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Abstract

Exploring the phylogenetic signal of morphological traits using geometric morphometry repre-
sents a powerful approach to assess the relative weights of convergence and shared evolutionary
history in shaping species’ forms. We evaluated the phylogenetic signal in shape and size of ven-
tral and dorsal haptoral anchors of 10 species of monogenoids (Hamatopeduncularia,
Chauhanellus and Susanlimocotyle) occurring in marine catfish (Siluriformes: Ariidae) from
the Atlantic coast of South America. The phylogenetic relationships among these species
were mapped onto the morphospaces of shape and size of dorsal and ventral anchors. Two dif-
ferent tests (squared change-parsimony and Kmult) were applied to establish whether the spatial
positions in the phylomorphospace were influenced by phylogenetic relationships. A significant
phylogenetic signal was found between anchor form and parasite phylogeny. Allometric effects
on anchor shape were non-significant. Phylogenetically distant species on the same host differed
markedly in anchor morphology, suggesting little influence of host species on anchor form.
A significantly higher level of shape variation among ventral anchors was also found, suggesting
that the evolutionary forces shaping ventral anchor morphology may operate with differing
intensities or exhibit distinct mechanisms compared to their dorsal counterparts. Our results
suggest that phylogenetic relationships were a key driver of changes in shape (but not size) of
anchors of monogenoids of South American ariids. However, it seems that the emergence of
the digitiform haptor in Hamatopenducularia and in some species of Chauhanellus played an
important role in the reduction in anchor size and may cause secondary losses of anchors in
other groups of monogenoids.

Introduction

Monogenoidea Bychowsky, 1937 (Platyhelminthes) are primarily ectoparasites of fish
(Whittington, 2005). These parasites have as a major taxonomic structure, the haptor,
which plays a key role for attachment to the gills or body surface of the host (Bychowsky,
1957; Boeger and Vianna, 2006). This structure integrates sclerotized hard parts such as
hooks, anchors and clamps or a combination of these elements. Importantly, many monoge-
noids exhibit high host specificity (Whittington et al., 2000), which indicates a highly specific
adaptation to parasitize particular fish species.

Monogenoidea has demonstrated to be an excellent model system for studying the evolu-
tionary processes that have driven parasite diversification and diversity (Poulin, 2002).
Different studies have used these parasites to investigate the processes leading to their diver-
sification and speciation (Šimková et al., 2002; Vanhove and Huyse, 2015), to elucidate the
evolutionary association of hosts and parasites (Desdevises et al., 2002; Šimková et al., 2006;
Šimková and Morand, 2008; Mendlová and Šimková, 2014; Vanhove et al., 2015;
Míguez-Lozano et al., 2017; Rahmouni et al., 2022; Seidlová et al., 2022; Soares et al.,
2023a) and to explore the relationship between phenotype variation in attachment organs
and factors such as phylogeny and host specificity (Vignon et al., 2011; Sarabeev and
Desdevises, 2014; Llopis-Belenguer et al., 2015; Khang et al., 2016; Rodríguez-González
et al., 2017).

Some of these studies have been based on linear measurements of haptoral elements (e.g.
Mladineo et al., 2013; Kmentová et al., 2020; Cruz-Laufer et al., 2022). This approach can
leverage published datasets, enabling the analysis of extensive data volumes (Cruz-Laufer
et al., 2022). However, a major limitation of linear measure-based morphometrics is the inher-
ent fusion of size and shape information, leading to difficulties in disentangling these 2 aspects
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(Adams et al., 2004). Geometric morphometrics addresses this
issue effectively and additionally provides visualization tools,
such as shape deformation grids, that facilitate the interpretation
and communication of intricate shape changes (Adams et al.,
2013). Another advantage of geometric morphometrics is that
shape analysis relies on homologous landmarks, ensuring that
comparisons between individuals or taxa are based on corre-
sponding anatomical points. While identification of landmarks
is more time-consuming due to the relatively involved collection
and processing of data, traditional morphometrics often rely on
arbitrary or poorly defined measurements that make it difficult
to assess homology (Adams et al., 2004).

