpx, xp?x,...} C P(X). Then

a)ifp,q € P(X),r,t € Yandprq = tthenp = q=1;

b)iffor L <i<n,p;,q, €P(X), r,t, €Y, I(p;) = 1(q;) and p\r, -~ p,1, =
q\ty - qut,thenp, = q, ri;=1t forl <i<n.

PrOOF. The part a) follows immediately from the definition of Y. To prove b)
we proceed by induction on . If n =1 then p,r;, = ¢,¢t,. But I(p,) = I(q,), so
P, = q,s for some s € P(X). Thus sr, = ¢, and by a) s = 1. Hence r, = ¢, and
P =4

Let us assume now that b) is valid for n<k and p,r, ---py 171 = 01y
Gty Let py = pyryp; and g = q,1,9,. We will show that I( p) = I(q)).
Since I( p,) = I(q,) then p, = g, for some s € P(X). Thus

(1) SO Py T T WGz Qi birr

By the assumption /(g,) < I( p,), so if I( p}) < {(q;) then I(sr;) < I(z,). Now (1)
implies that srw = ¢, for some w € P(X). Hence by a) s=w=1 and, in
consequence, r, = ¢,. This contradiction shows that I( p}) = I(q;). Thus, using the
induction argument, we obtainr, = f,for2<i<k+ 1,p,= ¢, for3<i<k + 1
and p,r,p, = ¢,1,q,. The last equality and /(p,) = I(q,), I(p,) = I(q;) give
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P, = q,5s and p, = wq, for some s,w € P(X). Therefore sryw = ¢, and by a)
s = w = 1. This proves the lemma.

THEOREM 1. Let I be a nil right ideal of R{X}. If a = Z a,p € I then the ideal of
R generated by A = {a,| p € supp a has the minimal degree in supp a} is nilpotent.

PrOOF. Let b, b,,... € Rand x, y € X, x # y. Using Lemma 2 we obtain that
if p, for 1 <i<n have the minimal degree in supp a then the coefficient at
pxyhix - pxykox in the series (a(b xyx + byxy*x +---))" is equal to a, b,
+-a,b, . Soif (a(bxyx + byxy*x + -+ )" = O then (4 - {b, [i=12,...D"=0
and Lemma 1 ends the proof.

For any ring R let N(R) denote the sum of all nilpotent ideals of R. Similarly
as for infinite X (Puczylowski (1980), Corollary 3) we obtain

COROLLARY 1. If I is a nil right ideal of R{X} and a € I then for any integer
k = 0 the ideal of R generated by A, = {a,|p € supp a, I(p) = k} is nilpotent. In
particular I C N(R){ X}.

Let K be the nil radical class and S the lower strong radical determined by K. It
is well known (Divinsky, Krempa and Sulinski (1971)) that a ring R is S-semisim-
ple if and only if R contains no non-zero nil right ideals. Thus by Theorem 1 we
obtain immediately

COROLLARY 2. For any ring R the following conditions are equivalent:
(i) R is semiprime;

(ii) R{ X} is semiprime;

(iii) K(R{X}) = 0;

@iv) S(R{X}) =0.

3. Special cases

In this section we investigate nil ideals of R{ X} in some special cases. We start
from a result on nil right ideals of bounded index.

LEMMA 3. If x, y € X, X Y, P, sPp 415 --.4, € P(X),
max(/(p,),...,I(p,)) =k and

(2) plyxn(k+|) .
then pl = ql’--'ypn = qn'

n(k+1) — n(k+1) | n(k+1)

TP YX 4, yx T dnyX
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ProoF. The equality (2) implies that for some m € P(X), g, = p,m or p, =
gim. If py = gym then myx"**D .. p yyn(k+ ) = ynkt ) ... g k4D Byt if
m # 1~ then m = yx"**Vr for some r € P(X). This is impossible as then
(p)>nlk+1)>k If g =p,m then yx"**D...p yxn(k¥l) = pyxntkt1)
o g, yx"* D If m 1 then m = yx"**Dr for some r € P(X). This implies
that /(q,)=n(k + 1) and, in consequence, I/ (q,yx"**V...q yx"k+D)>
n(n+ 1)k +1). On the other hand [ (p,yx"**V...p yx"**Dy<(p))
+ - +Up) +n¥(k+ V) <kn+n* (k+1)<n(n+ 1)k+1), a contradic-
tion.

THEOREM 2. If I is a nil right ideal of R{ X} satisfying the identity a”" = 0 and
(A) is the ideal of R generated by A = {a,|p € suppa, a € I} then (A" =0
and, when 1 € R, (A4Y" = 0.

PROOF. Let x, yE X, x ¥y, a,...,a, € A and b,,...,b, € R. The definition
of A implies that there exist s,,...,s, € I and ¢, € supp sy,...,q, € supp s, such
that a; is the coefficient at g, in s, for i = 1,...,n. Since for i #j, 1 <i, j<n,
supp s;b,xy'x N supp 5,b,xp’x = @ then a.b, is the coefficient at p, = g,xy’x in
s=sbxyx + .-+ +s5,b,xy"x. Now if k = max(/(p,),...,I(p,)) then by Lemma
3 ayb, - - a,b, is the coefficient at p, yx"**tV ... p yxn+ D jp (syxmk+Dyn Byt
syx"ktY e I so (syx"**Vy* = 0. This shows that for any a,,...,a, € 4,
b,....b,€R,ab,---a,b, = 0. Hence if K is the right ideal of R generated by
AR then K" = (0. But if J is the right ideal of R generated by 4 then J = K
whenever 1 € R and J? C K otherwise. This and the fact that indexes of
nilpotency of J and (A4) are equal end the proof.

In particular Theorem 2 gives immediately

COROLLARY 3. An ideal I of R{X} is nilpotent if and only if the ideal of R
generated by coefficients of all elements of I is nilpotent.

Now we will describe nil right ideals of R{ X'} for uncountable X.

LEMMA 4. Leta = Za,p € R{X}. If p\,...,p,, are such elements of supp a that

for some x € X, (ax)" =0andp,,...,p,, € P(X\{x)}), then a, ---a, =0.

PROOF. Let us observe first that if ¢,,...,q,, € P(X) the equality p,x - - - p,x

= ¢,X - q,x implies py, = q,...,p, = q,,- Indeed, since [ (p,) = --- = L(p,,)
= O then lx(ql) + o +lx(qm) +m= Ix(qlx e qu) = lx(plx te 'pmx) = m.
Hence /. (q,) = --- =14(q,) = 0. Now the equality pyx---p, x =¢q,x ---q,x
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implies that for some r € P, p, = q,r or q, = p,r. But then rxp,x ---p,x =
XqyX **+ X OF Xp,X + =+ P, X = rxg,x - - - 4, x. In both cases the condition /,(r)
= 0 implies that r = 1, so p, = ¢,. Now p,x ---p,x = g,x - - - 4,,x and, analo-
gously, we obtain that p, = ¢5,...,P2 = G2, ., Py — 4,,- We conclude from the
foregoing that the coefficient at p,x ---p,x in the series (ax)” is equal to
a, ---a,,soa, ‘--a, = 0.

THEOREM 3. If the set X is uncountable and I is a nil right ideal of R{ X} then the
ideal of R generated by coefficients of an element of I is nilpotent.

PROOF. Let x, y € X, x # y and by, b,,... € R. It can be easily seen that if
a=72a,p €1and p € supp a then the coefficient at pxy“x in a(b,xyx + p,xy*x
+ ---) is equal to a,b,. The fact that I is a nil right ideal of R{X} implies that
U X, = X, where X, = {z € X|(a(bxyz + byxy’x +...)z)" = 0}. Thus for
some m the set X,, is uncountable. In particular for any p,,...,p,, € supp a and
any natural numbers k,,...,k, there exists z € X, such that
pixy¥ix,...,pxy*mx € P(X\{z}). Hence from Lemma 4, a, b, ---a, b, =0.
Now Lemma 1 ends the proof.

COROLLARY 4. If the set X is uncountable then S(R{X})= K(R{X}) =
N(R{X}).

PrOOF. Of course S(R{X}) D K(R{X}) D N(R{X}). By Theorem 3 the sum
W of all nil right ideals of R{X} is equal to N(R{X}) so W = N(R{X})=
K(R{X}). Now if I/K(R{X}) is a nil right ideal of R{X}/K(R{X}) thenIis a
nil right ideal of R{X}, so I C W = K(R{X}). Thus R{X}/K(R{X}) is S-semi-
simple. In consequence S(R{X}) = K(R{X}).

4. The case of one indeterminate

It is known (Puczylowski (1980), Corollary 2) that if X is a set of cardinality = 2
then R{X} is nil if and only if R is nilpotent or, equivalently, R{ X} is nilpotent.
This is not true for power series rings R{x} of one indeterminate x. Namely, let P
be the polynomial ring of commutative indeterminates x,, x,,... over a finite
field of p elements and let I be the ideal of P generated by xf, x£,.... Since P is a
commutative algebra over a field of characteristic p then for any Zaq, .., x;
x, €P, Ra;. x, ccox )P =2af  xF---xp €1 Now if Zax' €
(P/I){x} then (Za,x')? = ZaPx? = 0. Hence (P/I){x} is nil and P/I is not
nilpotent as for any n, x, - - - x,, & I.
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Gardner and Stewart (1976) have observed that the class K = {R| R{x}is nil}
is not radical. Now we will describe the class K more exactly.

THEOREM 4. Any ring of the class K is nil of bounded index.

PRrOOF. If a ring R is not nil of bounded index then for any n = 1,2,... there
exists a, € R, a; # 0. Let {k,} be the sequence of integers defined by induction
as follows

k=1, k,,,=nk,+ 1.

Certainly if /> n then k, >k, = nk, + 1. Thus if k;, + --- +k, = nk, then
i,<nforl<r<n Butsincek; <k,andk;, = k,if and only if i, = n, then the
equality k;, + --- t+k; = nk, implies i, = --- =i, = n. Using this fact we ob-
tain that the coefficient at x"*~ in the series (2 a,x*)" is equal to a” # 0. Thus the
series 2 a,x*i is not nilpotent.

ReMARK. The Nagata-Higman Theorem (Jacobson (1964), page 274) and
Theorem 4 imply that members of K which are algebras over a field of character-
istic zero are nilpotent.
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