Geometric morphometrics have been successfully utilized to
investigate the evolutionary processes that have shaped the diver-
sification of a wide range of organisms, including plants (Liu et al.,
2015), fishes (Friedman et al., 2019), mites (Kerschbaumer and
Pfingstl, 2021) and parasites (Vignon et al., 2011; Baillie et al.,
2019; Soares et al., 2023a). In Monogenoidea, different studies,
using geometric morphometric data of the haptoral anchors,
associated with molecular phylogenies have underscored the
usefulness of this approach in tackling diverse evolutionary in-
quiries (Llopis-Belenguer et al., 2015; Khang et al., 2016;
Rodríguez-González et al., 2017; Rahmouni et al., 2021; Soares
et al., 2023a).

In the present study, we integrate geometric morphometrics of
haptoral anchors and DNA sequences in a comparative phylogen-
etic context, in order to investigate the evolution of form (i.e. the
combination of shape and size sensu Klingenberg, 2016) of 10
species from 3 monogenoid genera (Hamatopeduncularia
Yamaguti, 1953, Chauhanellus Bychowsky & Nagibina, 1969
and Susanlimocotyle Soares, Domingues and Adriano, 2021)
that parasitize Ariidae (Siluriformes) from South America.
Haptoral anchors were chosen for analysis because they are not
subjected to large variation due to contraction or flattening on fix-
ation (Vignon, 2011) and are crucial for effective attachment to
the host. In fact, Šimková et al. (2002) indicate that the morph-
ology of the haptor is, to a large degree, determined by adaptation
to the host and to attachment to specific sites within their hosts,
which has been demonstrated in, for instance, Lamellodiscus spp.
(Poisot et al., 2011). Thus, similarity in anchor morphology could
result from homoplasy, indicating convergent evolution. However,
shared evolutionary history can also play a major role in deter-
mining anchor shape, as shown in Ligophorus spp.
(Rodríguez-González, 2017). So, anchor morphology is probably
shaped by a complex interplay between adaptive forces and phylo-
genetic constraints, the effects of which may vary among different
monogenoids (Messu Mandeng et al., 2015; Rodríguez-González
et al., 2016, 2017).

Furthermore, research indicates that the intensity and inter-
action of adaptive forces and phylogenetic constraints can mani-
fest differently in various haptoral elements (Vignon et al., 2011;
Rodríguez-González et al., 2015). For example, in Ligophorus
cephali Rubtsova, Balbuena, Sarabeev, Blasco–Costa & Euzet,
2006 on Mugil cephalus (Linnaeus, 1758), a greater control has
been observed over the shape and size of the ventral pair of
anchors compared to their dorsal counterparts. This difference
is noteworthy as the ventral anchors seem responsible for a firmer
attachment to the gills (Llopis-Belenguer et al., 2015;
Rodríguez-González et al., 2015). In fact, evidence indicates that
ventral and dorsal anchors in species of Ligophorus and
Cichlidogyrus exhibit relatively independent evolutionary trajec-
tories, mirroring the functional distinction in their attachment
roles (Vignon et al., 2011; Rodríguez-González et al., 2015).

The objectives of the present study were (1) to assess the rela-
tive influences of convergence and shared evolutionary history on
anchor form on the dactylogyrid parasites of South American

ariids, (2) assess shape and size differences between ventral and
dorsal anchors that might provide cues for different functional
attachment roles and (3) to use anchor morphology to understand
the relationships and evolutionary history of the 3 monogenoid
genera studied. Thus, special attention was given to examine
whether the morphology of the anchors serves as a basis for syno-
nymizing Hamatopeduncularia and Chauhanellus, as suggested
previously (Kearn and Whittington, 1994; Lim, 1994, 1996).
Furthermore, considering the recently suggested ancestral rela-
tionship between Susanlimocotyle and the latter 2 genera
(Soares et al., 2021, 2023b), we also assessed whether there are
patterns in the evolutionary changes of anchor morphology
within these monogenoids.

Materials and methods

Study area, host and parasite samples

The species of fish and parasites from 4 localities in the Brazilian
coast (Table 1) are the same used in our previous studies (Soares
et al., 2023a, 2023b). The morphological analysis of parasites
includes data of all species of Hamatopeduncularia, Chauhanellus
and Susanlimocotyle occurring on ariid catfish in the Brazilian
coast (10 species in total) (Table 1). A previously published phylo-
genetic tree based of concatenated partial sequences of genes 18S
rDNA, ITS1, 5.8S rDNA and ITS2 performed using Bayesian infer-
ence (Soares et al., 2023a) was used to assess the relationships
between morphology and evolutionary history of the monogenoid
species. The choice of these molecular markers is justified by the
relatively large number of sequences available for different species
of monogenoid of South American ariid fishes.

Morphometric data

In landmark-based geometric morphometrics, anatomical land-
marks (LMs) are identified and digitized on images of the bio-
logical structure under study (Klingenberg, 2010). Herein we
placed LMs on the haptoral anchors of the monogenoids follow-
ing Rodríguez-González et al. (2017). The haptor of the species
studied includes 2 pairs of ventral and dorsal anchors (VA and
DA, respectively) (see Fig. 2 in Soares et al. (2023a)). We con-
ducted parallel analyses of VA and DA since potential differences
between them may provide insights into the distinct selective
pressures influencing their morphology due to putative differing
roles in attachment (Rodríguez-González et al., 2017). Drawings
of VA and DA were taken from the original descriptions of the
parasites (holotype) (Domingues and Fehlauer, 2006;
Domingues et al., 2016; Soares et al., 2021, 2023b) and were
used to place the LMs. One VA and 1 DA of each monogenoid
species were processed independently. In each anchor, 5 homolo-
gous LMs were placed as per Soares et al. (2023a). To capture
anchor morphology more accurately, semilandmarks (SLMs)
were inserted between each LM (Mitteroecker and Gunz, 2009;
Llopis-Belenguer et al., 2015; Rodríguez-González et al., 2015),
following the methods for sliding the SLMs (Bookstein et al.,
2002). Five groups of 6–29 SLMs were placed equidistantly
between LM pairs (for descriptions and locations of LMs and
SLMs, see Soares et al. (2023a)). The morphology of VA and
DA was defined by the Cartesian coordinates (x, y) of the 83 ana-
tomical points (i.e. LMs and SLMs).

Digitalization of the LMs and SLMs was processed with the
TpsDig v2.32 (Rohlf, 2022). Generalized Procrustes analysis in
MorphoJ v1.07a (Klingenberg, 2011) was employed to obtain
matrices of shape coordinates of VA and DA (datasets 1 and 2,
respectively). This analysis removes all information related to pos-
ition, scale and orientation. Centroid size (CS), estimated as the
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summed squared distances of each LM from the centroid of the
form (Zelditch et al., 2012), was used as a measure of anchor
size. To visualize interspecific variation in anchor shape, we sub-
jected the matrices of generalized Procrustes analysis coordinates
of the VA and DA to principal component analysis (PCA) based
on the covariation matrix.

Assessing the influence of size on anchor shape

We assessed the effects of size on shape variation of the anchors
(i.e. interspecific allometry) independently for VA and DA by
means of a multivariate regression analysis (Klingenberg, 2016).
We used the Procrustes shape coordinates of VA and DA and
their log-transformed centroid size (logCS) as input in a multi-
variate regression through the origin (Lim and Gibson, 2009;
Klingenberg et al., 2012). Then, we mapped the residuals from
this regression onto the phylogenetic tree of the monogenoids.
A sizeable variation between the original datasets and the resi-
duals would suggest that evolutionary allometry (i.e. the allometry
between traits measured across species) played an important role
in anchor evolution in these monogenoids.

To avoid incorrect interpretations due to a violation of the
assumption of independent sampling (Harvey and Pagel, 1991),
we also assessed the effect of size on anchor shape with the phylo-
genetic independent contrast (PIC) correction (Felsenstein, 1985).
Since no evidence for allometry to the PIC-corrected analyses was

found (P > 0.07 in VA and DA), the effect of evolutionary allom-
etry was not further considered.

Evaluating phylogenetic signal in anchor shape and size

To test whether closely related monogenoids tend to have more
similar anchors to each other than of more distantly related
monogenoids, we evaluated phylogenetic signal in anchor shape
and size. For that, we mapped a topology of the phylogenetic
tree of our 10 monogenoid species onto the morphospace defined
by the 2 first PCA scores (PC1 and PC2) of shapes and onto
logCS (anchor size) using squared change-parsimony assuming
a model of Brownian-motion (BM) evolution (Klingenberg and
Marugán-Lobón, 2013). Phylogenetic signal was evaluated with
MorphoJ. Its significance (P < 0.05) was established by a permu-
tation test in which the topology was held constant and the prin-
cipal component scores for each taxon were randomly permuted
10 000 times across the tree (Maddison, 1991; Klingenberg and
Gidaszewski, 2010). If there were no correlation between phyl-
ogeny and morphometric data, the tree length value should be
small (closer to 0 than to 1) and non-significant. Given the dis-
agreement on which approach is more appropriate to measure
the phylogenetic signal (Blomberg et al., 2003; Adams, 2014),
we also used Kmult (generalization of Blomberg’s K ) (Adams
and Otarola-Castillo, 2013; Adams, 2014) to test for the phylo-
genetic signal in our data. Kmult quantifies the extent to which a
trait displays phylogenetic signal following BM evolution

Table 1. Host species, locality (geographical coordinates) and associated species of Chauhanellus, Hamatopeduncularia and Susanlimocotyle used in the present
study

Host Locality Parasite

Amphiarius rugispinis
(Valenciennes, 1840)

Ajuruteua (0°49′31′′N; 46°36′29′′W), Bragança,
PA, Br

C. hamatopeduncularoideum Domingues, Soares and Watanabe,
2016, OP681531a

C. neotropicalis Domingues and Fehlauer, 2006

Aspistor luniscutis (Valenciennes,
1840)

Cananéia (25°02′09.2′′S; 47°54′57.8′′W), SP, Br C. neotropicalis OP681530a

H. cangatae Domingues, Soares and Watanabe, 2016, OP681532a

Aspistor quadriscutis
(Valenciennes, 1840)

Ajuruteua (0°49′31′′N; 46°36′29′′W), Bragança,
PA, Br

C. neotropicalis
H. cangatae

Bagre bagre (Linnaeus, 1766) Ajuruteua (0°49′31′′N; 46°36′29′′W), Bragança,
PA, Br

H. bagre Hargis, 1955, OP681526a

Genidens barbus (Lacepède,
1803)

Cananéia (25°02′09.2′′S; 47°54′57.8′′W), SP, Br C. boegeri Domingues and Fehlauer, 2006, OP681529a

Estuary of Patos Lagoon (32°08′05.7′′S;
52°06′11.2′′W), RS, Br

C. boegeri
C. riograndinensis Soares, Martins, Vianna, Domingues and Adriano,
2023b, OP681534a

Genidens genidens (Cuvier, 1829) Estuary of Patos Lagoon (32°08′05.7′′S;
52°06′11.2′′W), RS, Br

C. boegeri
C. riograndinensis

Notarius grandicassis
(Valenciennes, 1840)

C. neotropicalis
H. cangatae

Sciades couma (Valenciennes,
1840)

Caratateua (1°59′41.91′′S; 46°43′21.385′′W),
Bragança, PA, Br

C. hamatopeduncularoideum
C. velum Domingues, Soares and Watanabe, 2016
C. boegeri

Sciades herzbergii (Bloch, 1794) Ajuruteua (0°49′31′′N; 46°36′29′′W), Bragança,
PA, Br

C. boegeri
C. susamlimae Domingues, Soares and Watanabe, 2016
C. velum OP681528a

S. narina Soares, Domingues and Adriano, 2021, OP681525a

Sciades passany (Valenciennes,
1840)

Caratateua (1°59′41.91′′S; 46°43′21.385′′W),
Bragança, PA, Br

C. neotropicalis
C. susamlimae OP681527a

C. velum

Sciades proops (Valenciennes,
1840)

Ajuruteua (0°49′31′′N; 46°36′29′′W), Bragança,
PA, Br

C. hypenocleithrum Domingues, Soares and Watanabe, 2016,
OP681533a

PA, Pará; SP, São Paulo; RS, Rio Grande do Sul; BR, Brazil.
aGenBank accession numbers of the DNA sequences of genes 18S rDNA, ITS1, 5.8S rDNA and ITS2 used for the phylogenetic reconstruction of the parasites by Soares et al. (2023a). C. =
Chauhanellus; H. = Hamatopeduncularia; S. = Susanlimocotyle.
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(Diniz-Filho et al., 2012). Kmult = 0 suggests no phylogenetic sig-
nal, Kmult = 1 indicates that the trait distribution perfectly con-
forms to BM, Kmult < 1 correspond to trait variation that is
larger than expected between taxa of the same lineage and
Kmult > 1 indicates stronger similarities among closely related spe-
cies than expected under BM. The significance of Kmult (P < 0.05)
was established based on comparison of the observed value with
those obtained in 999 randomizations (Liu et al., 2015). The
tests were performed with function physignal of the geomorph
package v3.0.1 (Adams, 2014) in R v4.1.0 (R Core Team, 2022).

Results

Phylogenetic signal in anchor shape and anchor size

The PCA performed with the covariance matrix of LM data of
both VA and DA shows that a large part of the variation is con-
tained in relatively few dimensions. The first 2 principal compo-
nents accounted for 78.5 and 78.3% of the total shape variation in
VA and DA, respectively (Table 2). Eigenvalues and variance
explained by each principal component are given in
Supplementary Table S1.

In the phylomorphospace (Fig. 1a and b), in which the phyl-
ogeny of monogenoids (Fig. 1c) was projected onto the morpho-
space defined by PC1 and PC2 of the VA and DA shape,
congeneric species tended to cluster together. Only
Chauhanellus hamatopeduncularoideum from Amphiarius rugis-
pinis and Sciades couma did not follow this trend. By contrast,
species reported parasitizing the same hosts (i.e. Chauhanellus
boegeri, C. velum and C. susamlimae from Sciades herzbergii)
did not group together in the phylomorphospace. Both
approaches, MorphoJ (VA: tree length = 0.249, P = 0.007 and
DA: tree length = 0.187, P = 0.001), and Kmult (VA: Kmult = 0.78,
P = 0.01 and DA: Kmult = 1.1, P = 0.001) (Fig. 1d–e) supported a
significant relationship signal between the shape of VA and DA,
and phylogenetic position of the monogenoids.

The deformation grids of each species provide a visual
representation of their deviation from the average anchor shape
(VA and DA) of the species studied (see parts of anchors in insert
in Fig. 1a and b). Based on this evidence, we identify 4 clusters: (i)
Chauhanellus spp. except C. hamatopeduncularoideum (see
Table 1 for Chauhanellus spp., and Fig. 1c for host–parasite dis-
tribution), characterized by a VA with truncated inner root,
expanded outer root, short shaft and evenly curved to point;
DA with poorly developed inner root, expanded outer root and
wide base (Fig. 1a and b, cluster marked with a yellow circle);
(ii) Hamatopeduncularia spp. (H. bagre from Bagre bagre; and
H. cangatae from A. luniscutis, A. quadriscuti and N. grandicas-
sis), characterized by a VA with long inner root, non-expanded
outer root, long shaft, curved to point; DA with long inner root,
non-differentiated outer root, narrow base (Fig. 1a and b, cluster
marked with a green circle); (iii) the monotypic Susanlimocotyle

narina (from S. herzbergii), characterized by a VA with developed
inner and outer roots, long shaft, evenly curved to point
(Hamatopeduncularia morphology); DA with developed inner
root, outer root expanded and wide base (Chauhanellus morph-
ology) (Fig. 1a and b, cluster marked with a red circle), with char-
acteristics intermediate between cluster ii (at the VA) and between
clusters i and ii (at the DA), which seem to represent the charac-
teristics shared with the species of Hamatopeduncularia and
Chauhanellus, consistent with the close relationship of these spe-
cies suggested by the phylogenetic tree (Fig. 1c); and (iv) C. hama-
topeduncularoideum (from A. rugispinis and S. couma),
characterized by a VA with long inner root, not expanded outer
root, long shaft, curved to point (Hamatopeduncularia morph-
ology); DA with poorly developed inner root, expanded outer
root and wide base (Chauhanellus morphology), with intermedi-
ate characteristics between cluster ii (at the VA) and between i (at
the DA), and C. hamatopeduncularoideum covering the same
swath in phylomorphospace for VA and DA (see Fig. 1a and b,
cluster marked with a pink circle).

The phylogeny of monogenoids projected onto the morpho-
space defined by allometry-free (size-corrected) PC1 and PC2 of
anchor shape yielded a tree length of 0.02 for VA and DA
(Fig. 2a and b). The multivariate regression of Procrustes coordi-
nates on logCS, provided evidence for an allometric relationship
between shape and size only for DA (VA: P = 0.5; DA: P =
0.01), accounting for 29.7% of the total shape variation of DA.
Phylogenetic signal was again highly significant, both in
MorphoJ (P = 0.007 each) and Kmult (size-corrected) (VA: Kmult =
0.72, P = 0.009 and DA: Kmult = 0.98, P = 0.001). The scatter
graph of VA (Fig. 2a) showed small branches of C. susamlimae,
C. velum, C. riograndinensis and H. bagre than in the PCA uncor-
rected for size (Fig. 1a). By contrast, the branches of C. boegeri,
C. neotropicalis, C. susamlimae, C. velum and C. riograndinensis
were larger than the original PCA in the DA scatterplot (compare
Fig. 1b with Fig. 2b). Whereas the position of species in the original
and size-corrected was similar in the VA phylospaces, it was not the
case in the DA phylospaces. Consequently, allometry had a signifi-
cant effect on the overall variation of DA shape, but not on VA
shape.

In Fig. 3, the molecular phylogeny projected onto the gradient
in size (logCS) of VA and DA is shown along with the cumulative
branch length from the root of the tree. This mapping resulted in
tree lengths of VA and DA of 0.34 and 0.62, respectively, com-
puted in units of logCS distance along all branches.
Phylogenetic signal tested in MorphoJ by random permutation
of logCS was not statistically significant in both anchors (VA:
P = 0.07 and DA: P = 0.12). However, Kmult indicated a significant
phylogenetic signal in VA but not in DA (VA: Kmult = 0.99, P =
0.03; DA: Kmult = 0.68, P = 0.11).

Discussion

Monogenoids of the genera Hamatopeduncularia, Chauhanellus
and Susanlimocotyle, parasitic on South American ariids, exhibit
distinct variations in anchor shape (Domingues et al., 2016;
Soares et al., 2021, 2023b), and these differences are clearly
reflected in their positions within the phylomorphospace
(Fig. 1a and b). Thus, it is not surprising that for the 3 genetic
lineages (Susanlimocotyle, Hamatopeduncularia and Chauhanellus)
(Fig. 1c), the VA and DA shape exhibit a significant phylogenetic
signal, suggesting that evolutionary history played an important
role in determining the shape of haptoral anchors. This agrees
with other studies, which suggest a consistent relationship between
anchor morphology and phylogeny in monogenoids (Sarabeev and
Desdevises, 2014; Khang et al., 2016; Rodríguez-González et al.,
2017).

Table 2. PCA of variation among the shapes of species for ventral and dorsal
anchors of monogenoids from ariids

Anchor Eigenvalue Total variance (%)

Ventral

PC1 2.68×10−2 49.8

PC2 1.54×10−2 28.7

Dorsal

PC1 2.27×10−2 58.6

PC2 7.64×10−3 19.7
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Visually, the distribution of anchors in phylomorphospace was
more convincing for the VA than for DA, indicating the forma-
tion of clusters (Fig. 1a and b), especially regarding the separation
of Hamatopeduncularia and Chauhanellus lineages into 2 distinct
clusters. Interestingly, the Kmult corresponding to shape was <1 for
VA and >1 for DA (Fig. 1d–e). Thus, the phenotypic variation in
VA is greater than expected between taxa of the same lineage
(Adams, 2014). This indicates that the evolutionary processes act-
ing on VA shape did not act with similar intensity, or were not the
same as in DA in these genera.

In addition, the deformation grids plotted in Fig. 1a indicate
that the inner and outer roots of the VA are more differentiated
than those of the DA counterparts in species of each genus
(Fig. 1b). In general, the anchor roots of Dactylogyridae are the

point of connection and articulation with the bars, aided by
the insertions of the haptoral muscles. Functionally, they have
the role of controlling the intensity of attachment to the host
(Kearn, 1994). Thus, the differences observed between VA and
DA can be explained in terms of different functional roles of
these structures, which seems to be common in Dactylogyridae
(Vignon et al., 2011; Llopis-Belenguer et al., 2015; Rodríguez-
González et al., 2015).

Interestingly, the VA shape in C. hamatopeduncularoideum,
characterized by an inner root long, outer root not expanded,
long shaft, curved to point, exhibits a greater resemblance in the
phylomorphospace to those found in Hamatopeduncularia species
rather than other Chauhanellus species (Fig. 1a). One could specu-
late that similarity in the shape of the anchors may result from

Figure 1. Phylomorphospace showing changes in the shape of ventral (a) and (b) dorsal haptoral anchors of the species of monogenoids (Susanlimocotyle,
Hamatopeduncularia and Chauhanellus spp.) studied mapped onto phylogeny. Estimated changes in anchor shapes are shown as thin-plate-spline deformation
grids with colour-scaled coded Jacobian expansion factors (red for factors >1, indicating expansion; strong blue for factors between 0 and 1, indicating contraction)
were used. The insert shows the parts of an anchor in monogenoids species from ariids. S., Susanlimocotyle; H., Hamatopeduncularia; C., Chauhanellus; The col-
oured circles represent the clusters formed. (c) Bayesian tree based on partial sequences of genes 18S rDNA, ITS1, 5.8S rDNA and ITS2 sequences of representative
individuals of 10 monogenoids species of the genera Susanlimocotyle, Hamatopeduncularia and Chauhanellus (posterior probabilities support values are given
above the branches); and host–parasite distribution. (d–e) Histogram of Kmult values obtained from 999 permutations of the ventral (d) and (e) dorsal anchors
shape data and the phylogeny, with the position of observed value of Kmult identified.
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adaptation to the gill morphology of the host. However, C. hama-
topeduncularoideum does not share any host with Hamatopedun-
cularia spp. (Fig. 1c). Alternatively, C. hamatopeduncularoideum
could be considered a species of Hamatopeducunlaria. In fact,
some authors (Kearn and Whittington, 1994; Lim, 1994, 1996;

Lim et al., 2001; Domingues et al., 2016) have suggested that
Chauhanellus and Hamatopeduncularia may be considered syno-
nyms, because certain species within each genus share morpho-
logical characteristics that were originally used to differentiate the
2 genera in the past (Soares et al., 2021, 2023b). However, evidence

Figure 2. Phylomorphospace showing changes in shape (corrected for size) of ventral (a) and (b) dorsal haptoral anchors of the species of monogenoids
(Susanlimocotyle, Hamatopeduncularia and Chauhanellus spp.) studied mapped onto phylogeny. Species abbreviations as in Fig. 1.
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from molecular data does not support neither the inclusion
of C. hamatopeduncularoideum within Hamatopeduncularia,
nor the synonymy of the 2 genera (Fig. 1c) (Soares et al., 2021,
2023b).

Alternatively, the presence of Hamatopeduncularia-like
anchors in Chauhanellus species suggests that this morphology
might have been present in the common ancestor of both genera
(Kearn and Whittington, 1994). Thus, reversal to the ancestral
character state would account for the anchor morphology in
C. hamatopeduncularoideum, as suggested for other structures
in some monogenoids (Šimková et al., 2006).

Šimková et al. (2006) carried out ancestral state reconstructions
on Dactylogyrus species, revealing a shift in haptor anchor
shapes from type 2 to type 1 for the majority of species (see
Šimková et al., 2006, p. 1028, Table 1 for anchor shapes). However,
the authors noted a reversion to the ancestral state in derivative

species. This observation appears to be applicable to the
Hamatopeduncularia-type anchors in C. hamatopeduncularoideum.

Indeed, the VA shape of S. narinae also conforms to that of
Hamatopeduncularia (see parts of anchors in insert in Fig. 1a),
whereas the DA shape seems a composite of those of
Hamatopeduncularia and Chauhanellus (see parts of anchors in
insert in Fig. 1b). This suggests that some character states of
Susanlimocotyle shared Hamatopeduncularia and Chauhanellus
might represent evolutionary ancestral forms (Fig. 1a–c).

An additional feature of C. hamatopeduncularoideum shared
with Hamatopeduncularia spp. is the presence of a digitiform
haptor. This character was originally considered as diagnostic of
Hamatopeduncularia (Yamaguti, 1953), but it was later found
in some Chauhanellus spp. (e.g. C. susamlimae and C. riograndi-
nensis) (Kearn and Whittington, 1994; Lim, 1994, 1996; Lim
et al., 2001; Domingues et al., 2016; Soares et al., 2023b).

Figure 3. Projection of phylogenetic tree from monogenoids (Susanlimocotyle, Hamatopeduncularia and Chauhanellus spp.) onto log centroid size (logCS) of ventral
(a) and dorsal (b) haptoral anchors. Species abbreviations as in Fig. 1. The anchors displayed are scaled as per the logCS scale to convey the gradient in size.
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Interestingly, the Chauhanellus species that have a digitiform hap-
tor (C. hamatopeduncularoideum, C. susamlimae and C. riogran-
dinensis) have smaller anchors than closely related congeneric
species (Fig. 3). This could account for the lack of significant phy-
logentic signal in anchor size found in most analyses. Only the
Kmult result for DA was significant, but Fig. 3b suggests that the
relationship between size and phylogenetic relatedness is not
strong.

Kearn and Whittington (1994) suggested that an important
innovation in some ancestral ancyrocephalines (Dactylogyridae)
was the development of hooklet-bearing papillae (=digitiform
haptor) with the ability to elongate. According to these authors,
this provided these parasites with multiple attachment points to
the gills, and offered little resistance, minimizing the threats of
displacement by water currents, allowing more versatility in
attachment sites. Thus, the digitiform haptor decreased the func-
tion of the anchors, which resulted in a reduction of their size
(Kearn and Whittington, 1994). This scenario is supported by
the present study, as the presence of a digitiform haptor in C.
hamatopeduncularoideum, C. susamlimae and C. riograndinensis
coincides with a reduction in anchor size. Likewise, the digitiform
haptor may have caused the secondary loss of anchors in other
dactylogirid genera (e.g. Trinigyrus Hanek, Molnar & Fernando
(1974) sensu Kritsky et al. (1986)). However, in other genera
with no digitiform haptor, like Dactylogyrus and Dogielius, the
ventral bar is significantly reduced and ventral anchors are
altogether absent (Pravdová et al., 2018). Thus, other selective
forces would account for the reduction of haptors elements. In
any case, this observation strengthens the proposition that dorsal
and ventral anchors may undergo distinct evolutionary trajector-
ies within the Dactylogyridae.

Conclusion

Our study suggests that phylogeny has driven the evolution of
shape but not size of the anchors of monogenoids from South
American ariids. However, it seems that the emergence of the
digitiform haptor in Hamatopenducularia and some species of
Chauhanellus played an important role in the reduction of
anchors, as suggested by other authors, and may account for sec-
ondary losses in other groups of monogenoids.

Nevertheless, we acknowledge the limited scope of our study.
While typical geometric morphometric studies analyse several
specimens per species, our investigation employed a single repre-
sentative per species due to lack of specimen availability. Our
approach rest on the assumption that intraspecific variation and
measurement error are smaller than interspecific differences
(Klingenberg and Marugán-Lobón, 2013). This premise appears
substantiated given that morphological differences in both size
and shape of the anchors between species were clear and substan-
tial (Fig. 3). Nevertheless, we must acknowledge the potential
impact of even minor levels of intraspecific variation or measure-
ment error on the conclusions drawn from our study. Hence,
while our findings offer valuable insights into the phylogenetic
effects on anchor form, future research incorporating multiple
specimens will undoubtedly contribute to a more nuanced picture
of the evolution of anchor morphology of monogenoids of ariid
fishes.

In addition, future studies should also use molecular markers
from different regions (i.e. 28S rDNA, COI) and include a wider
range of taxa, including the type species of each genus
(Hamatopeduncularia arii Yamaguti, 1953 and Chauhanellus ocu-
latus Bychowsky & Nagibina, 1969) and representatives of
New-World and Old-World lineages as proposed by Soares
et al. (2023b).
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